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Abstract: To reduce the completion time of big data processing applications, in-memory computing has been widely
used in today’s systems. Since servers’ memory capacities are typically limited, there is a need to decide
which data should be cached in memory, namely the cache replacement problem. However, existing works
fall insufficient in analysing the directed acyclic graphs of applications. Moreover, they optimize cache re-
placement in the resilient distributed data level, which is coarse-grained. In this paper, we investigate the
block-level cache replacement problem and formulate it as an integer programming problem. Since it has
the optimal substructure property, we develop the algorithm BLCR based on the dynamic programming tech-
nique. Trace-driven simulations are conducted to evaluate the performance of BLCR and the results show its
superiority over the state-of-the-art alternatives.

1 INTRODUCTION

Due to their superior performance, big data process-
ing systems based on large-scale clusters and in-
memory computing have been widely used in indus-
trial practice. Among these systems, a representative
and popular example is Spark (Zaharia et al., 2010),
which is also chosen as the target system of this paper.
To avoid repeated computation in data processing, the
memory cache technique is used. Specifically, instead
of flushing intermediate result data to disks or simply
discarding them, Spark caches them in memory. In
this way, there is no need to reload data from the disks
and the completion time could be reduced.

However, since the memory capacities of com-
puting servers are typically limited and the amount
of data (including both raw and intermediate data) is
very large, to simply cache all data becomes impracti-
cal and needless. In other words, one has to determine
which data should be cached in memory and which
should not. Such problem is called the cache replace-
ment problem and has drawn many researchers’ atten-
tion. Currently, there exist many works investigating
the cache replacement problem from several different
perspectives, such as (Yang et al., 2018; Duan et al.,
2016; Yu et al., 2017; Wang et al., 2018).

Unfortunately, existing works fall insufficient in
handling this problem for the following two reasons.
Firstly, to support complex data processing applica-

tions, Spark processes data based on the specifica-
tion of directed acyclic graphs (DAGs), which may
contain guidance information for cache replacement.
Nevertheless, existing works usually assume tasks are
sequentially executed and fail to take advantage of the
parallelism of DAGs. That is to say, they lack a suffi-
cient analysis for the DAG or only leverage the statis-
tical information obtained from the DAG.

Secondly, these works focus on RDD-level cache
replacement, where RDD is short for Resilient Dis-
tributed Dataset, but block-level cache replacement is
rather less studied. When the computing resources
of servers are limited, task scheduling has to satisfy
the computing resource constraint and the start times
of different tasks in the same phase are usually dif-
ferent, which results in different finish times. In this
case, it is intuitive to cache only some parts of a RDD
(namely, data blocks), rather than a whole RDD, in
memory, since it could improve the memory utiliza-
tion and accelerate data processing.

Therefore, in this paper, we investigate the block-
level cache replacement problem for large-scale in-
memory data processing systems, with the applica-
tion’s DAGs into consideration. Specifically speak-
ing, we strike to make block-level data cache deci-
sions, with the aim of minimizing the application’s
completion time while satisfying the memory re-
source constraint and the requirements of the applica-
tion’s DAG. To the best of our knowledge, this is the
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Figure 1: Block-level cache replacement for large-scale in-memory data processing systems.

first work studying this problem. We first formulate it
as an integer programming problem. To solve it, we
then develop the algorithm BLCR based on the dy-
namic programming technique, since it possesses the
optimal substructure property. At last, we conduct ex-
tensive trace-driven simulations to evaluate BLCR’s
performance and to measure the impact of scenario
parameters. The result shows that BLCR outperforms
the state-of-the-art alternative algorithms.

The remainder of this paper is organized as fol-
lows. We review the related works in Section 2 and
formulate the target problem in Section 3. Section 4
presents the proposed algorithm BLCR. We evaluate
it in Section 5 and conclude this paper in Section 6.

2 RELATED WORK

With the development of big data, cache replacement
for in-memory data processing has been a hot re-
search topic. According to the prior knowledge used,
existing works could be clarified into two categories.
The first one optimizes cache replacement decisions
based on history information. Most in-memory com-
puting systems use the LRU policy (Mattson et al.,
1970) to cache RDDs. For example, Yang et al. (Yang
et al., 2018) and Duan et al. (Duan et al., 2016) use the
historical information of computing times and mem-
ory consumption. They intend to cache RDDs with
higher ratios of time to memory. (Zaharia et al., 2010;
Li et al., 2014; Saha et al., 2015) are similar works.
However, historical information only reflects data’s
historical popularity, but not for the future.

The other one leverages the DAG information
since it could be obtained once the application is sub-
mitted. Perez et al. (Perez et al., 2018) design MRD
to evict the RDDs with the most reference instance,

which is defined as the subtraction of stage indexes.
NLC uses the non-critical path to express the pop-
ularity of RDDs and evict the RDDs with the most
non-critical-path (Lv et al., 2020). Besides, Yu et al.
propose LRC to evict cached data with the least refer-
ence count, which is defined as the out-degree in the
DAG (Yu et al., 2017). LCRC (Wang et al., 2018) is
similar but considers two types of reference counts,
i.e., intra-stage and inter-stage.

There are also works combining the information
of histories and DAGs, such as (Gottin et al., 2018;
Nasu et al., 2019; Park et al., 2021; Geng et al., 2017;
Zhao et al., 2019; Abdi et al., 2019). However, all
these works cache data in memory in the RDD-level,
which is rather coarse-grained. This paper innova-
tively focuses on the block-level cache replacement
problem and develops an algorithm, based on the dy-
namic programming technique, to solve it.

3 SYSTEM MODEL

We illustrate the block-level cache replacement prob-
lem for large-scale in-memory data processing sys-
tems in Figure 1. In the left side, it shows the DAG
of some data processing application, which is com-
posed of stages, tasks, RDDs and data blocks and is
aware of the computing resource requirements of the
tasks. These tasks are afterwards scheduled and the
scheduling result is shown in the right side. To reduce
the completion time, big data processing systems usu-
ally cache the data blocks generated at runtime in the
memory space. Since the memory resources are rel-
atively limited, there inevitably raises the cache re-
placement problem to be considered. For example,
when the third task of stage 56, i.e., S56 3, generates
data block F3 to be cached and the memory space is
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exhausted, one has to decide which data blocks should
be cached in the memory space and which should be
dropped from the memory space.

Specifically, we investigate this block-level cache
replacement problem for large-scale in-memory data
processing systems in this paper. We strike to decide
the set of data blocks to be cached in the memory
space when a task is finished and a new data block
is generated. The objective is to minimize the total
completion time of the application. At the same time,
we have to satisfy the following constraints: 1) the to-
tal size of the cached data blocks is upper bounded by
the memory capacity; 2) the task execution process
follows the DAG of the application. Mathematically,
such problem is formulated as P1:

max
W

∑
i=1

V (xi,zi)

s.t. x = {x1,x2, . . . ,xW},
xi = {bi,1,bi,2, . . . ,bi,Zi}, i = 1,2, . . . ,W
0≤ zi ≤ Zi, i = 1,2, . . . ,W
∑

W
i=1 ∑

zi
j=1 s(bi, j)≤ L

var. z1,z2, . . . ,zW .

In P1, W is the number of the RDDs involved in
the application and xi is the set of data blocks of the i-
th RDD. Zi is the cardinality of xi, i.e., the number of
data blocks of the i-th RDD. Moreover, bi, j is the j-th
data block of xi, s(bi, j) is its size and L is the memory
capacity. Furthermore, we take z1,z2, . . . ,zW to rep-
resent the decision variables, implying that we cache
the first zi data blocks of the i-th RDD in memory.
Finally, V (xi,zi) in the objective function is the per-
formance gain (regarding computing time) of caching
the first zi data blocks of xi in memory.

4 ALGORITHM DESIGN

Now we develop algorithms to solve P1. We could
reduce the bounded knapsack problem (BKP), which
is a NP-hard problem, to P1 and prove that P1 is also
a NP-hard problem. However, it is widely believed
that one can not solve a NP-hard problem optimally
in polynomial time unless P = NP. Fortunately, we
find that P1 has a desirable property, namely the opti-
mal substructure property. There, based on the dy-
namic programming technique, we design an algo-
rithm, which is named BLCR. BLCR works as fol-
lows, where the details are also shown in Algorithm
1. It first initializes the auxiliary variables d p and the
decision variables C (Line 1). Then it follows the dy-
namic programming framework to search optimal de-
cisions (Lines 2-18). At last, it converts and returns
the optimal decisions found (Lines 19-20).

Algorithm 1: BLCR (Block-level cache replacement for
large-scale in-memory data processing systems)

Require: Data blocks {xi | i = 1,2, . . . ,W}, Memory ca-
pacity L, Performance gain function V (xi,zi);

Ensure: Block-level cache decisions {zi | i = 1,2, . . . ,W};
1: d p← [0]W×L,C← /0;
2: for i← 1,2, . . . ,W do
3: for j← 1,2, . . . ,L do
4: c← 0,k← 1,d pi, j← d pi−1, j;
5: while j− k× s(bi,1)≥ 0 do
6: k← k+1;
7: if d pi−1, j−k×s(bi,1)+V (xi,k)≥ d pi, j then
8: d pi, j← d pi−1, j−k×s(bi,1)+V (xi,k);
9: c← k;

10: end if
11: end while
12: if c == 0 then
13: Ci, j =Ci−1, j;
14: else
15: Ci, j =Ci−1, j−c×s(bi,1)∪{bi,1,bi,2, . . . ,bi,c};
16: end if
17: end for
18: end for
19: Convert CW,L to {zi | i = 1,2, . . . ,W};
20: return {zi | i = 1,2, . . . ,W}.

5 EXPERIMENTS

5.1 Experiment Setup

Table 1: Spark applications used as traces.

Type Name

Machine
Learning

Logistic Regression (LoR)
Linear Regression (LR)
Supported Vector Machine (SVM)
Matrix Factorization (MF)
Decision Tree (DT)
K-means Cluster (Kms)
Principal Component Analysis (PCA)
Label Propagation (LP)

Graph
Computing

Page Rank (PR)
SVD Plus Plus (S++)
Triangle Counting (TC)
Strongly Connected Component (SCC)
Connected Component (CC)
Pregel Operation (PO)

SQL Query RDD Relation (RR)

Others Shortest Path (SP)
Tera Sort (TS)

Application traces. In order to better evaluate the
performance of BLCR, we leverage the real-word
traces obtained from a well-known Spark benchmark
system, i.e., SparkBench (Li et al., 2015). The traces
cover many applications types, ranging from machine
learning and graph computing to SQL query and oth-
ers. Some representative applications among them in-
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clude logistic regression, supported vector machine,
decision tree, principal component analysis, page
rank, strongly connected component and so on. We
list the applications used in the experiment in Table 1.

应用Trace

Job 
Generator

Stage 
Submitter

Task 
Scheduler

Task Runner 1

Task Runner 2

Task Runner N

  

应用TraceApplication
Trace

Application Submit Module Application Runtime Module

Task 
Submitter

Figure 2: Framework of Spark simulator with the block-
level cache replacement mechanism.

Spark simulator. We have designed and imple-
mented a Spark simulator with the block-level cache
replacement mechanism inside. As illustrated in Fig-
ure 2, it has four components: Job Generator, Stage
Submitter, Task Scheduler and Task Runner. Job Gen-
erator parses the necessary information from the used
traces. Besides, Stage Submitter is responsible for re-
ceiving the data processing jobs from Job Generator
and submitting executable data processing stages. It
is similar to DAG Scheduler in Spark. Task Sched-
uler receives the executable stages and then allocates
tasks to computing nodes for execution. At last, Task
Runner runs the tasks. More specifically, it invokes
BLCR and updates the cached data blocks.

Performance benchmarks. To evaluate BLCR,
the following benchmark algorithms are used:

• LRU: when the memory space is full, the least re-
cently used data block in cache is replaced.

• LRC: when the memory space is full, the data
block that has the smallest out-degree in the ap-
plication’s DAG is replaced.

• MRD: when the memory space is full, the data
block that has the longest reference distance in the
application’s DAG is replaced.

• DLCR: make cache replacement decisions via the
dynamic programming technique, but at the RDD
level, rather than the data block level.

5.2 Experiment Results

For any involved application, we take M to denote the
total memory size of all data blocks and take P to de-
note the maximum number of concurrent computing
tasks. Based on that, we set the memory capacity L to
{0.1M,0.2M, . . . ,M} and the number of CPU cores
to {0.25P,0.5P,0.75P,P}, which generates 40 config
combinations. Afterwards, for any cache replacement
algorithm, we perform each application for 40 times,
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Figure 3: Averaged Results over 40 Config Combinations.

where each run corresponds to a unique config combi-
nation. Figure 3 shows the averaged normalized com-
pletion time and the averaged cache hit ratio. For most
applications, our algorithm BLCR achieves the lowest
completion time and the highest hit ratio.
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Figure 4: Performance under Different Memory Capacities.
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Figure 5: Performance under Different CPU Core Numbers.

We further conduct experiments to evaluate the
impact of the memory capacity and the available CPU
core numbers on these algorithms. On the one hand,
we set the CPU core number to 0.5P and perform
applications under different memory capacities. On
the other hand, we set the memory capacity to 0.3M
and perform applications under different CPU core
numbers. Their results for Strongly Connected Com-
ponent are shown in Figure 4 and Figure 5, respec-
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tively. As expected, an increase of memory or com-
puting resources reduces the application completion
time. Meanwhile, more memory resources result in
a high cache hit ratio but computing resources have
little influence on it. We conclude that for most con-
fig combinations, our algorithm BLCR achieves the
lowest completion time and the highest hit ratio.

6 CONCLUSIONS

In this paper, we investigate the block-level cache
replacement problem for large-scale in-memory data
processing systems, with the application’s DAG taken
into consideration. To solve the problem, we develop
the algorithm BLCR based on the dynamic program-
ming technique. At last, trace-driven simulations are
conducted to evaluate the performance of BLCR and
measure the impact of scenario parameters. The result
shows its superiority over the state-of-the-art alterna-
tives. In the future work, we will further study the
block-level cache replacement problem and strike to
design a near-optimal approximation algorithm that
has the polynomial time complexity.
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