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Abstract: With the deepening of the financialization of the oil market, the importance of the oil futures market is 
highlighted. The highly volatile crude oil future market inevitably has major influence on financial markets, 
national economy and even national security. Therefore, modelling accurately the volatility of crude oil 
futures prices has important theoretical and practical significance for investors and for preventing energy 
market risks. In this paper, we study the distribution of high-frequency crude oil futures price changes. 
Many empirical studies have shown that the distribution of price changes in financial market has fatter tail 
than lognormal distribution. Thus, we build a model using both the transition distribution and the Lorentz 
stable distribution to describe the characteristics of oil future market. Employing the Fokker-Planck 
equation, we find the explicit formalism of the distribution of oil future price changes. Using empirical data 
from China’s future market, we have proved the consistency of our theoretical model with the real market. 

1 INTRODUCTION 

In the energy structure of all countries, crude oil 
constitutes one of the most crucial components. It 
also plays an important part in the economic and 
social development of various countries. In recent 
years, the financialization of the oil market has 
deepened. The oil futures market has an impact on 
the price discovery of crude oil market. Therefore, 
the high volatility of crude oil futures prices will 
inevitably have a significant impact on financial 
markets, national economy and even national 
security. Therefore, modelling accurately and 
estimating the volatility of crude oil futures prices 
has important theoretical and practical significance 
for investors, and for preventing and mitigating the 
energy market risks. In this paper, we study the 
distribution of high-frequency crude oil futures price 
variations. 

Traditionally, the solution to geometric 
Brownian motion by the Black-Scholes model 
(Black and Scholes, 1973; Merton, 1973) gives the 
common lognormal probability distribution for 
changes in financial asset prices. However, many 
empirical studies have shown that the distribution of 

financial assets’ price changes has fatter tail than 
lognormal distribution (Bouchaud and Potters, 2003; 
Wilmott, 1998).Many progress have been made 
academically to improve the probability density 
distribution function of financial assets. Some 
scholars argue that the volatilities of financial assets 
are driven by mean-reverting stochastic processes 
(Engle and Patton, 2001; Blanc et al, 2014). Some 
scholars believe that the volatility of financial 
products should be a random variable rather than a 
constant number as in Black-Scholes model (Hull 
and White, 1987; Fouque et al., 2000). 
Autoregressive Conditional Heteroskedasticity 
models (Engle, 1982; Dumas et al., 1998) use a 
function of the actual size of the error term in the 
preceding time period to describe the variance of the 
current error term. When the error variance is 
assumed to follow the autoregressive moving 
average, the model becomes a generalized 
autoregressive conditional heteroskedasticity 
(GARCH) model (Bollerslev, 1986; Francq and 
Zakoian, 2010; Chicheportiche and Bouchaud, 2014; 
Blanc et al., 2014). In financial market, GARCH 
models are often applied to describe time series with 
volatility clustering and time-varying volatility. 
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In particular, there has been extensive research 
on the empirically observed power-law tails or the 
scaling behaviour of financial assets (Mandelbrot, 
1963; Bouchaud, 2000). Mandelbrot (1963) was the 
first to notice the scaling properties of financial 
assets and found that the distribution of financial 
assets' price variation follows a power law. Since 
then, many scholars have analyzed the power-law 
distribution of financial data price tails from the 
perspective of econphysics (Ballocchi et al., 1999; 
Mantegna and Stanley, 1995; Ghashghaie et al., 
1996; Stanley and Plerou, 2001;Voit, 2001). Yet, 
most of these studies focus on the stock and foreign 
exchange markets. Many scholars have studied the 
price fluctuation of crude oil market ( Wei et al., 
2010; Wen et al., 2016; Gong et al., 2017; Wei et al., 
2017; Zhang et al., 2019a; Zhang et al., 2019b; Li et 
al., 2022). But there is still a lack of research on the 
distribution of high-frequency crude oil futures 
prices. 

In this paper, we attempt to study the distribution 
of high-frequency crude oil futures price changes. 
We construct a two-stage distribution of a stochastic 
time series for crude oil futures markets using 
transition probability distribution and Lorentz stable 
distribution. The Lorentz stable distribution is used 
to describe the stochastic price changes of high-
frequency time series of crude oil futures. And we 
use the transition distribution to model the price 
transition from 𝐹ሺ𝑡ሻto 𝐹ሺ𝑡 + ∆𝑡ሻ in high frequency 
crude oil future market. Using Fokker-Planck 
equation, we obtain the explicit expression of our 
theoretical model. Using empirical data from 
China’s future market, we have proved the 
consistency of our theoretical model with the real 
market. 

The paper is organized as follows. In Section 2, 
we build our theoretical model. We describe the 
possible abnormal stochastic process of high-
frequency crude oil futures prices and present the 
Lorentz stable distribution of high-frequency crude 
oil futures prices. Then, we build the two-stage 
model for the stochastic high frequency crude oil 
futures market and give the explicit formalism of our 
theoretical model. In Section 3, we calibrate our 
theoretical model using high-frequency crude oil 
future SC2209 in China’s future market. The results 
show our theoretical model can describe the real 
market well, with the R2 =0.9849. The final section 
gives the conclusion. 

2 MODEL 

2.1 Anomalous Geometric Brownian 
Motion and Lorentz Stable 
Distribution 

It is generally assumed that financial asset follows 
the geometric Brownian motion 𝑑𝑆 = 𝑆ሺ𝜎𝑑𝐵 + 𝜇𝑑𝑡ሻ. (1)

In this paper, we analyse the price of future 
market. We use F(t) to represent the price of the 
future product at time t. Therefore, we have 𝑑𝐹 = 𝐹ሺ𝜎𝑑𝐵 + 𝜇𝑑𝑡ሻ. (2)

Take the first order differential of time, we can 
have 𝑑𝐹ሺ𝑡ሻ𝑑𝑡 = 𝜇𝐹 + 𝐹𝜎𝜂ሺ𝑡ሻ, (3)

where 𝜂ሺ𝑡ሻ represents the noise. We use a functional 
probability distribution ሾ𝑑𝑃ሺ𝜂ሻሿ  to describe the 
noise. Thus, the probability distribution of a 
Gaussian white noise can be described as ሾ𝑑𝑃ሺ𝜂ሻሿ = ሾ𝑑𝜂ሿ𝑒ି ଵଶஐሺிሻ ׬ ఎమሺ௧ሻௗ௧. (4)

in which Ωሺ𝐹ሻ  depicts the width of noise 
distribution. 

For the Gaussian white noise, the 1-point and 2-
point correlations are characterized as 𝐸ሾ𝜂ሺ𝑡ሻሿ = 0, 𝐸ሾ𝜂ሺ𝑡ሻ𝜂ሺ𝑡′ሻሿ = Ωሺ𝐹ሻ𝛿ሺ𝑡 − 𝑡ᇱሻ. (5)

Given that for initio time  𝑡଴ , the value 
of 𝐹ሺ𝑡଴ሻ = 𝐹଴, the log-return is of the form 𝑟ሺ𝑡ሻ = 𝑙𝑛𝐹ሺ𝑡ሻ/𝐹ሺ0ሻ. (6)

Take the first order differential of time, we can 
have 𝑑𝑟ሺ𝑡ሻ𝑑𝑡 = 𝜇 − 𝜎ଶ2 + 𝜎𝜂ሺ𝑡ሻ. (7)

We define the relative log-return 𝑧ሺ𝑡ሻ as 𝑧ሺ𝑡ሻ = 𝑟ሺ𝑡ሻ − 𝜇𝑡. (8)
The Langevin equation of the relative log-return 𝑧ሺ𝑡ሻ can be written as 𝑑𝑧ሺ𝑡ሻ𝑑𝑡 = − 𝜎ଶ2 + 𝜎𝜂ሺ𝑡ሻ. (9)

For the stochastic variable 𝑧ሺ𝑡ሻ, the probability 
distribution 𝑃ሺ𝑧, 𝑡ሻ is of the form 𝑃ሺ𝑧, 𝑡ሻ = 𝐸ሾ𝛿ሺ𝑧ሺ𝑡ሻ − 𝑧ሻሿ. (10)

Differentiating the probability distribution 𝑃ሺ𝑧, 𝑡ሻ  and using equation (3) (Hohenberg and 
Halperin, 1977), we can obtain 𝜕𝑃ሺ𝑧, 𝑡ሻ𝜕𝑡 = 𝐸 ൥൭− 𝜎ଶ2 + 𝜎𝜂ሺ𝑡ሻ൱ 𝜕𝜕𝑧ሺ𝑡ሻ 𝛿ሺ𝑧ሺ𝑡ሻ − 𝑧ሻ൩. (11)

The probability distribution 𝑃ሺ𝑧, 𝑡ሻ  satisfies 
Fokker-Planck equation, therefore we have 
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𝜕𝑃ሺ𝑧, 𝑡ሻ𝜕𝑡 = 12 𝜕𝜕𝑧 ቈ𝜎Ωሺ𝑧ሻ 𝜕𝑃ሺ𝑧, 𝑡ሻ𝜕𝑧 + 𝜎ଶ𝑃ሺ𝑧, 𝑡ሻ቉. (12)

As for the stationary solution  𝑃0ሺ𝑧ሻ , it also 
satisfies the stationary Fokker-Planck equation. 
Therefore we can obtain 𝜕𝜕𝑧 ቈ𝜎Ωሺ𝑧ሻ 𝜕𝑃଴ሺ𝑧ሻ𝜕𝑧 + 𝜎ଶ𝑃଴ሺ𝑧ሻ቉ = 0. (13)

Integrate the above equation, we can have 𝜎Ωሺ𝑧ሻ 𝜕𝑃଴ሺ𝑧ሻ𝜕𝑧 + 𝜎ଶ𝑃଴ሺ𝑧ሻ = 𝐶, (14)

where 𝐶 is an integral constant. 
As 𝑧௠௜௡ = −∞, 𝑧௠௔௫ = ∞, the integral constant 

which represents the probability current equals zero. 
Therefore, this equation can be reduced as Ωሺ𝑧ሻ 𝜕𝑃଴ሺ𝑧ሻ𝜕𝑧 + 𝜎𝑃଴ሺ𝑧ሻ = 0. (15)

Solving out the stationary Fokker-Planck 
equation exactly, we have 𝑃଴ሺ𝑧ሻ = 1𝑁 exp ൬− න 𝜎Ωሺ𝑧ሻ 𝑑𝑧൰, (16)

Here 𝑁 represents normalization constant. 
The width of diffusion is set to be Ωሺ𝑧ሻ = 𝜎2 𝛾ଶ + 𝑧ଶ𝑧 . (17)

Thus, we can obtain the Lorentz distribution as 𝑃଴ሺ𝑧ሻ = 𝛾𝜋 1𝛾ଶ + 𝑧ଶ. (18)

If 𝑧 is a sum of two Lorentzian random variables 𝑧ଵ  and 𝑧ଶ , the probability density distribution of  𝑧 = 𝑧ଵ + 𝑧ଶ  under the assumption of independence 
of 𝑧ଵ and𝑧ଶ is 𝑃ଶሺ𝑧ሻ = 𝑃଴ሺ𝑧ଵሻ⨂𝑃଴ሺ𝑧ଶሻ = න 𝑃଴ሺ𝑧ଵሻ𝑃଴ሺ𝑧 − 𝑧ଵሻஶ

ିஶ 𝑑𝑧ଵ. (19)

To calculate the probability density distribution 𝑃ଶሺ𝑧ሻ, we define the characteristic function of the 
Lorentzian stochastic process 𝜙ሺ𝑞ሻ ≡ න 𝑃଴ሺ𝑧ଵሻ𝑒௜௤௭ஶ

ିஶ 𝑑𝑧. (20)

It is not difficult to get the characteristic function 
of the Lorentzian stochastic process 𝜙଴ሺ𝑞ሻ = 𝑒ିఊ|௤|. (21)

The convolution theorem of Fourier transform 
implies that the characteristic function of the 
stochastic variable 𝑧 is given by 𝜙ଶሺ𝑞ሻ = ൫𝜙଴ሺ𝑞ሻ൯ଶ = 𝑒ିଶఊ|௤|. (22)

By making use of the inverse Fourier transform, 
we can obtain the probability density function for 
the stochastic variable 𝑧 = 𝑧ଵ + 𝑧ଶ, 𝑃ଶሺ𝑧ሻ = 12𝜋 න 𝜙ଶሺ𝑞ሻஶ

ିஶ 𝑒ି௜௤௭𝑑𝑞 
(23)

= 2𝛾𝜋 14𝛾ଶ + 𝑧ଶ. 
In the general case, the probability density function 
for the stochastic variable 𝑧 = 𝑧ଵ + 𝑧ଶ + ⋯ + 𝑧௡  is 
of the form 𝑃௡ሺ𝑧ሻ = 𝑃଴ሺ𝑧ଵሻ⨂𝑃଴ሺ𝑧ଶሻ⨂ ⋯ ⨂𝑃଴ሺ𝑧௡ሻ = න 𝑃଴ሺ𝑧ଵሻ𝑃଴ሺ𝑧ଶሻ ⋯ 𝑃଴ሺ𝑧௡ିଵሻ𝑃଴ሺ𝑧 − 𝑧ଵஶ

ିஶ− 𝑧ଶ − ⋯ − 𝑧௡ିଵሻ 𝑑𝑧ଵ𝑑𝑧ଶ ⋯ 𝑑𝑧௡ିଵ. 
(24)

The convolution theorem of Fourier transform 
guarantees that the characteristic function of the 
stochastic variable 𝑧 is as 𝜙௡ሺ𝑞ሻ = ൫𝜙଴ሺ𝑞ሻ൯௡ = 𝑒ି௡ఊ|௤|. (25)
Using the inverse Fourier transform, we can have the 
probability density function for the stochastic 
variable 𝑧 = 𝑧ଵ + 𝑧ଶ + ⋯ + 𝑧௡, 𝑃௡ሺ𝑧ሻ = 12𝜋 න 𝜙௡ሺ𝑞ሻஶ

ିஶ 𝑒ି௜௤௭𝑑𝑞 = 𝑛𝛾𝜋 1𝑛ଶ𝛾ଶ + 𝑧ଶ. 
(26)

Thus, the Lorentzian distribution is stable. 
In Figure 1 and Figure 2, we exhibit the 

comparison of Lorentz distribution with some other 
distributions. We compare the Lorentz distribution 
with the Gaussian distribution in figure 1. It can be 
seen that in comparison with Gaussian distribution, 
the Lorentz distribution is a better fit for the fat-tail 
distribution observed in real financial market. In 
figure 2, we present a comparison of truncated Lévy 
flight with Lorentz distribution. When the stochastic 
variable 𝑧  is relatively large, the Lorentz stable 
distribution approaches 1 ോ 𝑧ଶ  while the truncated 
Lévy flight approaches 1 ോ 𝑧ଵ.ହ. 

 
Figure 1: A comparison of the Gaussian distribution with 
Lorentz distribution. It can be seen that in comparison 
with Gaussian distribution, the Lorentz distribution is a 
better fit for the fat-tail distribution observed in real 
financial market.  
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Figure 2: A comparison of Truncated Lévy flight with 
Lorentz distribution. When the stochastic variable z is 
relatively large, the Lorentz stable distribution approaches 1 ോ 𝑧ଶ while the truncated Levy flight approaches 1 ോ 𝑧ଵ.ହ. 

2.2 The Transition Probability 
Distribution 

In the previous part, we have already obtained the 
Fokker-Planck equation, 𝜕𝑃ሺ𝑧, 𝑡ሻ𝜕𝑡 = 12 𝜕𝜕𝑧 ቈ𝜎Ωሺ𝑧ሻ 𝜕𝑃ሺ𝑧, 𝑡ሻ𝜕𝑧 + 𝜎ଶ𝑃ሺ𝑧, 𝑡ሻ቉. (27)

We can rewrite the above Fokker-Planck equation as 𝜕𝑃ሺ𝑧, 𝑡ሻ𝜕𝑡 = 𝐿ி௉𝑃ሺ𝑧, 𝑡ሻ 𝐿ி௉ ≡ 12 𝜕𝜕𝑧 ൤𝜎Ωሺ𝑧ሻ 𝜕𝜕𝑧 + 𝜎ଶ൨. 
(28)

The price changes of oil future can be defined as 𝑍∆௧ = 𝑙𝑛𝐹ሺ𝑡 + ∆𝑡ሻ − 𝑙𝑛𝐹ሺ𝑡ሻ. (29)
As for the probability density of 𝑧 at time 𝑡 + ∆𝑡 

under the condition that it has the value ሺ𝑡ሻ  , we 
define the conditional probability density as 𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ= 〈𝛿൫𝑧ሺ𝑡ሻ − 𝑧ሺ𝑡 + ∆𝑡ሻ൯〉. (30)

It can be deduced that for initial condition 𝑃ሺ𝑧, 𝑡ሻ = 𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ should also 
follow the Fokker-Planck equation (28), namely 𝜕𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ𝜕𝑡= 𝐿ி௉𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ. (31)

We can find one formal solution of the above 
equation as 𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ = 𝑒௅ಷು∆௧𝛿൫𝑧ሺ𝑡 + ∆𝑡ሻ − 𝑧ሺ𝑡ሻ൯. (32)

Making use of iteration (Dyson, 1949), we can 
obtain the following equation 𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ = 𝛿൫𝑧ሺ𝑡 + ∆𝑡ሻ − 𝑧ሺ𝑡ሻ൯ሾ1 + Πሿ 

(33)

Π = ෍ න 𝑑𝑡ଵ௧ା∆௧
௧ න 𝑑𝑡ଶ௧భ

௧ ⋯ න 𝑑𝑡௡௧೙షభ
௧ 𝐿ி௉ሺ𝑧, 𝑡ଵሻ ⋯ 𝐿ி௉ሺ𝑧, 𝑡௡ሻ.ஶ

௡ୀଵ  

When the time interval ∆t is relatively small, the 
solution reads 𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ = 𝛿൫𝑧ሺ𝑡 + ∆𝑡ሻ − 𝑧ሺ𝑡ሻ൯ሾ1 +𝐿ி௉ሺ𝑧, 𝑡ሻ∆𝑡 + 𝑂ሺ∆𝑡ሻଶሿ. (34)

By using the integral presentation of the 𝛿 
function, we can have 𝛿ሺ𝑧 − 𝑧′ሻ = 12𝜋 න 𝑒𝑖𝑢ሺ௭ି௭ᇱሻ𝑑𝑢∞−∞ . (35)

Thus, 𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ = ቈ1 + 12 𝜕ଶ𝜕𝑧ሺ𝑡 + ∆𝑡ሻଶ 𝜎Ωሺ𝑧ሻ − 12 𝜕𝜕𝑧ሺ𝑡 + ∆𝑡ሻ ቆ𝜎 𝑑Ωሺ𝑧ሻ𝑑𝑧 − 𝜎ଶቇ቉ ൈ 12𝜋 න 𝑒𝑖𝑢൫௭ሺ௧ା∆௧ሻି௭ሺ௧ሻ൯𝑑𝑢∞−∞ . 
(36)

Replacing 𝑧ሺ𝑡 + ∆𝑡ሻ  by 𝑧ሺ𝑡ሻ  in the drift 
coefficient and diffusion coefficient (Risken, 1984; 
Wissel, 1979), the above equation can be rewritten 
as 𝑃ሺ𝑧ሺ𝑡 + ∆𝑡ሻ, ሺ𝑡 + ∆𝑡ሻ|𝑧ሺ𝑡ሻ, 𝑡ሻ (37)

= 1ඥ2𝜋𝜎Ωሺ𝑧ሻ∆𝑡 exp ሺ− ൤𝑍∆௧ − 12 ൬𝜎 𝑑Ωሺ𝑧ሻ𝑑𝑧 − 𝜎ଶ൰ ∆𝑡൨ଶ
2𝜎Ωሺ𝑧ሻ∆𝑡 . 

Therefore, the probability density distribution of 
oil future price changes 𝑍∆௧ can be expressed as 𝑃ሺ𝑍∆௧ሻ 

= න 1ඥ2𝜋𝜎Ωሺ𝑧ሻ∆𝑡 exp ሺ− ൤𝑍∆௧ − 12 ൬𝜎 𝑑Ωሺ𝑧ሻ𝑑𝑧 − 𝜎ଶ൰ ∆𝑡൨ଶ
2𝜎Ωሺ𝑧ሻ∆𝑡 ሻ 𝛾𝜋 1𝛾ଶ + 𝑧ଶ 𝑑𝑧

(38)

Here Ωሺ𝑧ሻ = 1𝜎 𝛾2+𝑧22𝑧 . 
In figure 3, we compare the model we build with 

Gaussian distribution and the truncated Lévy flight. 
As can be seen in figure 3, in comparison with 
Gaussian distribution, the Lorentz transition 
distribution and truncated Lévy flight can describe 
the leptokurtic feature of financial assets' price 
variations better. When the price variations are 
small, Lorentz transition distribution and truncated 
Lévy flight perform similarly. When the price 
variations are relatively large, Lorentz transition 
distribution has fatter tail than truncated Lévy flight. 
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Figure 3: A comparison of distribution models. In general, 
the Lorentz transition distribution and truncated Lévy 
flight can describe the leptokurtic feature of financial 
assets' price variations better than Gaussian distribution. 
When the price variations are small, Lorentz transition 
distribution and truncated Lévy flight perform similarly. 
When the price variations are relatively large, Lorentz 
transition distribution has fatter tail than the truncated 
Lévy flight. 

We calculate the correlation between the probability 
of no price change and different time intervals ∆t for 
different parameters 𝛾  and 𝜎  and present the result 
in figure 4. 

Figure 4: The correlation between the probabilities of no 
price change PሺZ∆୲ = 0ሻ with the time interval ∆t.  

In figure 5, we plot the Lorentz transition 
probability distribution of parameters 𝛾 =0.012, and 𝜎 =0.005463 for different time intervals (∆𝑡 =1, 10, 
30, 60, 80 and 100 minutes) (in logarithmic form). 

As can be seen in figure 5, our newly built 
Lorentz transition distribution model has leptokurtic 
distribution and is also mostly symmetric with finite 
variance. When the time interval ∆t increases, the 
Lorentz transition distribution is likely to spread. 

 
Figure 5: The Lorentz transition probability distribution of 
parameters 𝛾  =0.012, and 𝜎 =0.005463 for different 
time intervals (∆𝑡 =1, 10, 30, 60, 80 and 100 minutes). 
Lorentz transition distribution model has leptokurtic 
distribution and is also mostly symmetric with finite 
variance. When the time interval ∆t increases, the Lorentz 
transition distribution is likely to spread. 

3 CALIBRATION OF THE 
MODEL IN CRUDE OIL 
FUTURE MARKET 

Now, we try to analyse statistically the features of 
the high frequency crude oil future in China's future 
market by using the new distribution model that we 
developed at last sections. We obtain the 1-minute 
high frequency data of crude oil future SC2209 from 
the Wind database. Our data period ranges from 
May 11, 2022, to August 4, 2022. We denote the 
price of crude oil future SC2209 as 𝐹ሺ𝑡ሻ, and the 
successive variation of the crude oil future price is 
denoted as 𝑍∆௧. 

The price changes of the crude oil future SC2209 
is measured as follows: 𝑍∆௧ = 𝑙𝑛𝐹ሺ𝑡 + ∆𝑡ሻ − 𝑙𝑛𝐹ሺ𝑡ሻ. (39)

We calculate the probability distribution 𝑃ሺ𝑍∆௧ሻ 
of crude oil future price variations for different time 
values (∆𝑡  =1, 10, 30, 60, 80 and 100 minutes). 
Figure 6 and 7 are semilogarithmic plots of 𝑃ሺ𝑍∆௧ሻ of 
different time interval ∆𝑡. As can be seen in figure 6 
and figure 7, the distribution of high frequency crude 
oil futures have fatter tail than log-normal 
distribution. The crude oil future price variations 
cannot be depicted well by a random walk. The 
distributions are leptokurtic and tend to spread as the 
time interval ∆𝑡 increases. 
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Figure 6: Probability density distributions 𝑃ሺ𝑍∆௧ሻ of crude 
oil future price variation measured at different time 
intervals (∆𝑡) 1, 10, 30 and 60 minutes for high-frequency 
data in China's future market during the period from May 
11, 2022, to August 4, 2022.  

 
Figure 7: Probability density distributions 𝑃ሺ𝑍∆௧ሻ of crude 
oil future price variation at different time intervals (∆t) 1, 
10, 30, 60, 80 and 100 minutes for high-frequency data in 
China's future market during the period from May 11, 
2022, to August 4, 2022.  

In figure 8, we exhibit the correlation between 
the probability of no price change 𝑃ሺ𝑍∆௧ = 0ሻ and the 
time interval ∆𝑡. The regression of log 𝑃ሺ𝑍∆𝑡 = 0ሻ on log ∆𝑡  gives a coefficient of -0.5019 with 95% 
confidence bounds. 

 
Figure 8: The correlation between the probability of no 
price change 𝑃ሺ𝑍∆௧ = 0ሻ for the crude oil future SC2209 
and different time intervals ∆t. The slope of best-fit 
straight line is -0.5019.  

Now, it’s time for us to give a best-fit of the high 
frequency crude oil future SC2209 by using the 
Lorentz transition probability distribution. We use 
the Matlab fitting toolbox to find the best-fit 
parameters for our theoretical model. The best-fit of 
the Lorentz transition probability distribution has the 
parameters 𝛾 = 0.012, and 𝜎=0.005463 with the high 
frequency crude oil future SC2209 during the period 
from May 11, 2022, to August 4, 2022.The R2 is 
0.9849.The fitting results are shown in figure 9. The 
high R2 of the fitting result indicate that our 
theoretical model can describe the characteristics of 
crude oil future distribution well. As accurate 
modelling and predicting the volatility of crude oil 
futures prices has important theoretical and practical 
significance for investors, and for preventing and 
mitigating the energy market risks. The Lorentz 
transition model with its accuracy can be applied 
empirically. 

 
Figure 9: The best-fit of Lorentz transition probability 
distribution of parameters γ = 0.012, and σ=0.005463 with 
the crude oil future SC2209 time series during the period 
from May 11, 2022, to August 4, 2022.The R2 is 0.9849.  
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To show the calibration results clearer, in figure 
10, we exhibit the best-fit of Lorentz transition 
distribution with the high frequency crude oil future 
SC2209 during the period from May 11, 2022, to 
August 4, 2022 with different time interval ∆t=1, 10, 
30, 60, 80, 100 minutes, respectively. As can be seen 
in figure 10, the Lorentz transition probability 
distribution describes well the price variation 
distribution of crude oil future SC2209. 

 
Figure 10: The best-fit of the probability density 
distributions PሺZ∆୲ሻ  of price variation for the crude oil 
future SC2209 with time interval ∆t=1, 10, 30, 60, 80, 100 
minutes with γ = 0.012, and σ=0.005463. 

4 CONCLUDING REMARKS 

With the deepening of the financialization of the oil 
market, the importance of the oil futures market is 
highlighted. The high volatility of crude oil futures 
prices inevitably has a major influence on global 
financial markets and the healthy development of 
world economy. Therefore, modelling accurately 
and estimating the volatility of crude oil futures 
prices has important theoretical and practical 
significance for investors and for preventing energy 
market risks. In this paper, we study the distribution 
of high- frequency crude oil futures price changes. 

Many empirical studies have shown that the 
distribution of financial assets’ price changes has 
fatter tail than lognormal distribution. Various 
efforts have been made to improve the modelling of 
financial assets’ price variations. In particular, many 
scholars have paid special attention to the power-law 
tail and scaling property of the price variation 
distributions. In this paper, we try to model the 
leptokurtic distribution of high frequency crude oil 
futures using a combination of transition probability 
distribution and Lorentz stable distribution. The 

newly built model has fatter tail than log-normal 
distributions. Using high frequency data of crude oil 
future in China’s future market, we calibrate our 
theoretical model and have proved the consistency 
of our theoretical model with the real market. 
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