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Abstract: With the high performance computing capability entering the E-level era, the computing scale of the system 
reaches more than 10 million cores. The mean time between failures of the system is short, which brings great 
challenges to the reliability of the system. Single processor failure is a common system failure. If the failure 
can be detected by the system, system-level fault tolerance can be implemented, and fault tolerant processing 
can be performed through technologies such as checkpoint rollback. However, there are single processor faults 
that cannot be detected by the system. These faults are manifested as wrong operation results, which cannot 
be detected by the system. To solve the above problems, an error detection and fault tolerance framework for 
task parallel applications is proposed. The framework consists of three functions: dynamic task scheduling, 
error detection, and fault tolerance. During the running process of task parallel applications, error detection is 
actively initiate. When a node failure is detected, the failed node is discarded. And tasks assigned to the node 
since the last checkpoint are reassigned to other healthy nodes. The experimental results show that the 
framework can effectively detect node failures. The fault tolerance can be performed without interrupting the 
operation of the project, effectively avoiding the time cost caused by the checkpoint rollback technology.

1 INTRODUCTION 

With the increasing demand for high performance 
computing systems in important fields such as 
national defense, scientific research, and finance, 
high performance computing technology has 
developed rapidly, and the scale of parallel systems 
has become increasingly large. However, with the 
expansion of the system scale and the complexity of 
the system design, the mean time between failure 
(MTBF) of the system decreases gradually, which 
brings serious challenges to the system reliability. 

Error detection and fault tolerance are important 
foundations for maintaining the reliability of high 
performance computing systems. Error detection 
plays a key role in fault management. Some common 
system faults can be detected by hardware and 
maintenance software, but some node faults cannot be 
detected. If the system cannot detect the node 
operation faults, once the node operation error occurs 
during the application running process, it is likely to 
affect the results of the entire project, especially for 
large-scale parallel applications that need to run for 
days or even weeks. Therefore, low-overhead error 

detection and fault tolerance mechanisms can reduce 
the impact of failures on parallel applications, and are 
of great significance to improving the robustness, 
performance, and system availability of parallel 
applications. 

The paper proposes a fault detection and fault 
tolerance framework for task parallel applications. 
The framework can regularly detect the health of 
nodes, find fault nodes, and recycle and reassign tasks 
on the nodes without interrupting the project, which 
can greatly reduce fault tolerance cost. 

2 RELATED WORKS 

2.1 Fault Tolerance Technology 

Fault tolerance technology mainly includes three 
aspects: error detection, fault diagnosis and fault 
recovery. Error detection and fault recovery are 
related to the work of the paper. 

Error detection can be divided into transient error 
and permanent error detection. Transient error 
detection and fault tolerance mainly relies on repeated 
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execution and comparison. According to the 
replicated objects, transient error detection 
techniques during processing can be divided into 
instruction-level, thread-level and application-level 
fault tolerance. 

EDDI (Oh et al., 2002) and SWIFT (Reis et al., 
2005) are typical representatives of instruction-level 
fault tolerance, which copy the instructions in the 
original program at compile time, and insert 
comparison instructions at appropriate locations to 
detect errors. Thread-level fault tolerance method, 
like AR-SMT (Rotenberg E, 1999), SRT (Reinhardt 
et al., 2000) and CRT (Mukherjee et al., 2002), etc., 
use more than two hardware threads or cores to 
execute the same task. A specific cache is added to 
the processor to store the execution results of the two 
threads, to detect errors by comparing the execution 
results. Application-level fault tolerance method, like 
PLR (Shye A, et al., 2009), performs replication and 
comparison at a higher software level, such as 
copying a process into multiple redundant processes 
for concurrent execution, and then comparing the 
program output.  

Permanent error detection techniques can be 
divided into two categories. One is the hardware 
module fault detection technology at the micro-
architecture layer, which is often used in the design 
of reconfigurable processors. The other is the 
detection of node faults in high performance systems. 
Since the MTBF decreases sharply, the node faults 
are common in the system.  

However, repeated execution may cost too much 
time, which is not adopted by high performance 
computing applications. High performance 
computing systems mainly screen node operation 
errors based on the screening point program, and 
screen out the wrong points in advance, but the 
screening program cannot cover all subject situations, 
and errors during applications execution cannot be 
found. 
 Error recovery techniques can be divided into 
two categories: forward error recovery and backward 
error recovery.   

 Forward error recovery tries to correct the error 
after the error is detected and continue to execute 
forward without roll back to the state before the error 
moment. Redundancy is the basic way to realize 
forward error recovery. Three Modular Redundancy 
(TMR) is a widely used FER technology, which uses 
3 modules to perform the same operation, and then 
selects the data through a majority voter at the output 
to achieve fault tolerance, but this method requires 3 
times the computing resources and the overhead is 
large, so this method is generally not used in high 
performance system. 

Backward error recovery returns to the state 
before the error occurred after an error is detected.  
The widely used backward error recovery method is 
checkpoint. According to the content of the storage 
checkpoint, checkpoint technology can be divided 
into system-level checkpoint and application-level 
checkpoint technology (Bronevetsky et al., 2004; 
Faisal et al., 2018). According to the medium of 
storage checkpoint, it can be divided into disk-based 
and diskless checkpoint technology (Chen, 2010; 
Alshboul et al., 2019). 

Usually, error detection and recovery techniques 
are combined together to ensure the correctness of the 
applications. A task-based parallel programming 
model is proposed in (Wang et al., 2016), in which 
work-stealing scheduling scheme supporting fault 
tolerance is adopted to achieve dynamic load 
balancing support fault tolerance. 

2.2 Parallel Application Model and 
Task Scheduling 

Most parallel applications can be divided into two 
categories: data parallelism and task parallelism. Task 
parallel applications usually decompose the task into 
many sub-tasks, divide the data set, and execute the 
tasks and corresponding data in parallel on different 
computing resources. Task parallel applications are 
widely used in drug screening, genetic research, 
cryptanalysis, nuclear simulation and other fields. 
There is no correlation between subtasks, but the 
calculation number of subtasks may vary 
significantly. In large-scale environments, an 
efficient load balancing mechanism is the key to 
ensure application performance, and the results of 
each subtask have an important impact on the overall 
results of the project. 

Corresponding to task parallel applications, task 
division is divided into static division and dynamic 
division (Mohit et al., 2019). In static division, each 
computing node is statically divided into the same 
number of tasks and executed separately. Dynamic 
partitioningis to dynamically adjust the tasks of 
computing resources according to the load of each 
computing resource, including dynamic scheduling 
with management nodes and task stealing (Dinan et 
al., 2009), etc. In high performance computing, 
dynamic task partitioning is generally used to enable 
applications to more fully utilize computing 
resources(He et al., 2016).  
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3 THE ERROR DETECTION AND 
FAULT TOLERANCE 
FRAMEWORK  

At present, high performance computing systems 
mainly screen node operation errors based on the 
screening point program, and screen out the wrong 
points in advance, but this method has the following 
shortcomings:1) The screening program cannot cover 
all subject situations. 2) The screening program often 
needs to run for a long time. The nodes cannot be 
screened at all times, so some errors cannot be found 
through screening. 

In addition, the nodes of high performance 
computer systems are interconnected through specific 
hardware and high-speed networks. Most of the nodes 
are homogeneous, and the node states have 
similarities when performing computing tasks. In task 
parallel applications, a typical mode is that each node 
runs tasks independently, when all tasks are 
completed, it communicates with other nodes to 
complete the entire task cooperatively. 

Based on the above characteristics of high 
performance computing applications, an error 
detection and fault tolerance framework for task 
parallel applications is proposed for high 
performance computing systems. The basic idea of 
the framework is to use the dynamic task scheduling 
feature to combine node screening with applications. 
After a certain time interval, let the nodes in a fixed 
area perform the same task, realize redundant 
operations in the runtime phase, and carry out through 
the reduction results. Correctness judgment is used to 
detect whether there is a node failure. When a node 
failure occurs, fault tolerance is performed by 
recycling the tasks on the node and abandoning the 
failed node. 

3.1 Frame Structure 

As shown in Figure 1, the framework first implements 
the dynamic task scheduling module for task parallel 
applications. On this basis, it implements the 
functions of error detection and fault tolerance. Error 
detection is mainly based on MPI messages. Fault 
tolerance is supported by system components such as 
the operating system and job management. 

To achieve error detection and fault tolerance, 
dynamic task scheduling must be implemented first 
because: 

1) Load balancing of large-scale high 
performance computing systems is very important 
and requires dynamic task scheduling; 

2) Error detection needs to implement redundant 
operations in the running phase, and for task parallel 

applications, this redundancy can be achieved by 
letting the computing nodes within a certain range 
perform the same task, which can be done by assign 
the same task to different nodes by the dynamic task 
scheduling. 

3) To achieve fault tolerance without interrupting 
the project, a checkpoint recording mechanism, as 
well as a task recovery and redistribution mechanism 
are needed, which can be well supported by dynamic 
task scheduling.  

Figure 1: System Software Architecture of the Framework. 

For applications running on high performance 
computing systems, the framework implements task 
scheduling, error detection, and fault tolerance. The 
main processes are as follows: 

 Step1: Initialize. Divide all computing resources 
into control nodes and computing nodes. Control 
nodes initiate task scheduling, error detection and 
fault tolerance. 

 Step2: Dynamic task scheduling. Control nodes 
assign tasks, while computing nodes execute tasks 
and report the completion of tasks. 

 Step3: Error detection. When the completed 
tasks reach a certain number, the control node 
initiates error detection. The computing nodes in a 
certain area calculate the same task, and compare the 
task results. If the results are correct, go to Step5. Else 
if a node is found to be wrong, go to Step4; 

 Step4: Fault tolerance. Report fault node to job 
management components and mark the faulty node. 
Recycle the tasks executed after the last checkpoint in 
the faulty node, and assign them to other healthy 
nodes for execution. 

 Step5: Record the checkpoint. When it is 
detected that all computing nodes are healthy and the 
completed tasks reach a certain threshold, record the 
checkpoint. 

3.2 Dynamic Task Scheduling 

The dynamic task scheduling module provides task 
scheduling support for the framework. It adopts the 
design idea of a partitioned hierarchical tree, as 
shown in Figure 2. During initialization, all nodes 
participating in the calculation are divided into 

Task parallel applications

Dynamic 
Task 

Scheduling

Error detection and fault tolerance

Error detection Fault tolerance

Job management Operating system
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control nodes (root nodes) and operation nodes (leaf 
nodes). In order to prevent a single control node from 
intensively affecting performance, the hierarchical 
idea is adopted, and the control nodes are divided into 
a global master node and some regional master nodes. 
The number of the regional master nodes is the same 
to the number of the regions. The control node 
performs task scheduling, and the leaf nodes perform 
task operations. Node types are shown in table 1. 

Figure 2: Diagram of dynamic task scheduling structure. 

Table 1: Node types 

Function type Tree type Node number 

Control node Global master node The first node of all 
the computing 

nodes

Regional master 
nodes 

The first node of 
each region 

Operation 
nodes 

Leaf node Nodes beside the 
control node 

 
Task scheduling is implemented based on MPI 

messages. First, register the dynamic task message 
type, which supports the following types of messages: 

Task request message (TRM). When the non-
global master node finds that there are no tasks to be 
completed locally, it sends a task request message to 
the upper node, including the message request from 
the leaf node to the regional master node, and the 
message from the regional master node to the global 
master node.  

Task completion message (TCM). When the 
non-global master node completes the task or task 
package, it sends the task completion message to the 
upper node, including the task completion message 

from the leaf node to the regional master node and the 
task completion message from the regional master 
node to the global master node. 

Task assignment message (TAM). When the 
non-leaf node receives the task request message, it 
will detect whether there are still tasks in the local 
task pool, and if so, it will send the task assignment 
message to the requester, including task assignment 
message from the regional master node to the leaf 
node and from the global master node to the regional 
master node; 

Task end message (TEM). When all tasks have 
been completed, the global master node informs the 
regional master nodes that the task is completed, and 
the regional master nodes inform the leaf nodes that 
the task is completed. 

The main process of dynamic task scheduling is 
as follows: 

Step1. Initialize hierarchical environment. 
Divide all computing resources into global master 
nodes, regional master nodes and leaf nodes. The 
global master node initializes the global task pool for 
all tasks, the regional master node initial task pool is 
empty, and the leaf nodes initially have no tasks. 

Step2. Start the task application. The leaf node 
detects that the task pool is empty and applies for the 
tasks from the regional master node. After the 
regional master node receives the task application 
request, it checks that the regional task pool is empty, 
and applies for the task from the global master node. 

Step3. Start task allocation. After the global 
master node receives the task request from the 
regional master node, it allocates the task block to the 
regional master node and records it. After the regional 
master node receives the task block from the global 
master node, it records it to the regional task pool and 
records it, then assign tasks to leaf nodes. 

Step4. Execute the tasks. After the leaf node 
receives the task assignment from the regional master 
node, it starts to execute the tasks. 

Step5. Complete the execution and report. After 
the leaf node completes the task, it reports to the 
regional master node. After the regional master node 
completes the task block, it reports to the global 
master node, and the global master node updates the 
task pool. 

 In the scheduling process, the task prefetching 
strategy is adopted, so that the computing overhead 
with the leaf nodes covers the message overhead of 
the task request, which greatly improves the 
performance of task scheduling. 

3.3 Error Detection 

The goal of error detection and fault tolerance is to 
find faulty nodes in time, and to ensure that the 
project continues to run correctly at the least cost.  

Global master node

Regional master node

Task complete message

Leaf node Leaf node

Task assign message
Task request message

Leaf node...

Region0

Regions
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Error detection and fault tolerance are combined 
with dynamic task scheduling. First, a checkpoint 
mechanism is introduced into the dynamic task 
scheduling module. The checkpointing operation is 
performed by the global master node, and a certain 
threshold is set for the frequency of the checkpointing 
operation. When the completed tasks reach the 
threshold, the completed tasks are recorded. When an 
inevitable error occurs in the program, fault tolerance 
can be performed through checkpoints. Additional 
message types for error detection need to be added, 
including: 

Initiate error detection (IED). IED is initiated 
by the global master node. When the global master 
node needs to update the breakpoint file, it sends an 
error detection message to each regional master node; 

Error detection completed (EDC). When the 
regional master node receives the error detection 
message sent by the global master node, it sends the 
same task to all nodes in the region, and after reducing 
the result, sends a detection completed message to the 
global master node. 

Global master node

Regional master node

Error detection complete

Leaf node Leaf node

Initiate error detection

Leaf node...

Region0

Regions

Figure 3. Diagram of error detection process 

The mechanism of error detection function is 
shown in Figure 3, which is divided into the following 
steps. 

Step1. Start error detection. Each time before the 
checkpoint file needs to be updated, the global master 
node sends an error detection message to the regional 
master node. 

Step2. Assign the same task to all the leaf nodes 
in the same region. After receiving the error detection 
message, the regional master node sends the same 
task to the leaf nodes in the region. 

Step3. Task execution. The leaf node executes the 
task and records the result. 

Step4. Reduce the execution results and check if 
there exists error node in the region. The regional 

master node reduces the task results of each leaf node, 
checks all the results, and identifies whether there is 
any error node. If an error node is found, it enters the 
fault tolerance mechanism, otherwise it informs the 
global master node that the nodes in the region are 
healthy. 

Step5. Finish error detection. After receiving the 
health information of all regions, the global master 
node starts to record the checkpoint file. 

 The reason why the detection is started before the 
checkpoint is recorded is to detect whether there is 
any node error between the last checkpoint record and 
the current checkpoint record.  

 The cost of error detection is analysed below. 
The average time of a single task is set to t, the total 
task number is N, and the number of tasks to be 
completed by each computing node when a 
checkpoint is recorded is M. If the task execution of 
nodes in the area is not synchronized, Because the 
detection needs to perform a reduction operation, the 
detection overhead is at most the time overhead of 
two tasks, that is, the time overhead is at most 2Nt/M, 
where M can be adjusted according to system 
conditions. 

3.4 Fault Tolerance 

In order to achieve software fault tolerance, each node 
will maintain a node status queue. Initially, all node 
information is 0, indicating that the node is healthy. 
When a node error is found, the information in the 
status queue will be set to 1, indicating that the node 
is faulty. When the faulty node is detected by the error 
detection function, local fault tolerance and global 
fault tolerance can be used for fault tolerance 
according to the type of subject. 

 Local fault tolerance. If the faulty node will not 
participate in global operations since the time the 
error occurs, such as global protocol, global 
synchronization, etc., local fault tolerance can be 
used. The regional master node that detects the error 
will notify the leaf nodes in the area. 

 Global fault tolerance. If the faulty node may 
participate in global operations, such as global 
protocol, global synchronization, etc., global fault 
tolerance needs to be adopted. The regional master 
node that detects the error will send a signal to the 
operating system. The operating system will set the 
node status to fault, and all other nodes are signalled 
to be notified. After other nodes receive the signal, 
they will set the status of the node in the node status 
queue to fault, and all subsequent communication and 
synchronization operations related to the faulty node 
will be neglected. 

The following describes the main steps of global 
fault tolerance: 
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Step1. Call operating system. After the regional 
master node detects a node error, it calls the operating 
system function interface to notify the operating 
system of the faulty node information. 

Step 2. Kick out the faulty nodes. After receiving 
the faulty node information, the operating system 
marks the faulty node, kicks it out of the job, and 
sends a fault-tolerant signal to all the other healthy 
nodes. 

Step3. Mark the faulty node. After the healthy 
node receives the signal from the operating system, it 
updates the node status queue and marks the faulty 
node. 

Step4. Reassign tasks on the faulty node. The 
regional master node reclaims all the tasks assigned 
to the error node since the last update of the 
breakpoint file and reassigns them. Then it sends the 
detected exception message and the bitmap of the 
reclaimed tasks to the global master node. 

Step5. Update the bitmap of tasks. The global 
master node starts the checkpoint file record after 
updating the completed task information according to 
the bitmap of the reclaimed tasks. 

4 EXPERIMENTAL RESULTS 

This section verifies the function and performance of 
the proposed framework through experiments. The 
main functions of the framework include task 
scheduling, error detection and fault tolerance. Error 
detection is mainly to detect operation errors that 
cannot be detected by the system, so this experiment 
mainly verifies the detection of such errors. 

4.1 Experimental Verification 

The experimental platform is the Sunway TaihuLight 
supercomputer system (Dongarara, 2016). 64 CPUs 
are used for testing. Each CPU contains 4 processes, 
and each CPU has 64GB memory. The CPUs are 
interconnected by a domestic network and can 
communicate through MPI. 

 The experiment uses a task parallel application. 
The total number of tasks N in the application can be 
set from 2^13 to 2^15. The evaluation execution time 
of each task is about 3 seconds. After each task is 
completed, the task number and execution result will 
be the output, and the execution result will be 
reordered according to the task number. The rules for 
reordering and deduplication are that, for all repeated 
task results, the last output result is taken as the 
correct result, and all other results are ignored. 

 The experimental method is as follows. First use 
the correct node to execute the task using the static 
task scheduling to generate the correct results. Then 

sort the results by task number, and get the correct 
result. Then execute the dynamic task scheduling 
framework and get the result, sort the dynamic task 
scheduling results. Compare the results, check the 
correctness of the results, record the running time, 
and check the performance. Then simulate node 
errors, use the random node and random error mode, 
enable error detection and fault tolerance, and reorder 
all output results according to the task number. 
Finally, the correct results are compared, the 
correctness is checked, and the running time is 
recorded.  

Figure 4. Performance of the example application with 
different CPU error numbers   

4.2 Experimental Results and Analysis 

First, the correctness of error detection and fault 
tolerance is verified. When the error detection and 
fault tolerance mode is turned on, 1, 2, 4, 6, and 8 
CPUs are randomly selected to make random errors. 
The scheduling results and correct results are 
consistent, indicating that the error detection and fault 
tolerance mechanism designed in this paper is 
effective. After 1, 2, 4, 6, and 8 CPU errors occur, the 
running time of the entire program for different total 
task number N is shown in figure 4. With the increase 
of faulty CPUs, the entire time cost of the program 
increases gradually, and the increased time is 
basically linear with the increase of the faulty CPU, 
which indicates that the time overhead of fault 
tolerance is very small, and the main overhead is the 
reduction of computational resources. 

Table 2 shows the time cost of dynamic task 
scheduling using static task allocation, dynamic task 
scheduling without error detection, and dynamic task 
scheduling with different checkpoint frequencies(W) 
with error detection enabled. The total task number is 
2^13. Basically, after error detection is enabled, 
because error detection starts after the checkpoint 
update is initiated, the error detection frequencies 
increase gradually as W increases. Correspondingly 
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the time cost increases as W increases, and the time 
of each error detection is about the time of 2 tasks. 

Table 2. Performance of the example application with static 
task scheduling(a), dynamic task scheduling without error 
detection(b), dynamic task scheduling without error 
detection(c) on different checkpoint frequencies (W). 

  a b c 
(W=1/2^12) 

c 
(W=1/2^11) 

c 
(W=1/2^10)

Time 
cost(s) 98.7 99.4 108.6 121.9 142.8 

Gap(s) 0 0.7 9.2 13.3 20.9 

Detection 
times 0 0 2 4 8 

5 CONCLUSIONS 

As the core function of fault management, error 
detection and fault tolerance are of great significance 
to improve the reliability of the system. In this paper, 
an error detection and fault tolerance framework is 
proposed for task parallel applications on high 
performance computing systems. The framework 
realizes the error detection function by periodically 
leading the computing nodes to perform the same 
tasks and reducing the results. The error detection 
time interval can be dynamically controlled according 
to the environmental conditions. Fault tolerance is 
realized without stopping the running applications, 
which effectively reduces the time caused by 
checkpoint. The experimental results verify the 
effectiveness of the framework proposed in this 
paper. 
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