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Abstract: With the boom of machine learning, fairness is an issue that needs to be concerned. The three main perspec-
tives of this paper provide a thorough look at the fairness problem: First, we introduce a handy tool for 
causal inference, that is, causal graph, and apply formulas like adjustment formula, back-door formula, and 
front-door formula to see the effect of interventions, which can help with the fairness. Then some approach-
es to measure the fairness are introduced: natural direct path and path-specific effect. Finally, we use coun-
terfactual inference further to study fairness with the help of causal graphs and integrate LFR, a model fo-
cusing on both group fairness and individual fairness. 

1 INTRODUCTION 

Nowadays, artificial intelligence is widely used in 
our lives. With the increasing use of automated deci-
sion-making systems, people are concerned about 
bias and discrimination in these systems. Since sys-
tems trained with the historical data will inherit the 
previous biases, we need to make a fair decision so 
that there are not unduly biased for or against pro-
tected subgroups in the population, such as the fe-
male, the elderly, and the ethnic minorities. The 
problem is deemed as fairness in machine learning. 
There are two crucial dimensions of fairness: group 
fairness and individual fairness. Group fairness en-
sures that the overall proportion of members in a 
protected group receiving positive or negative classi-
fication is identical to the proportion of the popula-
tion as a whole. On the other hand, individual fair-
ness achieves that any two similar individuals should 
be classified similarly.  

Causal inference serves as a solution to fairness. 
Causality is prevalent in the universe. For example, 
the cure of a disease is due to using a specific drug. 
Machines can answer questions like whether this 
drug should be used to make a causal inference. 
Some causalities, however, may lead to discrimina-
tion on specific groups, damaging fairness. If gender 
is the cause of whether he/she gets the offer, there is 
no doubt that the employer biases against some par-

ticular gender, so this is unfair. In order to ensure 
fairness, machine learning systems developed to 
decide whether an employee can get the offer should 
not consider gender. 

Machines are good at predicting probability, but 
it is difficult to predict results after intervening. 
Counterfactual, as its name indicates, captures no-
tions of something that has not happened could hap-
pen with some conditions contrary to the fact. As a 
subset of causal inference, counterfactual inference 
appears to measure the fairness of machine learning 
systems based on causal inference. Counterfactuals 
are pretty common in our daily lives: every sentence 
in the subjunctive mood can be considered a coun-
terfactual problem. When you hear your friend say-
ing, "If I had done my assignment better, I would 
have got a better final score," you cannot immediate-
ly check whether this sentence is correct because 
there is no easy way to find someone with the same 
quality as him/her. Here "done my assignment bet-
ter" is counterfactual because "your friend" signifies 
that he/she did not do homework well. 

It is only recently that some researchers have 
considered this issue. Several papers have aimed to 
achieve group fairness, and some achieve individual 
fairness. Nabi and Shpitser have considered the 
problem of fair statistical inference on outcomes in a 
setting where we wish to minimize discrimination 
concerning a particular sensitive feature, such as 
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race or gender (Nabi, Shpitser, 2018). A paper has 
investigated real-world applications that have shown 
biases in various ways and listed different sources of 
biases that can affect AI applications (Binns 2018). 
Another paper draws on existing moral and political 
philosophy work to elucidate emerging debates 
about fair machine learning (Mehrabi, Morstatter, 
Saxena, Lerman, Galstyan, 2021). These papers 
have clearly illustrated the fairness in statistical stud-
ies and even provided some application scenarios 
that correlate with machine learning. However, they 
do not contain a systematic approach to integrating 
machine learning into the field of fairness. 

The later parts of this paper are organized below: 
First, we introduce a handy tool for causal inference, 
that is, causal graph, and apply formulas like ad-
justment formula, back-door formula, and front-door 
formula to see the effect of interventions, which can 
help with the fairness. Then some approaches to 
measure the fairness are introduced: natural direct 
path and path-specific effect. Finally, we use coun-
terfactual inference further to study fairness with the 
help of causal graphs and integrate LFR, a model 
proposed by Zemel, Wu, Swersky, Pitassi, and 
Dwork that focuses on both group fairness and indi-
vidual fairness (Zemel, Wu, Swersky, Pitassi, 
Dwork, 2013). All the theories and experiments are 
based on the Community and Crime Dataset from 
the UCI repository (Acharya, Blackwell, Sen, 2016). 

2 CAUSAL GRAPHS AND 
CAUSAL INFERENCE 

2.1 Introduction to Causal Graphs 

Causal graphs can be used in describing the causal 
relationship between attributes. As a visual model of 
causality between variables in a system, the causal 
graph makes it easier to draw realistic causal infer-
ences, like doing exercises “causes” lower blood 
pressure. It plays a role by stimulating the identifica-
tion of more potential confounding factors and the 
source of selection bias.  

A causal graph is a directed acyclic graph 
(DAG), including a collection of nodes (also re-
ferred to vertices on some occasions) and directed 
edges. So the graph can be represented by 𝐺 ={𝑁, 𝐸}, where 𝑁 is the set of nodes and 𝐸 is the set 
of edges. An example of a causal graph is shown as 
Fig. 1: 

 
Figure 1: An example of a causal graph 

In Fig. 1, we see that 𝑁 = {𝐴, 𝑀, 𝑊, 𝑌}
 (1) 𝐸 = {(𝐴, 𝑀), (𝐴, 𝑊), (𝐴, 𝑌), (𝑀, 𝑊), (𝑀, 𝑌), (𝑊, 𝑌)}
 (2) 

Each node in the graph represents a variable. We 
use solid nodes to represent observed variables and 
dashed nodes to represent unobserved variables. An 
edge indicates the causal effect between two varia-
bles, like (𝐴, 𝑀), the edge directing from 𝐴  to 𝑀 , 
which means that 𝐴 is the “cause” of 𝑀. Here we 
also say 𝐴 is the parent node of 𝑀. Two nodes are 
adjacent if they are connected by an edge. There are 
paths between 2 nodes if they are connected by some 
sequences of edges. For example, 𝐴 and 𝑌 are adja-
cent. From 𝐴 to 𝑊, there are 2 paths: 𝐴 → 𝑊, 𝐴 →𝑀 → 𝑊. 

2.2 The Crime Dataset and Our Causal 
Graphs  

In later parts of this paper, experiments are conducted 
on the Community and Crime Dataset, retrieved from 
the UCI repository (Acharya, Blackwell, Sen, 2016). 
Later we will call it Crime Dataset for short. It con-
tains 1994 samples, and each of them contains 128 
attributes. The first 4 attributes are state, county, 
community, communityname, which are nominal 
data, serving as the identifier of the sample and not 
for prediction. The 5th attribute is fold, whose values 
are integers ranging from 1 to 10, used for 10-fold 
cross validation. The 6th to the 127th attributes are 
social and socio-economic data that is plausible to do 
with the crime rate, such as PolicPerPop (police 
officers per 100K population). The last attribute is 
the goal attribute to be predicted: Violent-
CrimesPerPop (total number of violent crimes per 
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100K population). 
It is worth noting that the values of the 6th to the 

128th attributes have been normalized into the deci-
mal range from 0.00 to 1.00, using an unsupervised, 
equal-interval binning method. In this way, attributes 
retain their distribution and skew (for example, the 
population attribute has a mean value of 0.06 because 
most communities are small). The normalization 
preserves rough ratios of values within an attribute. 

The dataset we used combines socio-economic 
data, law enforcement, and crime data from the 1990 
U.S. Census. Data is described based on original 
values and used to predict the crime rate of specific 
communities in the United States. Besides, there are 
some sensitive attributes in the data about age, gen-
der, and race in this dataset. For our goal of fairness, 
we try not to let these sensitive attributes decide the 
crime rate. However, it is inevitable to use these 
attributes for some causal inferences of other non-
sensitive attributes. 

For later experiments, we have drawn some caus-
al graphs based on the Crime Dataset. They are 
shown as Fig. 2-Fig. 6: 

 
Figure 2: Causal Graph 1. X denotes the per capita in-
come; Z denotes the percentage of people 16 and over who 
are employed; Y denotes the crime rate. 

 
Figure 3: Causal Graph 2. H denotes percentage of people 
25 and over with a bachelors degree or higher education; E 
denotes percent of people who do not speak English well; 
K denotes percentage of households with wage or salary 
income in 1989; Y denotes the crime rate. 

 
Figure 4: Causal Graph 3. O denotes the police operating 
budget; C denotes the commodity prices (unobserved); T 
denotes the percent of people using public transit for 
commuting; Y denotes the crime rate. 

 
Figure 5: Causal Graph 4. A denotes percentage of kids 
born to never married; N denotes percentage of population 
who are divorced; L denotes percentage of people under 
the poverty level; D denotes percent of housing occupied; 
Y denotes the crime rate. 

 
Figure 6: Causal Graph 5. S denotes number of different 
kinds of drugs seized; U - percent of people using drugs 
(unobserved); 

2.3 Interventions on Causal Graphs 

The ultimate goal of many statistical studies is to 
predict the effect of interventions. For example, we 
collect data on car accidents to find intervention 
factors to reduce the occurrence of car accidents; 
when we study new drugs, we intervene by asking 
patients to take drugs and observe the reaction of 
patients after taking drugs. When randomized con-
trolled trials are not feasible, we often implement 
observational studies to obtain the relationship be-
tween variables by controlling specific data. 
Through this intervention, we can block the causal 
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relationship between some variables and analyze the 
impact of other variables. 

 
Figure 7: Causal Graph 1 after the intervention on X 

In the case of Fig. 2, in order to determine the ef-
fect of 𝑋 on 𝑌, we simulate the intervention in the 
form of a graph surgery (as in Fig. 7 above, where 𝑋 
is controlled to be 𝑥, the manipulated probability is 𝑃௠. In the manipulated model of Fig. 7, the causal 
effect 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) is equal to the condi-
tional probability 𝑃௠(𝑌 = 𝑦|𝑋 = 𝑥). Combined with 
the primary attributes of probability and variables, 
we get a causal effect formula expressed by pre-
intervention probability, known as adjustment formu-
la： 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥))=  ෍ 𝑃(𝑌 = 𝑦| 𝑋 = 𝑥,  𝑍 = 𝑧) 𝑃(𝑍௭= 𝑧) 

  (3) 
There is another application of adjustment formu-

la in Fig. 3. We want to gauge the effect of higher 
education (H) on crime rate (Y). We assume that 
people who have income are less likely to commit 
crimes. Using the same method as shown in (1), we 
get the following formula: is shown as belows  𝑃(𝑌 = 𝑦|𝑑𝑜(𝐻 = ℎ)) =  ෍ 𝑃(𝑌 = 𝑦| 𝐻 = ℎ,  𝐾 = 𝑘) ௞  ෍ 𝑃(𝐾 = 𝑘,  𝐸 = 𝑒,  𝐻 = ℎ) 𝑃(𝑍 = 𝑧)ா (4) 

In the above discussion, we concluded that we 
should adjust for a variable's parents when we are 
trying to determine its effect on another variable. 
Nevertheless, often the variables have unobserved or 
inaccessible parents. In those cases, we use a simple 
test called the back-door criterion: given an ordered 
pair of variables (𝑋, 𝑌) in a directed acyclic graph 𝐺, 
a set of variables 𝑍 satisfies the back-door criterion 

relative to (𝑋, 𝑌) if no node in 𝑍 is a descendant of 𝑋 , and 𝑍  blocks every path between 𝑋  and 𝑌  that 
contains an arrow into 𝑋. If a set of variables 𝑍 satis-
fies the back-door criterion for 𝑋  and 𝑌 , then the 
causal effect of 𝑋  on 𝑌  is given by the back-door 
formula:  𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) =  ෍ 𝑃(𝑌 = 𝑦| 𝑋 = 𝑥,  𝑍 = 𝑧) 𝑃(𝑍 = 𝑧)௭ (5) 

In Fig. 4, we are trying to gauge the effect of a 
police operating budget (O) on crime rate (Y). We 
have also measured people for public commuting 
(T), which has an effect on the crime rate. Further-
more, we know that commodity prices (C) affect 
both 𝑂 and 𝑇, but it is an unobserved variable. In-
stead, we search for an observed variable that fits the 
back-door criterion from 𝑂  to 𝑌 . We find that 𝑇 , 
which is not a descendant of 𝑂, also blocks the back-
door path 𝑂 ← 𝐶 → 𝑇 → 𝑌. Therefore, W meets the 
back-door criterion. By using the adjustment formu-
la, we got the following formula:  𝑃(𝑌 = 𝑦|𝑑𝑜(𝑂 = 𝑜)) =   ෍ 𝑃(𝑌 = 𝑦| 𝑂 = 𝑜,  𝑇 = 𝑡) 𝑃(𝑇 = 𝑡)் (6) 

Do operation can also be applied to some graph 
patterns that do not meet the back-door criterion to 
determine the causal effect that seems to have no 
solution at first. One such pattern, front-door, can 
identify the causal effect shown in Fig. 6, where the 
variable U is unobserved and hence cannot be used to 
block the back-door path from X to Y. A set of vari-
ables Z is said to satisfy the front-door criterion rela-
tive to an ordered pair of variables (𝑋, 𝑌) if  

1. Z intercepts all directed paths from X to Y. 
2. There is no unblocked path from X to Z. 
3. All back-door paths from Z to Y are blocked 

by X 
This method can identify the causal effect in Fig. 

6 through two consecutive applications of the back-
door path. First, there is no back-door path from S to 
W. so we can immediately write the effect of S on W 𝑃൫(𝑊 = 𝑤)ห𝑑𝑜(𝑆 = 𝑠)൯ = 𝑃(𝑊 = 𝑤|𝑆 = 𝑠) ൫7൯ 

then, the back-door path from W to Y, namely 𝑊 ←𝑆 ← 𝑈 → 𝑌, can be blocked by conditioning on X so 
that we can write the second formula like this 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑊 = 𝑤) = ෍ 𝑃(𝑌 = 𝑦| 𝑆 = 𝑠,  𝑊 = 𝑤) 𝑃(𝑆 = 𝑠)ௌ  

 (8) 
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Now we chain together the two partial effects to 
obtain the overall effect of X on Y by summing all 
states' smaller z of capital Z, and we can get this. 
Through some changes in expression, we finally get 
the impact of the number of drugs on the crime rate. 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑆 = 𝑠)) = ෍  ௪ 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑊 = 𝑤))𝑃(𝑊 = 𝑤| 𝑆 = 𝑠)                ൫9൯ 

2.4. Calculating the Interventions 

Some formulas are deducted, though, yielding their 
values is another problem. In Crime Dataset, all the 
data for prediction and the outcome is continuous, 
which means that the probability with variables con-
ditional on fixed values is insignificant. Also, it 
seems impossible to calculate the probability of a 
variable fixed on an exact value—instead, expecta-
tion matters. Nevertheless, machine learning and 
statistics help.  

Let us start with an example: the formula for Fig. 
2.  𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) =  ෍ 𝑃(𝑌 = 𝑦| 𝑋 = 𝑥,  𝑍 = 𝑧) 𝑃(𝑍 = 𝑧)௭              ൫10൯ 

Since 𝑃(𝑌 = 𝑦) is hard to get, we convert it to 𝔼൫𝑌ห𝑑𝑜(𝑋 = 𝑥)൯ = ෍ 𝔼௓ (𝑌|𝑋 = 𝑥, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧)  

 (11) 

In order to learn the effect on Y when we inter-
vene X, we get the formula above based on the ad-
justment formula. Since Z is continuous, ෌ 𝔼(𝑌| 𝑋 = 𝑥,  𝑍 = 𝑧) 𝑃(𝑍 = 𝑧)௭  can be further 
converted to formulas with expectation. With the 
preliminary  𝑋 = 𝑥, the formula means “given 𝑋 = 𝑥 
and a random selected 𝑍, the expectation of 𝑌”, that 
is: 𝔼൫𝑌ห𝑑𝑜(𝑋 = 𝑥)൯ = ෍ 𝔼௓ (𝑌|𝑋 = 𝑥, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧) = 𝔼(𝑌|𝑋 = 𝑥, 𝑍) = 𝔼(𝑌|𝑋 = 𝑥)𝔼(𝑍) (12) 

To get the expectation 𝔼(𝑌|𝑋 = 𝑥), we can train 
a model using the samples in the dataset that predicts 𝑌 with 𝑋. Amazingly, among many machine learning 
models, it is linear regression that best fit the causal 
relation from 𝑋 to 𝑌. The result of the prediction is 
shown in Fig. 8. 

 
Figure 8: Diagram of the best model using perCapInc to 
predict ViolentCrimesPerPop 

Assume that we are interested in 𝔼൫𝑌ห𝑑𝑜(𝑋 = 0.5)൯, then we input 𝑋 = 0.5 and get 
predicted value 0.175 , so 𝔼൫𝑌ห𝑑𝑜(𝑋 = 0.5)൯ =0.175. 𝔼(𝑍) can be simply computed using the sam-
ples in the dataset, which is 0.501. As a result: 𝔼൫𝑌ห𝑑𝑜(𝑋 = 0.5)൯ = ෍ 𝔼௓ (𝑌|𝑋 = 0.5, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧) = 𝔼(𝑌|𝑋 = 0.5, 𝑍) = 𝔼(𝑌|𝑋 = 0.5)𝔼(𝑍) = 0.175 ൈ 0.501 = 0.088 (13) 

The result indicates that, after exerting interven-
tion 𝑑𝑜(𝑋 = 0.5), 𝑌 is expected to be 0.088. 

Formulas on other graphs can also be computed 
this way. The approach of computing intervention on 
continuous data is concluded as: 
 Express the 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥))  by expres-

sions without 𝑑𝑜 , using adjustment formula, back-
door formula, front-door formula, and so on. 
 Convert the probability expression to expecta-

tion, like 𝑃(𝑌 = 𝑦) to 𝔼(𝑌) 
 Calculate/Predict the 𝔼: 
 The expectation of a single variable is the mean 

value of this variable in the dataset 
 For the expectation of compound expression 

like 𝔼(𝑌|𝑋 = 𝑥), build a model predicting 𝑌  using 𝑋, then input 𝑋 = 𝑥 and use the predicted value  

3 MEASURING THE FAIRNESS 

3.1 Mediation and Direct Paths 

Under some circumstances, we concentrate on the 
effect of one variable 𝑋  on another variable 𝑌  in 
causal graphs. There may be many paths from 𝑋 to 𝑌, and some are direct while some are not. So the 
effect of 𝑋  to 𝑌  includes the direct effect and the 
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indirect effect.  
Mediation is encoded via a counterfactual con-

trast using a nested potential outcome of the form 𝑌(𝑎, 𝑀(𝑎ᇱ))  (Nabi, Shpitser, 2018). Then a treat-
ment like 𝑋 = 𝑎  can be divided into two disjoint 
parts: one acts on 𝑌 but not 𝑀, and the other acts on 𝑀 but not 𝑌. Later, we will mainly focus on the for-
mer one, that is, the direct effect. 

3.2 Natural Direct Effect 

In causal mediation analysis, one quantity of interest 
is the natural direct effect (NDE). It is the impact of 
altering treatment underneath it while fixing the 
mediator to its unit-specific plausible value. The 
NDE compares the mean outcome, which is only 
directly influenced by the part of the treatment that 
will exert an effect on it, with the one under the 
placebo treatment (Binns 2018). Given 𝑌(𝑎, 𝑀(𝑎ᇱ)), 
we define the following effects on the mean differ-
ence scale: the natural direct effect as 𝔼ሾ𝑌(𝑎, 𝑀(𝑎ᇱ))ሿ െ 𝔼ሾ𝑌(𝑎ᇱ)ሿ 
which means for the outcome 𝑌, 𝐴 is set to 𝑎, and 𝑀 
is set to the value when 𝐴 is set to 𝑎ᇱ.  
3.3 Path-specific Effect 

Path-specific effect (PSE) is a crucial indicator for 
evaluating mediation in the presence of multiple 
intermediaries.  

 
Figure 9: An example of a causal graph 

From the graph Fig. 9, we can see there are four 
ways to go from 𝐴  to 𝑌 : 𝐴 → 𝑌, 𝐴 → 𝑊 → 𝑌, 𝐴 →𝑀 → 𝑌, 𝐴 → 𝑀 → 𝑊 → 𝑌 . If we wish to evaluate 
the contribution of 𝐴 → 𝑊 → 𝑌, with the presence 
of 𝐴 → 𝑌, and 𝐴 → 𝑀 → 𝑊 → 𝑌, effects along the 
path 𝐴 → 𝑊 → 𝑌  is known as Path-specific effect. 
On the path of interest, 𝐴 is set to the value 𝑎, and 

on other paths, 𝐴 is set to the baseline value 𝑎ᇱ. With 
the concept, the path-specific effect from 𝐴  to 𝑌 
along the path 𝐴 → 𝑊 → 𝑌 can be formulated by 𝔼ሾ𝑌(𝑎ᇱ, 𝑊(𝑀(𝑎ᇱ), 𝑎), 𝑀(𝑎ᇱ))ሿ െ 𝔼ሾ𝑌(𝑎ᇱ)ሿ 

We formalize the existence of discrimination as 
the existence of a particular path-specific effect. The 
reason why we use PSE is that when problems arise, 
such as gender or racial discrimination, we can issue 
conceptualization, make causal graphs according to 
the problems, and define a fair path from 𝐴 (attribute 
about gender/race) to the outcome 𝑌  (crime rate), 
may be related to some media, or it is a direct-effect 
path, the problem will increase the PSE along these 
paths.  

3.4 Using PSE in Our Graphs 

 
Figure 10: A causal graph we use to study the PSE. W 
denotes the percentage of people living in areas classified 
as urban; X denotes the percentage of the population that 
is African American; Z denotes median household in-
come; Y denotes crime rate. 

First, we focus on the causal graph Fig. 10. 
It is inevitable to encounter sensitive variables in 

various data. When we find some paths that may be 
unfair, we can take some measures to avoid them. 
When we use Fig. 10 to estimate the impact of the 
variables on the crime rate, we may come to some 
discriminatory conclusions: the increase of African 
American income will reduce the crime rate. Obvi-
ously, the logical relationship between these two 
things is unfair. We will avoid this discrimination by 
choosing other paths or increasing fairness. This is 
where PSE works. 

The path we are interested in is 𝑊 → 𝑌. 
PSE: 𝔼ሾ𝑌(𝑤) െ 𝔼ሾ𝑌(𝑤, 𝑍(𝑋(𝑤′), 𝑤), 𝑋(𝑤′))ሿሿ 
As 𝑊 is set to the baseline 𝑤ᇱ, 𝑋 is represented 

with 𝑋(𝑤ᇱ), 𝑍 is represented with 𝑍(𝑋(𝑤ᇱ), 𝑤), and 𝑌 is 𝑌(𝑤, 𝑋(𝑤ᇱ), 𝑍(𝑋(𝑤ᇱ), 𝑤ᇱ)). Changing the 𝑤ᇱ to 𝑤 , since the baseline value will not have a great 
influence on the values we care about, so 𝑋 is repre-
sented with 𝑋(𝑤) , 𝑍  is represented with 𝑍(𝑋(𝑤ᇱ), 𝑤), and 𝑌 is 𝑌(𝑤, 𝑋(𝑤ᇱ), 𝑍(𝑋(𝑤ᇱ), 𝑤)).  

Then we focus on another causal graph, above 
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mentioned Fig. 3. 
The path we are interested in is 𝐸 → 𝐻 → 𝐾 → 𝑌. 
PSE: 𝔼ሾ𝑌(𝑒, 𝐻(𝑒ᇱ), (𝐾(𝐻(𝑒ᇱ), 𝑒))ሿ െ𝔼ሾ𝑌(𝑒, 𝐻(𝑒ᇱ), 𝑒)ሿ 
Since we want to evaluate the contribution on 𝐸 → 𝐻 → 𝐾 → 𝑌, with the presence of 𝐸 → 𝐾 → 𝑌, 

and 𝐸 → 𝐻 → 𝑌 , effects along the path 𝐸 → 𝐻 →𝐾 → 𝑌 is actually the path-specific effect. As 𝐸 was 
set to the baseline value 𝑒ᇱ, since baseline value will 
not affect the value of the path we are interested in, 𝐻 will be represented with 𝐻(𝑒ᇱ). 

4 COUNTERFACTUAL 
INFERENCE 

4.1 Introduction to Counterfactual  
Inference 

Unlike the formulas introduced in the last sessions, 
which focus on the whole dataset with a large num-
ber of samples, the counterfactual inference is the 
study of the counterfactual effect of a single sample. 
But some preliminary to computing the counterfac-
tual depends on the whole dataset, also. 
In accord with Chapter 4 of Causal Inference in 
Statistics: a Primer (Pearl, Glymour, Jewell, 2016), 
we define 𝑌௑ୀ௫(𝑢) = 𝑦 as “𝑌 would be 𝑦 if 𝑋 was 𝑥, 
with  𝑢→ = 𝑢” where 𝑢→  is the vector of exogenous 
variables, like {𝑢௫, 𝑢௬, 𝑢௭} in this example. Assume 
that "your friend" had put 1.5 times of energy into 
the assignment. The answer to the grade example 
can be denoted as 𝑌௓ୀଵ.ହ௓(𝑢௫, 𝑢௬, 𝑢௭). Here 𝑋, 𝑌, 𝑍 
are given, through which we can calculate 𝑢௫, 𝑢௬, 𝑢௭. 

 
Figure 1: A causal graph of the grade example. Z: assign-
ment; X: performance score; Y: final score 

According to Fig. 11 which describes the coun-
terfactual problem at the beginning, that your friend 
saying, “If I had done my assignment better, I would 
have got a better final score”, we see that assignment 

can affect the grades both directly and indirectly. To 
quantify the effects, we assume that: 𝑍 = 𝑢௓ (14) 𝑋 = 2𝑍 + 𝑢௑ (15) 𝑌 = 𝑋 + 3𝑍 + 𝑢௒ (16) 

For the sample of “your friend” in the example, 
assume that 𝑍 = 1, 𝑋 = 3, 𝑌 = 5, we can substitute 
these values into the equations above and yield 𝑢௓ =1, 𝑢௑ = 1, 𝑢௒ = െ1 . The answer became 𝑌௓ୀଵ.ହ(1,1, െ1) . If 𝑍 = 1  was replaced with 𝑍 =1.5, then: 𝑋 = 2𝑍 + 𝑢௑ = 2 ൈ 1.5 + 1 = 4 (17) 𝑌 = 𝑋 + 3𝑍 + 𝑢௒ = 5 + 3 ൈ 1.5 െ 1 = 8.5 (18) 

Since 𝑌 would be 8.5 if 𝑍 was modified to 1.5, 
we can conclude that the final score of "your friend" 
would gain a 70% increase if he/she had put 1.5 
times of energy into the assignment. In other words, 
after exerting a counterfactual effect, 𝑌௓ୀଵ.ହ(1,1, െ1) = 8.5, while 𝑌 = 5 originally. 

In later parts, we will discuss some approaches to 
compute the counterfactual based on some chosen 
attributes in Crime Dataset, then model the relations 
between them.  

4.2 Model the Relations Using Machine 
Learning Methods 

In causal graphs, each edge can be regarded as a 
relation between two variables. For a node 𝑌 in the 
graph with its parent nodes being 𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡  (in 
other words, for each integer 𝑖 satisfying 𝑖 ∈ ሾ1, 𝑛ሿ, 
there is an edge from 𝑋௜ to 𝑌), the relations can be 
modeled as 𝑌 = 𝑓௒(𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡) . If exogenous 
variable 𝑢௒  is into consideration, the equation will 
become 𝑌 = 𝑓௒(𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡) + 𝑢௒ . For example, 
on condition that 𝑛 = 5 , the relation among 𝑋ଵ, 𝑋ଶ, 𝑋ଷ, 𝑋ସ, 𝑋ହ and 𝑌 is illustrated as Fig. 12. 

 
Figure 12: An example of such causal graphs: 𝑛 = 5, and 
each of 𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡  directs to 𝑌 . In this situation, we 
represent 𝑌 as  𝑌 = 𝑓௒(𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡) + 𝑢௒. 

NMDME 2022 - The International Conference on New Media Development and Modernized Education

150



Although counterfactual inference focuses on the 
effect of a single sample, a large amount of samples 
in the dataset is required to train the models. When 
modeling the relations, exogenous variables like 𝑢௑, 𝑢௒ can be seen as the noise with a mean of 0. 
However, when computing the outcome with coun-
terfactual assumptions, exogenous variables differ in 
different samples, which will be discussed in 4.3. 

The simplest way to model the function is as-
suming they are linearly correlative: 𝑌 = 𝑎ଵ𝑋ଵ +𝑎ଶ𝑋ଶ + ⋯ + 𝑎௡𝑋௡ + 𝑢௒ , like the example in 4.1. 
However, as we plot the relations between two vari-
ables, it is clear that the linear model cannot best fit 
the relation, which leads to a relatively high bias, as 
Fig. 13 shows. 

 
Figure 13: Adoption of linear regression on two attributes 
on Crime Dataset: X-axis is racepctblack (percentage of 
African Americans) and Y-axis is ViolentCrimesPerPop 
(total number of violent crimes per 100K population) 

In our causal graphs with attributes from Crime 
Dataset, we tested 4 different machine learning 
models: Linear Regression, Decision Tree, Support 
Vector Regression, and Bayesian Ridge. For each 
model, we trained it using 10-fold cross validation, 
which provides a reasonable assessment of the per-
formance of the model. Then we select the best 
model for each causal function according to the min-
squared error (MSE) of the prediction. The function 
is represented as a node, all its parent nodes and the 
edges between them in the causal graph.  

Take the causal graph Fig. 3 as an example. The 
results of model fitting are shown in Fig. 14-Fig. 16. 

 
Figure 14: Scatter diagram of the best model using PctB-
SorMore, PctNotSpeakEnglWell to predict pctWWage 

 
Figure 15: Diagram of the best model using PctNotSpeak-
EnglWell to predict PctBSorMore 

 
Figure 16: Scatter diagram of the best model using PctB-
SorMore, pctWWage to predict ViolentCrimesPerPop 
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From the results, we find that SVR (support vec-
tor regressor) best fits the former two relations, 
while bayesian ridge best fits the last relation. The 
other graphs are conducted the same things. We save 
the best models and apply them in later steps of 
counterfactual inference.  

4.3 Compute the Counterfactuals 

Chapter 4 of Causal Inference in Statistics: a Primer 
(Pearl, Glymour, Jewell, 2016) indicates that there 
are 3 steps to compute the counterfactual. Combined 
our work with the illustration of the book, we con-
clude that our steps are:  
 Abduction: Use evidence of an actual sample to 

determine the value of exogenous variables 𝑈; 
 Action: substitute the equations for the goal at-

tribute 𝑌 with the interventional values 𝑋 = 𝑥, result-
ing in the modified set of equations 𝑌௑ୀ௫(𝑈);  
 Prediction: compute the implied distribution on 

attributes except 𝑋  based on 𝑈  and models built in 

the last session, then the predicted value �̂� can repre-
sent 𝑌௑ୀ௫(𝑈). 

Our experiment focused on causal graph Fig. 10, 
manually selecting a community called Bethle-
hemtownship from Crime Dataset. Its values are {𝑊 = 0.43, 𝑋 = 0.02, 𝑍 = 0.50, 𝑌 = 0.03} . We 
exerted counterfactual effect 𝑋 = 0.23, since 𝑋 de-
notes the percentage of the population that is African 
American with its 75% quantile being 0.23 . By 
computing 𝑌௑ୀ଴.ଶଷ(𝑈), that is, "what if there were 
more African Americans in this community" we can 
judge whether the models trained in 4.2 discriminate 
against the specific race. 

Table 1. Result of the counterfactual experiment 

 X W Z Y 
Original 
sample 0.02 0.43 0.50 0.03 

Sample after 
counterfactual 

effect 

0.23  
(presupposed) 

0.43 
(original) 0.29 0.17 

According to Table 1 showing the results, we can 
say that, unfortunately, the models we trained are 
unfair. Since we simply adjust 𝑋 with 𝑊 unaltered, 
the predicted crime rate increased significantly. It is 
worth noting that mediator 𝑍 changes as well, which 
suggests that it is already unfair halfway to the out-
come variable. But there are ways to tackle this 
problem, such as LFR introduced in the next session.  

4.4 Application of Learning Fair  
Representations in Counterfactual 
Inference 

Learning fair representations, abbreviated to LFR, is 
a machine learning-based model which takes fair-
ness into consideration, both group fairness and 
individual fairness while assuring the accuracy of 
prediction at the same time (Zemel, Wu, Swersky, 
Pitassi, Dwork, 2013). LFR works on the dataset that 
is divided into protected group and unprotected 
group, and then it tries to attain the group fairness 
between the two groups.  

To integrate LFR in our experiment for a predic-
tion with better fairness, we adopted the criterion of 
LFR, that is: 𝐿 = 𝑎௭𝐿௭ + 𝑎௫𝐿௫ + 𝑎௬𝐿௬ (19) 

In this formula, 𝑎௭, 𝑎௫, 𝑎௬  are hyperparameters 
mastering the tradeoff among 𝐿௭, 𝐿௫, 𝐿௬ , which are 
three disparate measurements to be minimized: 𝐿௭ 
measures the gap between the protected group and 
unprotected group in the prediction; 𝐿௫  means the 
information loss in the prediction; 𝐿௬  scales how 
inaccurate the prediction is, so the lower 𝐿௬ is, the 
more accurate the model predicts. The detailed cal-
culation of 𝐿௭, 𝐿௫, 𝐿௬  is illustrated in Learning fair 
representations (Zemel, Wu, Swersky, Pitassi, 
Dwork, 2013). 

For a node 𝑌  in our causal graph with parent 
nodes 𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡ ,  if 𝑋௜  is a sensitive attribute, 
then we separate protected and unprotected groups 
depending on the value of  𝑋௜ , and train an LFR 
model to fit 𝑌 = 𝑓௒(𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡).  

In our experiment, including some sensitive at-
tributes, like the one in 4.3 on Fig. 10, we can excep-
tionally adopt LFR on unfair paths, while fair paths 
are simply assembled the best model selected in 4.2. 
In this experiment, we adopted LFR on 𝑋 → 𝑍, and 
the results are shown as below: 

Table 2. Result of the counterfactual experiment, using 
LFR on 𝑋 → 𝑍 

X W Z Y 
Original 
sample 0.02 0.43 0.50 0.03 

Sample after 
counterfactual 

effect

0.23 (presup-
posed) 

0.43 
(original) 0.29 0.17 

Sample after 
counterfactual 
effect (using 
LFR on 𝑋 →𝑍)

0.23 (presup-
posed) 

0.43 
(original) 0.39 0.05 
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Comparing the prediction of counterfactual ef-
fect by models integrating LFR and the prediction 
with no concern on fairness (see Table 2), it is ex-
plicit that LFR makes it a little fairer since 𝑍 (medi-
an household income) predicted by 𝑋 is not that low. 
The outcome 𝑌 (total number of violent crimes per 
100K population) is relatively low. 

Moreover, we notice that the adopting LFR on 𝑋 → 𝑍 makes predicted 𝑍 above its average of 0.36. 
If we divide the dataset into the protected group and 
unprotected group according to 𝑋 (samples with 𝑋 >0.23 is divided into the protected group), we see that 
the mean of 𝑍 in the protected group is 0.24 (below 
the average), while the value in unprotected group is 
0.40 (above the average). The predicted 𝑍  using 
LFR, interestingly, is close to 0.40. 

5 CONCLUSION 

In this paper, we took fairness in machine learning 
as a starting point since it became a social issue 
today. We chose Community and Crime Dataset 
because it has lots of attributes, including some sen-
sitive ones, and we conducted experiments on it to 
explore some approaches to improve fairness. Our 
research was a glimpse of the world of fairness from 
three different perspectives. 

In causal inference, we focused on the effect of 
intervening some variables on the outcome variable, 
which we denote as 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)), inspired 
by some previous work (Binns 2018). Since the 
effect of intervention is not observable, we need to 
convert expression with 𝑑𝑜 to probability condition-
al on observable variables. The adjustment formula, 
back-door formula, and front-door formula are of 
great importance.  

However, the dataset we chose contains mostly 
continuous data, making the probability of a con-
crete point meaningless. In our research, we innova-
tively proposed an approach that replaces 𝑃 with 𝔼, 
the expectation. For example,  𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) 
is equivalent to 𝔼൫𝑌ห𝑑𝑜(𝑋 = 𝑥)൯ . Then by either 
calculating directly or predicting with machine 
learning models, we can get the expectation of 𝑌 
while intervening on 𝑋. 

Later, we apply some measurements for fairness 
on our dataset: natural direct path and path-specific 
effect, proposed by Nabi and Shpitser (Nabi, Shpit-
ser, 2018). They work when there are multiple paths 
from 𝑋, the variable we are interested in, to 𝑌, the 
outcome variable. By shadowing the mediators be-
tween 𝑋 to 𝑌, we can learn the effect of 𝑋 to 𝑌 spe-

cific to certain fair paths. For example, it is unfair to 
make gender directly affect the offer, but it is fair 
that gender influences the capabilities concerning 
the offer. 

Finally, we studied the counterfactual inference. 
The goal of this part is computing 𝑌௑ୀ௫(𝑢), which 
means the value 𝑌 would be if 𝑋 was 𝑥, with exoge-
nous variables 𝑈 = 𝑢. The first step is to build mod-
els for edges in causal graphs, which signify the 
causal relationship between variables. We tried 4 
different machine learning models: Linear Regres-
sion, Decision Tree, Support Vector Regression, and 
Bayesian Ridge, and trained each of them by 10-fold 
cross validation. Then we computed the counterfac-
tual effect, according to the approaches introduced 
in Chapter 4 of Causal Inference in Statistics: a 
Primer (Pearl, Glymour, Jewell, 2016).  

Since we found that building the models as men-
tioned above without concern on fairness may lead 
to discrimination on certain protected groups, we 
introduced learning fair representations to improve 
fairness. This model performs well on both group 
and individual fairness (Zemel, Wu, Swersky, 
Pitassi, Dwork, 2013). The results of our experiment 
showed that after integrating LFR on some counter-
factual problems, the fairness was greatly improved 
while the accuracy remained at a relatively high 
level. 

Indeed, there are many limitations in our current 
research. For PSE and NDE, we tried the same algo-
rithm as the causal inference part (2), that is, replac-
ing probability to expectation and calculating with 
the help of machine learning models. However, it 
did not work well because the prediction values 
overfocused the fairness criteria and had a signifi-
cant error.  
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