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With the deepening of the financialization of the oil market, the importance of the oil futures market is
highlighted. The highly volatile crude oil future market inevitably has major influence on financial markets,
national economy and even national security. Therefore, modelling accurately the volatility of crude oil
futures prices has important theoretical and practical significance for investors and for preventing energy
market risks. In this paper, we study the distribution of high-frequency crude oil futures price changes.
Many empirical studies have shown that the distribution of price changes in financial market has fatter tail
than lognormal distribution. Thus, we build a model using both the transition distribution and the Lorentz
stable distribution to describe the characteristics of oil future market. Employing the Fokker-Planck
equation, we find the explicit formalism of the distribution of oil future price changes. Using empirical data

from China’s future market, we have proved the consistency of our theoretical model with the real market.

1 INTRODUCTION

In the energy structure of all countries, crude oil
constitutes one of the most crucial components. It
also plays an important part in the economic and
social development of various countries. In recent
years, the financialization of the oil market has
deepened. The oil futures market has an impact on
the price discovery of crude oil market. Therefore,
the high volatility of crude oil futures prices will
inevitably have a significant impact on financial
markets, national economy and even national
security. Therefore, modelling accurately and
estimating the volatility of crude oil futures prices
has important theoretical and practical significance
for investors, and for preventing and mitigating the
energy market risks. In this paper, we study the
distribution of high-frequency crude oil futures price
variations.

Traditionally, the solution to geometric
Brownian motion by the Black-Scholes model
(Black and Scholes, 1973; Merton, 1973) gives the
common lognormal probability distribution for
changes in financial asset prices. However, many
empirical studies have shown that the distribution of
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financial assets’ price changes has fatter tail than
lognormal distribution (Bouchaud and Potters, 2003;
Wilmott, 1998).Many progress have been made
academically to improve the probability density
distribution function of financial assets. Some
scholars argue that the volatilities of financial assets
are driven by mean-reverting stochastic processes
(Engle and Patton, 2001; Blanc et al, 2014). Some
scholars believe that the volatility of financial
products should be a random variable rather than a
constant number as in Black-Scholes model (Hull
and White, 1987; Fouque et al., 2000).
Autoregressive  Conditional  Heteroskedasticity
models (Engle, 1982; Dumas et al., 1998) use a
function of the actual size of the error term in the
preceding time period to describe the variance of the
current error term. When the error variance is
assumed to follow the autoregressive moving
average, the model becomes a generalized
autoregressive conditional heteroskedasticity
(GARCH) model (Bollerslev, 1986; Francq and
Zakoian, 2010; Chicheportiche and Bouchaud, 2014;
Blanc et al.,, 2014). In financial market, GARCH
models are often applied to describe time series with
volatility clustering and time-varying volatility.
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In particular, there has been extensive research
on the empirically observed power-law tails or the
scaling behaviour of financial assets (Mandelbrot,
1963; Bouchaud, 2000). Mandelbrot (1963) was the
first to notice the scaling properties of financial
assets and found that the distribution of financial
assets' price variation follows a power law. Since
then, many scholars have analyzed the power-law
distribution of financial data price tails from the
perspective of econphysics (Ballocchi et al., 1999;
Mantegna and Stanley, 1995; Ghashghaie et al.,
1996; Stanley and Plerou, 2001;Voit, 2001). Yet,
most of these studies focus on the stock and foreign
exchange markets. Many scholars have studied the
price fluctuation of crude oil market ( Wei et al.,
2010; Wen et al., 2016; Gong et al., 2017; Wei et al.,
2017; Zhang et al., 2019a; Zhang et al., 2019b; Li et
al., 2022). But there is still a lack of research on the
distribution of high-frequency crude oil futures
prices.

In this paper, we attempt to study the distribution
of high-frequency crude oil futures price changes.
We construct a two-stage distribution of a stochastic
time series for crude oil futures markets using
transition probability distribution and Lorentz stable
distribution. The Lorentz stable distribution is used
to describe the stochastic price changes of high-
frequency time series of crude oil futures. And we
use the transition distribution to model the price
transition from F(t)to F(t + At) in high frequency
crude oil future market. Using Fokker-Planck
equation, we obtain the explicit expression of our
theoretical model. Using empirical data from
China’s future market, we have proved the
consistency of our theoretical model with the real
market.

The paper is organized as follows. In Section 2,
we build our theoretical model. We describe the
possible abnormal stochastic process of high-
frequency crude oil futures prices and present the
Lorentz stable distribution of high-frequency crude
oil futures prices. Then, we build the two-stage
model for the stochastic high frequency crude oil
futures market and give the explicit formalism of our
theoretical model. In Section 3, we calibrate our
theoretical model using high-frequency crude oil
future SC2209 in China’s future market. The results
show our theoretical model can describe the real
market well, with the R? =0.9849. The final section
gives the conclusion.

2 MODEL

2.1 Anomalous Geometric Brownian
Motion and Lorentz Stable
Distribution

It is generally assumed that financial asset follows
the geometric Brownian motion
dS = S(odB + udt). (1)
In this paper, we analyse the price of future
market. We use F(?) to represent the price of the
future product at time ¢. Therefore, we have
dF = F(odB + udt). 2
Take the first order differential of time, we can
have
dFd(tt) = uF + Fon(t), )
where 71(t) represents the noise. We use a functional
probability distribution [dP(n)] to describe the
noise. Thus, the probability distribution of a
Gaussian white noise can be described as

1 2
[dP(n)] = [dnle 20 7%, @
in which Q(F) depicts the width of noise
distribution.
For the Gaussian white noise, the 1-point and 2-
point correlations are characterized as
E[n(®)] = 0, )
En(©n)] = Q(F)S(t —t").
Given that for initio time t, , the value
of F(ty) = F,, the log-return is of the form
r(t) = InF(t)/F(0). (6)
Take the first order differential of time, we can
have

dr(t) o? (7)
w kTS + an(t).
We define the relative log-return z(t) as
z(t) = r(t) — ut. ®)

The Langevin equation of the relative log-return
z(t) can be written as
dz(t) o? ©)

at = —7 + O'T](t).

For the stochastic variable z(t), the probability
distribution P(z, t) is of the form
P(z,t) = E[6(z(t) — 2)]. (10)
Differentiating the probability distribution
P(z,t) and using equation (3) (Hohenberg and
Halperin, 1977), we can obtain

0P(z,t) —F (_%Z_l_ an(ﬂ)LMZ(t) -2)

(11)

at 0z(t)

The probability distribution P(z,t) satisfies
Fokker-Planck equation, therefore we have
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P(zt) 10 ap(z 0, (12)
=33 [ Q(2) + 0?P(z, t)]
As for the stationary solution Py(z), it also

satisfies the stationary Fokker-Planck equation.
Therefore we can obtain

z 13

_[Q() 0()+02P0()]—0 (13)
Integrate the above equation, we can have

14

50(2) o() t02Py(z) = C (14)

where C is an mtegral constant.

AS Zypin = —9, Zya = 0, the integral constant
which represents the probability current equals zero.
Therefore, this equation can be reduced as

0 0()+ 2Po(2) = 0. (15)

Solving out the
equation exactly, we have

stationary  Fokker-Planck

1 o (16)
Py(2) = exp( f@dz>,
Here N represents normalization constant.
The width of diffusion is set to be
oy?+z?2 (17)
o) =2 VT
Thus, we can obtain the Lorentz distribution as
1 (18)
P - .35
0(2) = Ty? +z2%

If z is a sum of two Lorentzian random variables
z, and z,, the probability density distribution of
Z = z; + z, under the assumption of independence
of z; andz, is

Pzgoz) = Py(21)®Py(2;) (19)
~ | RGoRG-n) dn,

To calculate the probability density distribution
P,(z), we define the characteristic function of the
Lorentzian stochastic process

o(q) = f Py(21)e'%” dz.

It is not difficult to get the characteristic function
of the Lorentzian stochastic process
Po(q) = e771dl. 1)
The convolution theorem of Fourier transform
implies that the characteristic function of the
stochastic variable z is given by

$2(@) = (¢o(@)” = e7271dl. @)

By making use of the inverse Fourier transform,

we can obtain the probability density function for
the stochastic variable z = z; + z,,

1 r® .
P =5 | @ eedg

(20)

(23)
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2y 1

T 4y2 + z%
In the general case, the probability density function
for the stochastic variable z = z; + z, + -+ z, is
of the form

Pn(of) = PO(Zl)®PO(ZZ)® ®Po(Zn) 24)
= [ PPz Poan )Ptz — 4

—o0
—Zy — o —Zy_1)dzydzy - dzy_ 4.
The convolution theorem of Fourier transform
guarantees that the characteristic function of the
stochastic variable z is as

(@) = (po(@))" = e, 25)
Using the inverse Fourier transform, we can have the
probability density function for the stochastic
variable z = z; + z, + - + 7,

1 .
P =5 | dnl@e v dq
ny 1

T nly? + z?
Thus, the Lorentzian distribution is stable.

In Figure 1 and Figure 2, we exhibit the
comparison of Lorentz distribution with some other
distributions. We compare the Lorentz distribution
with the Gaussian distribution in figure 1. It can be
seen that in comparison with Gaussian distribution,
the Lorentz distribution is a better fit for the fat-tail
distribution observed in real financial market. In
figure 2, we present a comparison of truncated Lévy
flight with Lorentz distribution. When the stochastic
variable z is relatively large, the Lorentz stable
distribution approaches 1 / z2 while the truncated
Lévy flight approaches 1 / z1

(26)

2

log P(Z)
B
/

002 004 006 008 01

Figure 1: A comparison of the Gaussian distribution with
Lorentz distribution. It can be seen that in comparison
with Gaussian distribution, the Lorentz distribution is a
better fit for the fat-tail distribution observed in real
financial market.
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Lorentz distribution
Truncated Levy distribution
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Figure 2: A comparison of Truncated Lévy flight with
Lorentz distribution. When the stochastic variable z is
relatively large, the Lorentz stable distribution approaches
1 / z? while the truncated Levy flight approaches 1 / z*5.

2.2 The Transition Probability
Distribution

In the previous part, we have already obtained the
Fokker-Planck equation,

dP(z,t) 10 aP(zt) (27)
% —292 oQ(z) PP + a%P(z,t)|.

We can rewrite the above Fokker-Planck equation as

d0P(z,t 28

¥ = LppP(2,1) -

_ 10 d 2
LFP = EE [O’.Q(Z)E + o ]
The price changes of oil future can be defined as
Zpe = InF(t + At) — InF(¢). 29)

As for the probability density of z at time ¢ + At
under the condition that it has the value (t) , we
define the conditional probability density as

P(z(t + At), (t + At)|z(t), t) (30)
= (8(z(t) — z(t + AD))).

It can be deduced that for initial condition
P(z,t) = P(z(t + At), (t + At)|z(t), t) should also
follow the Fokker-Planck equation (28), namely

OP(z(t + At), (t + At)|z(t),t) 31

Jat
= LppP(z(t + At), (t + At)|z(t), t).
We can find one formal solution of the above
equation as
P(z(t + At), (t + At)|z(t),t) (32)
= elFPBL§(2(t + At) — z(1)).
Making use of iteration (Dyson, 1949), we can
obtain the following equation
P(z(t + At), (t + At)|z(t), t) (33)
= 8(z(t + At) — z())[1 + M)

O ~t+At ty tho1
M= Zf dtlf dtsz dt, Lyp(2,6) - Lpp (2, £,).
e ¢ t

When the time interval At is relatively small, the
solution reads
P(z(t + At), (t + At)|z(t), t) (34)
=6(z(t +A0) — z())[1 +
Lpp(z,t)At + 0(AL)?].
By using the integral presentation of the &
function, we can have

5(2 — Z’) _ %f‘m euz=21 gy, (35)
Thus, e

) 1 0 1 a da(z)
T 2020+ 807 "D T 255G a0 (a az 7 >]

1 [ee]
x _f eiu(z(t+At)—z(t))du_
21 )_o

Replacing z(t+At) by =z() in the drift
coefficient and diffusion coefficient (Risken, 1984;
Wissel, 1979), the above equation can be rewritten
as

P(z(t + At), (t + At)|z(t),t) (37)
2
1 I:ZAt —%(O'd%(ZZ) - 02) At]

= exp (=
2moQ(2)At p( 20Q(z)At
Therefore, the probability density distribution of
oil future price changes Z,, can be expressed as

P(Zae) ) (38)
1/ do
_ 1 [ZAt_7< %—az)m] v o1
- fJZrmﬂ(z)AteXp . 200(2)At i
1 yi+z2
Here Q(2) = P

In figure 3, we compare the model we build with
Gaussian distribution and the truncated Lévy flight.
As can be seen in figure 3, in comparison with
Gaussian  distribution, the Lorentz transition
distribution and truncated Lévy flight can describe
the leptokurtic feature of financial assets' price
variations better. When the price variations are
small, Lorentz transition distribution and truncated
Lévy flight perform similarly. When the price
variations are relatively large, Lorentz transition
distribution has fatter tail than truncated Lévy flight.
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Figure 3: A comparison of distribution models. In general,
the Lorentz transition distribution and truncated Lévy
flight can describe the leptokurtic feature of financial
assets' price variations better than Gaussian distribution.
When the price variations are small, Lorentz transition
distribution and truncated Lévy flight perform similarly.
When the price variations are relatively large, Lorentz
transition distribution has fatter tail than the truncated
Leévy flight.

We calculate the correlation between the probability
of no price change and different time intervals At for
different parameters y and o and present the result
in figure 4.

6=0.005,y=0.01
9=0.006,y=0.02

a=0.005,y=0.01 |
0=0.006,y=0.02

1.8

1.6

1.4
0o 0.5 1 156 2 25
log At
Figure 4: The correlation between the probabilities of no

price change P(Z,, = 0) with the time interval At.

In figure 5, we plot the Lorentz transition
probability distribution of parameters y =0.012, and
o =0.005463 for different time intervals (At =1, 10,
30, 60, 80 and 100 minutes) (in logarithmic form).

As can be seen in figure 5, our newly built
Lorentz transition distribution model has leptokurtic
distribution and is also mostly symmetric with finite
variance. When the time interval At increases, the
Lorentz transition distribution is likely to spread.
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At=1min
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Figure 5: The Lorentz transition probability distribution of
parameters ¥ =0.012, and 0 =0.005463 for different
time intervals (At =1, 10, 30, 60, 80 and 100 minutes).
Lorentz transition distribution model has leptokurtic
distribution and is also mostly symmetric with finite
variance. When the time interval At increases, the Lorentz
transition distribution is likely to spread.

3 CALIBRATION OF THE
MODEL IN CRUDE OIL
FUTURE MARKET

Now, we try to analyse statistically the features of
the high frequency crude oil future in China's future
market by using the new distribution model that we
developed at last sections. We obtain the 1-minute
high frequency data of crude oil future SC2209 from
the Wind database. Our data period ranges from
May 11, 2022, to August 4, 2022. We denote the
price of crude oil future SC2209 as F(t), and the
successive variation of the crude oil future price is
denoted as Z,;.

The price changes of the crude oil future SC2209
is measured as follows:

Zpe = InF(t + At) — InF (¢t). (39)

We calculate the probability distribution P(Z,,)
of crude oil future price variations for different time
values (At =1, 10, 30, 60, 80 and 100 minutes).
Figure 6 and 7 are semilogarithmic plots of P(Z,,) of
different time interval At. As can be seen in figure 6
and figure 7, the distribution of high frequency crude
oil futures have fatter tail than log-normal
distribution. The crude oil future price variations
cannot be depicted well by a random walk. The
distributions are leptokurtic and tend to spread as the
time interval At increases.
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Figure 6: Probability density distributions P(Z,;) of crude
oil future price variation measured at different time
intervals (At) 1, 10, 30 and 60 minutes for high-frequency
data in China's future market during the period from May
11,2022, to August 4, 2022.
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Figure 7: Probability density distributions P(Z,,) of crude
oil future price variation at different time intervals (At) 1,
10, 30, 60, 80 and 100 minutes for high-frequency data in
China's future market during the period from May 11,
2022, to August 4, 2022.

In figure 8, we exhibit the correlation between
the probability of no price change P(Z,; = 0) and the
time interval At. The regression of log P(Z,, = 0) on
log At gives a coefficient of -0.5019 with 95%
confidence bounds.
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Figure 8: The correlation between the probability of no
price change P(Z,; = 0) for the crude oil future SC2209
and different time intervals At. The slope of best-fit
straight line is -0.5019.

Now, it’s time for us to give a best-fit of the high
frequency crude oil future SC2209 by using the
Lorentz transition probability distribution. We use
the Matlab fitting toolbox to find the best-fit
parameters for our theoretical model. The best-fit of
the Lorentz transition probability distribution has the
parameters y = 0.012, and 0=0.005463 with the high
frequency crude oil future SC2209 during the period
from May 11, 2022, to August 4, 2022.The R? is
0.9849.The fitting results are shown in figure 9. The
high R? of the fitting result indicate that our
theoretical model can describe the characteristics of
crude oil future distribution well. As accurate
modelling and predicting the volatility of crude oil
futures prices has important theoretical and practical
significance for investors, and for preventing and
mitigating the energy market risks. The Lorentz
transition model with its accuracy can be applied
empirically.

\

Figure 9: The best-fit of Lorentz transition probability
distribution of parameters y = 0.012, and 6=0.005463 with
the crude oil future SC2209 time series during the period
from May 11, 2022, to August 4, 2022.The R? is 0.9849.
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To show the calibration results clearer, in figure
10, we exhibit the best-fit of Lorentz transition
distribution with the high frequency crude oil future
SC2209 during the period from May 11, 2022, to
August 4, 2022 with different time interval At=1, 10,
30, 60, 80, 100 minutes, respectively. As can be seen
in figure 10, the Lorentz transition probability
distribution describes well the price variation
distribution of crude oil future SC2209.

—e—a=1min
Lorentz transition distribution

Figure 10: The best-fit of the probability density
distributions P(Zy.) of price variation for the crude oil
future SC2209 with time interval At=1, 10, 30, 60, 80, 100
minutes with y = 0.012, and 6=0.005463.

4 CONCLUDING REMARKS

With the deepening of the financialization of the oil
market, the importance of the oil futures market is
highlighted. The high volatility of crude oil futures
prices inevitably has a major influence on global
financial markets and the healthy development of
world economy. Therefore, modelling accurately
and estimating the volatility of crude oil futures
prices has important theoretical and practical
significance for investors and for preventing energy
market risks. In this paper, we study the distribution
of high- frequency crude oil futures price changes.
Many empirical studies have shown that the
distribution of financial assets’ price changes has
fatter tail than lognormal distribution. Various
efforts have been made to improve the modelling of
financial assets’ price variations. In particular, many
scholars have paid special attention to the power-law
tail and scaling property of the price variation
distributions. In this paper, we try to model the
leptokurtic distribution of high frequency crude oil
futures using a combination of transition probability
distribution and Lorentz stable distribution. The
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newly built model has fatter tail than log-normal
distributions. Using high frequency data of crude oil
future in China’s future market, we calibrate our
theoretical model and have proved the consistency
of our theoretical model with the real market.
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