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Abstract: Differentiable architecture search has gradually become the mainstream research topic in the field of Neural 
Architecture Search (NAS) for its high efficiency compared with the early heuristic NAS (EA-based, RL-
based) methods. Differentiable NAS improves the search efficiency, but no longer naturally capable of 
tackling the non-differentiable objectives. Researches in the multi-objective NAS field target this point but 
requires vast computational resources cause of the individual training of each candidate architecture. We 
propose the TND-NAS, which discretely sample architectures based on architecture parameter α (without 
sampling controller), and directly optimize α by policy gradient algorithm. Our representative experiment 
takes two objectives (Parameters, Accuracy) as an example, we achieve a series of high-performance compact 
architectures on CIFAR10 (1.09M/3.3%, 2.4M/2.95%, 9.57M/2.54%) and CIFAR100 (2.46M/18.3%, 
5.46M/16.73%, 12.88M/15.20%) datasets.

1 INTRODUCTION 

Neural Architecture Search (NAS) aims at alleviating 
the tremendous labor of manual tuning on neural 
network architectures, which has facilitated the 
development of AutoML (Guo et al., 2021; Stamoulis 
et al., 2020; He e t al., 2021). Recently, under the fast-
growing in this area, NAS models have surpassed 
previous manually designed models in various 
research fields. As an intuitive method, 
Reinforcement Learning (RL) based NAS (Zoph and 
Le, 2017) employs the RNN controller to sample the 
architecture (represented by sequential indices), and 
the validation accuracy of each candidate architecture 
is viewed as the reward for policy gradient 
optimization. 

By continuous relaxation of the search space, 
differentiable NAS researches make the loss function 
differentiable w.r.t architecture weights, thus the 
search can be processed directly by gradient-based 
optimization. Even with high search efficiency, 
differentiable NAS research rarely involves non-
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differentiable objectives, e.g., energy, latency, or 
memory consumption. 

Parallel to the explosive development of the 
differentiable NAS sub-field, the multi-objective 
NAS methods (MnasNet (Tan et al., 2019), DPP-Net 
(Dong et al., 2018)) dedicate to searching for the 
neural architectures in discrete space with the 
consideration of multi-dimensional metrics, 
including differentiable and non- differentiable ones. 
MNAS methods rely on the heuristic search strategy 
such that the computational overhead is huge. 

Our method relies on the differentiable NAS as 
the main search framework, in which candidate 
operations are progressively eliminated base on the 
architecture parameters α after each stage of the 
search, meanwhile, the depth of the model is 
increased gradually (Chen et al., 2019), by which 
means to tackle the “depth gap”. Our contributions 
may be summarized as follows: 

1)TND-NAS methods is capable to tackle the 
non-differentiable objectives under the differentiable 
search framework, that is, with the merits of high 
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efficiency in differentiable NAS and the objective 
compatibility of multi-objective NAS. 

2)Through flexible and customized search 
configurations, the visualization of architecture 
evolving during the search process shows that our 
method can reach the trade-off among differentiable 
and non-differentiable metrics. 

2 RELATED WORK 

RL/EA-based NAS. Traditional architecture search 
methods start from employing Evolutionary 
Algorithm (EA) as the search strategy [8](Stanley and 
R. Miikkulainen, 2002; Sun et al., 2019; Sun et al., 
2020; Real et al., 2019; Liu et al., 2017; Lu et al., 
2019; Han et al., 2021; Li et al., 2021) (Wang et al., 
2021). In these works, high-performing network 
architectures are mutated, and less promising 
architectures are discarded. Recently, the significant 
success of RL- based NAS is first reported by (Zoph 
and Le, 2017; Zoph et al., 2018). ENAS (Pham et al., 
2018) comes in the continuity of previous works 
(Zoph and Le, 2017; Zoph et al., 2018), it proposes 
the weight sharing strategy to significantly improve 
the searching efficiency. Overall, the RL/EA-based 
NAS methods heuristically search the architecture 
over a discrete domain and suffer from the efficiency 
issue. 
Differentiable NAS. By continuous relaxation of the 
search space, DARTS (Liu et al., 2019) constructs the 
supernetwork by mixed-edge operation, the task of 
architecture search is treated as learning a set of 
continuous architecture parameters. DARTS and the 
followed works also suffer from the high GPU-
memory overhead issue (Xu et al., 2021), which 
grows linearly w.r.t. candidate-set size. As a result, 
these works have to search with only a few blocks 
(cells), but evaluate the architecture with more blocks 
stacked, which undoubtedly brings in the “depth gap” 
issue (Chen et al., 2019) (Xie et al., 2021). 

3 METHODOLOGY 

3.1  Preliminary 

In differentiable NAS method, to make the search 
space continuous, the operation in specified location 
is characterized by all candidate operations: 

 

�̅�( , )(𝑥) = ∑  ∈𝒪 ( , )∑  ∈𝒪  ( , ) 𝑜(𝑥)      (1) 

 
According to the customs, under the differentiable 

supernetwork framework. Obviously, the task of 
architecture search then is to learn a set of vectors. 
Thus the search procedure is formulated as a bilevel 
optimization problem as the upper-level variable and 
weight parameter as the lower-level variable: 
 𝑚𝑖𝑛  ℒval (𝑤∗(𝛼), 𝛼)

 s.t. 𝑤∗(𝛼) = arg 𝑚𝑖𝑛 ℒtrain (𝜔, 𝛼)       (2) 

 
To effectively solve this bilevel optimization 

problem, DARTS approximates the solution by 
alternate optimization. 

3.2 Search Method 

Our evaluation acceleration scheme follows the 
weight-sharing differentiable NAS, in which the sub-
networks inherit the weight from the supernetwork. 
Importantly, the architecture parameters are not 
directly trained by gradient descent with 
differentiable loss function (cross-entropy loss), but 
rather treat as the sampling policy, which is trained 
by policy gradient algorithm (REINFORCE 
(Williams et al., 1992)) in discrete space, which 
follows the non-differentiable route. In terms of the 
weight parameters training, weight parameter is 
optimized by the gradient descent of cross- entropy 
loss: 
 𝜔∗(𝛼) = arg 𝑚𝑖𝑛 ℒtrain (𝜔, 𝛼)          (3) 

 
In terms of the architecture sampling, for each 

index, the binary vector is sampled by multinominal 
distribution by probability vector. 
 𝑝( , ) = softmax 𝛼( , )         (4) 

 𝑔( , ) ∼ Multi 𝑝( , ), 1           (5) 
 

the sub-network structured by inheriting the 
supernetwork's weights: 
 𝑁 = 𝒜(𝑔 )                       (6) 

 
where N stands for the sub-network. 
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To optimize the policy architecture parameters, 
we empirically resort to the policy gradient algorithm 
(REINFORCE), the gradient of policy architecture 
parameters is estimated based on the reward of 
discretely sampled architectures, that is: ∇ 𝒥val (𝛼) = 𝔼 ∼ ( ) 𝑅val (𝜔∗, 𝑁)∇ log (𝜋 (𝑁))≈ ∑   (𝑅val (𝜔∗, 𝑁 ) − 𝑏)∇ log 𝜋 (𝑁 )   

(7) 

Apparently, in terms of performance, the most 
common metric Accuracy can be directly employed 
as a reward. Much more attention needs to be 
addressed to the multi-objective scenario, in which 
the reward function needs to be designed based on 
real-world requirements. For example, resource-
constrained scenarios need the trade-off between 
performance and efficiency, e.g., memory 
consumption, or inference latency. Motivated by 
Mnasnet[5], taking the Accuracy and Parameters as 
the objectives, we make the reward be linearly w.r.t 
Accuracy, but non-linearly w.r.t Parameters, which is 
treated as a reward-penalty factor in the non-linearly 
scalarization function: 𝑅 =  Acc ⋅  Params                (8)  

Table 1: Hyper-parameters of search. 

 

Table 2: Hyper-parameters of evaluation on CIFAR10 and 
CIFAR100. 

 

4 EXPERIMENTS 

Our search processes are conducted on 2 popular 
image classification datasets, CIFAR10 and 
CIFAR100. During the search procedure, we keep the 
training set split into two equal-size subsets, one for 
weight parameters training and the other for 
architecture parameter validation. 

4.1 Architecture Search 

The search experiment is performed with PyTorch 1.4 
framework on 2 NVIDIA 1080Ti GPUs that each 
with 11GB memory. Our search hyper-parameters are 
presented in Table 1.  

The visualization of our searched model 
(CIFAR10-S, under compression configuration for 
small-scale model) is shown in Fig.1(a), in which 
normal cell is in Fig.1(a), and reduction cell is in 
Fig.1(b). The nodes represent the feature maps (FMs), 
and edges stand for the connection that implemented 
by the searched operation.  

 
Figure 1: The searched result (CIFAR10-S) of TND-NAS. 
The Parameters of this architecture is 1.09M with 16 initial 
channels. 

4.2 Architecture Evaluation 

To evaluate the searched architectures, we randomly 
initialize its weights, train it from scratch, and report 
its performance on the test set. To be notice that the 
test set is blind for the architecture search or 
architecture training.  
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Table 3: Comparison of the evaluation results on CIFAR10 
and CIFAR100. 

 
Our evaluation on CIFAR10/CIFAR100 follow 

the experimental training setting in P-DARTS, 
hyperparameters setting is shown in Table 2.  

For comparison, some state-of-the-art approaches 
are reported in Table 3, including the manually 
designed models and outstanding NAS models. Our 
experiment reaches a series of models on CIFAR10: 
extremely compact model (S) of 3.3% test error with 
1.09M Parameters, moderate model (M) of 2.7% with 
3.2M Parameters, and large model (L) of 2.54% with 
9.57M Parameters, which has shown the flexibility of 
TND-NAS. Our search experiment on CIFAR100 
also achieves the promising results: 18.3% test error 
with 2.46M Parameters (S), 16.73% with 5.46M 
Parameters (M), 15.2% with 12.88M Parameters (L). 
As demonstrated, TND-NAS is comparable with the 
P-DARTS, but much more diversified in model scale.  

4.3 Search Cost Comparison 

TND-NAS costs merely 0.65 days on 2 NVIDIA 
1080Ti GPUs, each with only 11G memory. 
Compared with previous promising multi-objective 
NAS methods, our method achieves a substantial 
improvement in search resource cost, 1.3 GPU-days, 
that is 1/6 of that in NSGA-Net(Lu et al., 2019).  

5 CONCLUSIONS 

This work incorporates the differentiable NAS 
framework with the capability to handle non-
differentiable metrics and aims to reach the trade-off 
between non-differentiable and differentiable 
metrics. 

Meanwhile, our method reconciles the merits of 
multi-objective NAS and differentiable NAS, and it 
is feasible to the applied in real-world NAS scenarios, 

e.g., resource-constrained, and platform-specialized. 
Taking the Parameters for instance, by multi-
objective search, we achieve a series of scalable 
models (S, M, L) that are comparable to the state-of-
the-art NAS approaches on CIFAR10/CIFAR100 
datasets. There also exist some limitation of our 
method: First, our representative experiments do not 
include some other non-differentiable metrics, e.g., 
Inference latency. Second, while the gaps and non-
differential metrics issues have been addressed, the 
employed optimization approach that is based on 
sampling in discrete space inevitably leads to a 
greater computational cost than the pure 
differentiable NAS method. 
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