
TND-NAS: Towards Non-Differentiable Objectives in Differentiable
Neural Architecture Search

Bo Lyu1 a and Shiping Wen2 b
1School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

2Australian AI Institute, Faculty of Engineering and Information Technology, University of Technology Sydney,
Ultimo 2007, Australia

Keywords: Neural Architecture Search, Reinforcement Learning, Non-Differentiable, Supernetwork

Abstract: Differentiable architecture search has gradually become the mainstream research topic in the field of Neural
Architecture Search (NAS) for its high efficiency compared with the early heuristic NAS (EA-based, RL-
based) methods. Differentiable NAS improves the search efficiency, but no longer naturally capable of
tackling the non-differentiable objectives. Researches in the multi-objective NAS field target this point but
requires vast computational resources cause of the individual training of each candidate architecture. We
propose the TND-NAS, which discretely sample architectures based on architecture parameter α (without
sampling controller), and directly optimize α by policy gradient algorithm. Our representative experiment
takes two objectives (Parameters, Accuracy) as an example, we achieve a series of high-performance compact
architectures on CIFAR10 (1.09M/3.3%, 2.4M/2.95%, 9.57M/2.54%) and CIFAR100 (2.46M/18.3%,
5.46M/16.73%, 12.88M/15.20%) datasets.

1 INTRODUCTION

Neural Architecture Search (NAS) aims at alleviating
the tremendous labor of manual tuning on neural
network architectures, which has facilitated the
development of AutoML (Guo et al., 2021; Stamoulis
et al., 2020; He e t al., 2021). Recently, under the fast-
growing in this area, NAS models have surpassed
previous manually designed models in various
research fields. As an intuitive method,
Reinforcement Learning (RL) based NAS (Zoph and
Le, 2017) employs the RNN controller to sample the
architecture (represented by sequential indices), and
the validation accuracy of each candidate architecture
is viewed as the reward for policy gradient
optimization.

By continuous relaxation of the search space,
differentiable NAS researches make the loss function
differentiable w.r.t architecture weights, thus the
search can be processed directly by gradient-based
optimization. Even with high search efficiency,
differentiable NAS research rarely involves non-

a https://orcid.org/0000-0003-1595-8361
b https://orcid.org/0000-0001-8077-7001

differentiable objectives, e.g., energy, latency, or
memory consumption.

Parallel to the explosive development of the
differentiable NAS sub-field, the multi-objective
NAS methods (MnasNet (Tan et al., 2019), DPP-Net
(Dong et al., 2018)) dedicate to searching for the
neural architectures in discrete space with the
consideration of multi-dimensional metrics,
including differentiable and non- differentiable ones.
MNAS methods rely on the heuristic search strategy
such that the computational overhead is huge.

Our method relies on the differentiable NAS as
the main search framework, in which candidate
operations are progressively eliminated base on the
architecture parameters α after each stage of the
search, meanwhile, the depth of the model is
increased gradually (Chen et al., 2019), by which
means to tackle the “depth gap”. Our contributions
may be summarized as follows:

1)TND-NAS methods is capable to tackle the
non-differentiable objectives under the differentiable
search framework, that is, with the merits of high

Lyu, B. and Wen, S.
TND-NAS: Towards Non-Differentiable Objectives in Differentiable Neural Architecture Search.
DOI: 10.5220/0011917300003612
In Proceedings of the 3rd International Symposium on Automation, Information and Computing (ISAIC 2022), pages 177-181
ISBN: 978-989-758-622-4; ISSN: 2975-9463
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

177

efficiency in differentiable NAS and the objective
compatibility of multi-objective NAS.

2)Through flexible and customized search
configurations, the visualization of architecture
evolving during the search process shows that our
method can reach the trade-off among differentiable
and non-differentiable metrics.

2 RELATED WORK

RL/EA-based NAS. Traditional architecture search
methods start from employing Evolutionary
Algorithm (EA) as the search strategy [8](Stanley and
R. Miikkulainen, 2002; Sun et al., 2019; Sun et al.,
2020; Real et al., 2019; Liu et al., 2017; Lu et al.,
2019; Han et al., 2021; Li et al., 2021) (Wang et al.,
2021). In these works, high-performing network
architectures are mutated, and less promising
architectures are discarded. Recently, the significant
success of RL- based NAS is first reported by (Zoph
and Le, 2017; Zoph et al., 2018). ENAS (Pham et al.,
2018) comes in the continuity of previous works
(Zoph and Le, 2017; Zoph et al., 2018), it proposes
the weight sharing strategy to significantly improve
the searching efficiency. Overall, the RL/EA-based
NAS methods heuristically search the architecture
over a discrete domain and suffer from the efficiency
issue.
Differentiable NAS. By continuous relaxation of the
search space, DARTS (Liu et al., 2019) constructs the
supernetwork by mixed-edge operation, the task of
architecture search is treated as learning a set of
continuous architecture parameters. DARTS and the
followed works also suffer from the high GPU-
memory overhead issue (Xu et al., 2021), which
grows linearly w.r.t. candidate-set size. As a result,
these works have to search with only a few blocks
(cells), but evaluate the architecture with more blocks
stacked, which undoubtedly brings in the “depth gap”
issue (Chen et al., 2019) (Xie et al., 2021).

3 METHODOLOGY

3.1 Preliminary

In differentiable NAS method, to make the search
space continuous, the operation in specified location
is characterized by all candidate operations:

�̅�(௜,௝)(𝑥) = ∑  ௢∈𝒪 ୣ୶୮ቀఈ೚(೔,ೕ)ቁ∑  ೚ᇲ∈𝒪 ୣ୶୮ ቀఈ೚ᇲ(೔,ೕ)ቁ 𝑜(𝑥) (1)

According to the customs, under the differentiable

supernetwork framework. Obviously, the task of
architecture search then is to learn a set of vectors.
Thus the search procedure is formulated as a bilevel
optimization problem as the upper-level variable and
weight parameter as the lower-level variable:
 𝑚𝑖𝑛ఈ   ℒval (𝑤∗(𝛼), 𝛼)

 s.t. 𝑤∗(𝛼) = arg 𝑚𝑖𝑛௪  ℒtrain (𝜔, 𝛼) (2)

To effectively solve this bilevel optimization

problem, DARTS approximates the solution by
alternate optimization.

3.2 Search Method

Our evaluation acceleration scheme follows the
weight-sharing differentiable NAS, in which the sub-
networks inherit the weight from the supernetwork.
Importantly, the architecture parameters are not
directly trained by gradient descent with
differentiable loss function (cross-entropy loss), but
rather treat as the sampling policy, which is trained
by policy gradient algorithm (REINFORCE
(Williams et al., 1992)) in discrete space, which
follows the non-differentiable route. In terms of the
weight parameters training, weight parameter is
optimized by the gradient descent of cross- entropy
loss:
 𝜔∗(𝛼) = arg 𝑚𝑖𝑛ఠ ℒtrain (𝜔, 𝛼) (3)

In terms of the architecture sampling, for each

index, the binary vector is sampled by multinominal
distribution by probability vector.
 𝑝(௜,௝) = softmax ൫𝛼(௜,௝)൯ (4)

 𝑔(௜,௝) ∼ Multi ൫𝑝(௜,௝), 1൯ (5)

the sub-network structured by inheriting the
supernetwork's weights:
 𝑁௠ = 𝒜(𝑔௠) (6)

where N stands for the sub-network.

ISAIC 2022 - International Symposium on Automation, Information and Computing

178

To optimize the policy architecture parameters,
we empirically resort to the policy gradient algorithm
(REINFORCE), the gradient of policy architecture
parameters is estimated based on the reward of
discretely sampled architectures, that is: ∇ఈ𝒥val (𝛼) = 𝔼ே∼గഀ(ே)ሾ𝑅val (𝜔∗, 𝑁)∇ఈlog (𝜋ఈ(𝑁))ሿ≈ ଵெ ∑  ெ௠ୀଵ (𝑅val (𝜔∗, 𝑁௠) − 𝑏)∇ఈlog ൫𝜋ఈ(𝑁௠)൯

(7)

Apparently, in terms of performance, the most
common metric Accuracy can be directly employed
as a reward. Much more attention needs to be
addressed to the multi-objective scenario, in which
the reward function needs to be designed based on
real-world requirements. For example, resource-
constrained scenarios need the trade-off between
performance and efficiency, e.g., memory
consumption, or inference latency. Motivated by
Mnasnet[5], taking the Accuracy and Parameters as
the objectives, we make the reward be linearly w.r.t
Accuracy, but non-linearly w.r.t Parameters, which is
treated as a reward-penalty factor in the non-linearly
scalarization function: 𝑅 = Acc ⋅ ቀ Params ௉ ቁఉ

 (8)

Table 1: Hyper-parameters of search.

Table 2: Hyper-parameters of evaluation on CIFAR10 and
CIFAR100.

4 EXPERIMENTS

Our search processes are conducted on 2 popular
image classification datasets, CIFAR10 and
CIFAR100. During the search procedure, we keep the
training set split into two equal-size subsets, one for
weight parameters training and the other for
architecture parameter validation.

4.1 Architecture Search

The search experiment is performed with PyTorch 1.4
framework on 2 NVIDIA 1080Ti GPUs that each
with 11GB memory. Our search hyper-parameters are
presented in Table 1.

The visualization of our searched model
(CIFAR10-S, under compression configuration for
small-scale model) is shown in Fig.1(a), in which
normal cell is in Fig.1(a), and reduction cell is in
Fig.1(b). The nodes represent the feature maps (FMs),
and edges stand for the connection that implemented
by the searched operation.

Figure 1: The searched result (CIFAR10-S) of TND-NAS.
The Parameters of this architecture is 1.09M with 16 initial
channels.

4.2 Architecture Evaluation

To evaluate the searched architectures, we randomly
initialize its weights, train it from scratch, and report
its performance on the test set. To be notice that the
test set is blind for the architecture search or
architecture training.

TND-NAS: Towards Non-Differentiable Objectives in Differentiable Neural Architecture Search

179

Table 3: Comparison of the evaluation results on CIFAR10
and CIFAR100.

Our evaluation on CIFAR10/CIFAR100 follow

the experimental training setting in P-DARTS,
hyperparameters setting is shown in Table 2.

For comparison, some state-of-the-art approaches
are reported in Table 3, including the manually
designed models and outstanding NAS models. Our
experiment reaches a series of models on CIFAR10:
extremely compact model (S) of 3.3% test error with
1.09M Parameters, moderate model (M) of 2.7% with
3.2M Parameters, and large model (L) of 2.54% with
9.57M Parameters, which has shown the flexibility of
TND-NAS. Our search experiment on CIFAR100
also achieves the promising results: 18.3% test error
with 2.46M Parameters (S), 16.73% with 5.46M
Parameters (M), 15.2% with 12.88M Parameters (L).
As demonstrated, TND-NAS is comparable with the
P-DARTS, but much more diversified in model scale.

4.3 Search Cost Comparison

TND-NAS costs merely 0.65 days on 2 NVIDIA
1080Ti GPUs, each with only 11G memory.
Compared with previous promising multi-objective
NAS methods, our method achieves a substantial
improvement in search resource cost, 1.3 GPU-days,
that is 1/6 of that in NSGA-Net(Lu et al., 2019).

5 CONCLUSIONS

This work incorporates the differentiable NAS
framework with the capability to handle non-
differentiable metrics and aims to reach the trade-off
between non-differentiable and differentiable
metrics.

Meanwhile, our method reconciles the merits of
multi-objective NAS and differentiable NAS, and it
is feasible to the applied in real-world NAS scenarios,

e.g., resource-constrained, and platform-specialized.
Taking the Parameters for instance, by multi-
objective search, we achieve a series of scalable
models (S, M, L) that are comparable to the state-of-
the-art NAS approaches on CIFAR10/CIFAR100
datasets. There also exist some limitation of our
method: First, our representative experiments do not
include some other non-differentiable metrics, e.g.,
Inference latency. Second, while the gaps and non-
differential metrics issues have been addressed, the
employed optimization approach that is based on
sampling in discrete space inevitably leads to a
greater computational cost than the pure
differentiable NAS method.

REFERENCES

Y. Guo, Y. Luo, Z. He, J. Huang, and J. Chen, “Hierarchical
neural architecture search for single image super-
resolution,” IEEE Signal Processing Letters, vol. 27,
pp. 1255–1259, 2020.

D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B.
Priyantha, J. Liu, and D. Marculescu, “Single-path
mobile automl: Efficient convnet design and nas
hyperparameter optimization,” IEEE Journal of
Selected Topics in Signal Processing, vol. 14, no. 4, pp.
609–622, 2020.

X. He, K. Zhao, and X. Chu, “Automl: A survey of the
state-of-the-art,” Knowledge-Based Systems, vol. 212,
p. 106622, 2021.

B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” in International Conference on
Learning Representations, 2017, pp. 1–16.

M. Tan, B. Chen, R. Pang, V. K. Vasudevan, M. Sandler,
A. Howard, and Q. V. Le, “Mnasnet:platform-aware
neural architecture search for mobile,” in Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2820–2828.

J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun,
“Dpp-net: Device-aware progressive search for pareto-
optimal neural architectures,” in Proceedings of the
European Conference on Computer Vision, 2018, pp.
540–555.

X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive
differentiable architecture search: Bridging the depth
gap between search and evaluation,” in Proceedings of
the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 1294–1303.

P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An
evolutionary algorithm that constructs recurrent neural
networks,” IEEE transactions on Neural Networks, vol.
5, no. 1, pp. 54–65, 1994.

K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,”
Evolutionary computation, vol. 10, no. 2, pp. 99–127,
2002.

ISAIC 2022 - International Symposium on Automation, Information and Computing

180

Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep
convolutional neural networks for image classification,”
IEEE Transactions on Evolutionary Computation, vol.
24, no. 2, pp. 394–407, 2019.

Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv,
“Automatically designing cnn architectures using the
genetic algorithm for image classification,” IEEE
transactions on cybernetics, vol. 50, no. 9, pp. 3840–
3854, 2020.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le,
“Regularized evolution for image classifier architecture
search,” in Proceedings of the aaai conference on
artificial intelligence, vol. 33, no. 01, 2019, pp. 4780–
4789.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K.
Kavukcuoglu, “Hierarchical representations for
efficient architecture search,” in International
Conference on Learning Representations, 2017, pp. 1–
13.

Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E.
Goodman, and W. Banzhaf, “Nsga-net: neural
architecture search using multi-objective genetic
algorithm,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2019, pp. 419–
427.

T. Han, S. P. Nageshrao, D. Filev, K. Redmill, and O¨
zgu¨ner, “An online evolving method for a safe and fast
automated vehicle control system,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, pp. 1– 13,
2021.

C. Li, F. Liu, Y. Wang, and M. Buss, “Concurrent learning-
based adaptive control of an uncertain robot
manipulator with guaranteed safety and performance,”
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, pp. 1–15, 2021.

J. Wang, Y. Song, and G. Wei, “Security-based resilient
robust model predictive control for polytopic uncertain
systems subject to deception attacks and rr protocol,”
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, pp. 1–12, 2021.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image
recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp.
8697– 8710.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient
neural architecture search via parameters sharing,” in
International conference on machine learning. PMLR,
2018, pp. 4095–4104.

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable
architecture search,” in International Conference on
Learning Representations, 2019, pp. 4561–4574.

Y. Xu, L. Xie, W. Dai, X. Zhang, X. Chen, G.-J. Qi, H.
Xiong, and Q. Tian, “Partially-connected neural
architecture search for reduced computational
redundancy,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.

(Xie et al., 2021) L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu,
L. Wang, Z. Chen, A. Xiao, J. Chang, X. Zhang et al.,
“Weight-sharing neural architecture search: A battle to

shrink the optimization gap,” ACM Computing Surveys
(CSUR), vol. 54, no. 9, pp. 1–37, 2021.

R. J. Williams, “Simple statistical gradient-following
algorithms for connectionist reinforcement learning,”
Machine Learning, vol. 8, no. 3, pp. 229–256, 1992.

S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic
neural architecture search,” arXiv preprint
arXiv:1812.09926, 2018.

H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural
architecture search on target task and hardware,” in
International Conference on Learning Representations,
2019, pp. 1–13.

H. Tan, R. Cheng, S. Huang, C. He, C. Qiu, F. Yang, and P.
Luo, “Relativenas: Relative neural architecture search
via slow-fast learning,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

TND-NAS: Towards Non-Differentiable Objectives in Differentiable Neural Architecture Search

181

