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Abstract: Nowadays interest of the deterministic differential system of Lorenz equations is still primarily due to the 
problem of gas and fluid turbulence. Despite a large number of existing systems for calculating turbulent 
flows, new modifications of already known models are constantly being investigated. In this paper we 
consider the effect of stochastic additive perturbations on the Lorenz convective turbulence model. To 
implement this and subsequent interpretation of the results obtained, a numerical simulation of the Lorenz 
system perturbed by adding a stochastic differential to its right side is carried out using the programming 
capabilities of the MATLAB programming environment. 

1 INTRODUCTION 

Hydrodynamic turbulence (turbulent flow) is the 
movement of a fluid characterized by chaotic changes 
in pressure and flow velocity. This is the main 
difference from laminar flow, which occurs when a 
fluid flows in parallel layers, with no gap between 
those layers. 

Typically, turbulence is seen in everyday 
phenomena such as surf, fast-flowing rivers, 
billowing thunderclouds, and so on. In general terms, 
in a turbulent flow, unsteady vortices of different 
sizes arise, which interact with each other. 

Turbulence for a long time did not lend itself to 
detailed physical analysis, since it has a very complex 
character. At one time, Richard Feynman described 
turbulence as the most important unsolved problem in 
classical physics. 

This thorny issue attracted new scientists year-by-
year and as a result of their studies the so-called 
Lorenz strange attractor was discovered. 

It was the first example of deterministic chaos. 
The Lorenz model (Lorenz, 1963) was created in 
1963 owing to a series of transformations of the 
Navier–Stokes equation. 
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Its solutions were interesting because of their 
quasi-stochastic trajectories and absence of external 
sources of noise. Such solutions for the first time 
appeared in a deterministic system. 

Overall, the Lorenz model is based on a two-
dimensional thermal convection. For the stochastic 
part of the model, a stochastic differential equation 
(SDE) will be used. Such differential equations 
contain a stochastic term, and therefore their solution 
is also a stochastic process. 

This study focuses on modeling and analysis of 
the stability of the Lorenz system under the influence 
of stochastic disturbances. In order to realize it and to 
interpret results, a simulation of the additively 
disturbed Lorenz system was carried out with 
MATLAB software package. 

2 PROPERTIES OF THE 
LORENZ SYSTEM 

Consider the following classical Lorenz equations: 
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where the variable x  represents the rotation rate of 
the Rayleigh-Benard convection cells, y  
characterizes the temperature difference TΔ  
between rising and descending fluid and z  shows the 
deviation of the vertical temperature profile from the 
linear relationship. The model parameters σ , r  and 
b  reflect the values of the Prandtl number, the 
Rayleigh number, and the coefficient linked to the 
geometry of the area respectively. 

As well known the Lorenz system has the 
following properties: 
1. Homogeneity: the first and most obvious 

property. 
2. Symmetry: in the phase space symmetry is 

obvious after: x x→ − , y y→ − . 
3. Dissipation: in three-dimensional phase space 

( , , )x y z  we will consider vector of speeds 𝐿ሬ⃗ (𝑥௧, 𝑦௧, 𝑧௧). 
Its negative divergence characterizes dissipative 

system: 
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Let’s look at set of Lorenz systems with different 
initial conditions. They take volume VΔ  while 0t =
. During the evolution of the system volume declines 
according to 0 exp( 1)V V bσΔ = − − − . 

At t → ∞  all phase-space trajectories are 
concentrated inside a compact attractor. 

Then we will check the Lorenz system for fixed 
points: 
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The Lorenz system always has fixed stationary point 

0 (0,0,0)P = . Also when 1r >  two other fixed points 
appear 𝑃ଵ = (ඥ𝑏(𝑟 − 1), ඥ𝑏(𝑟 − 1), 𝑟 − 1)  and 𝑃ଶ = (−ඥ𝑏(𝑟 − 1), −ඥ𝑏(𝑟 − 1), 𝑟 − 1). 

Point 1r =  is a bifurcation point. At 
1 13,926r r< ≈  separatrices 1S  and 2S  attract to the 

nearest fixed points 1P  and 2P . At 1r r=  separatrices 

transform into a homoclinic loops, i.e. trajectories 
which complete a full orbit around one of the fixed 
points and join initial point. They afterwards 
transform into the saddle orbits, borders of attraction 
area of 1P  and 2P . Also separatrices 1S  and 2S  
approaches to 𝑃ଵ  and 𝑃ଶ  accordingly. The most 
interesting situation appears at 𝑟 = 𝑟ଶ ≃ 24,06 . It 
corresponds to well-known Lorenz strange attractor, 
which has property of strong dependence on initial 
conditions. It means that any small change in the 
coordinates of the initial point leads to completely 
different solution. 

More detailed information about the structure of 
the Lorenz system can be found in various books 
(Sparrow, 1982), (Danilov, 2017), (Leonov and 
Kuznetsov, 2015). 

The effective variation method for obtaining the 
necessary (and sufficient) stability conditions for the 
perturbed solutions of Lorenz system was used in 
(Isaev et al, 2022). 

The method uses a variational technique based on 
the idea of determining the maximum rate of change 
of the Euclidean metric, assuming that the solution 
does not leave the ε  neighborhood of the 
equilibrium point. This method is effective for 
obtaining the necessary stability conditions and 
makes it possible to continue research (in order to 
determine sufficient conditions). The method is 
effective even in cases where the application of the 
classical Lyapunov method causes difficulties 
associated with the construction of the Lyapunov 
function or inaccuracies in Taylor linearization, 
which is typical for high-dimensional dynamical 
systems. In a number of cases, this method can be 
applied to find regions of phase variables in which the 
necessary stability conditions coincide with the 
Lyapunov sufficient stability conditions (asymptotic 
stability). Thus, for the system of Lorenz equations, 
the efficiency of applying the variational method for 
obtaining the necessary conditions for stability in the 
sense of Lyapunov and determining the regions of 
phase variables in which these conditions become 
sufficient is shown. This method allows us to 
conclude that this approach is universal for a wide 
class of dynamical systems. 

3 ITO’S STOCHASTIC 
CALCULUS 

We will describe stochastic differential equations 
(SDE) with Ito’s stochastic calculus. It is based on a 
stochastic Wiener process. Overall, stochastic 
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process is a set of random variables that has been 
indexed by some parameter such as time. 

Initially we consider division ( ){ }N
jτ  of a [0, ]T , 

which corresponds to 
( ) ( ) ( )
0 10 ...N N N

N Tτ τ τ= < < < =  

with ( ) ( )
10 1

max 0N N
j jj N

τ τ+< < −
Δ = − → . 

Then we determine sequence of functions in the 
following way: ( ) ( )( , ) ( , )N N

jtξ ω ξ τ ω=  at 
( ) ( )

1[ , )N N
j jt τ τ +∈ , 0,1,..., 1j N= − . 

Definition: Stochastic Ito’s integral for tξ  is a 
convergence in quadratic mean of following 
expression, where fτ  is a Wiener process (Rozanov, 
2012): 
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As a result, we need to determine multiple stochastic 
integrals for introduction of a numerical scheme. 
Let’s determine them by the following expression: 
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The simulated stochastic Lorenz system is 
demonstrated below: 
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In this paper we used the version of unified 
Taylor-Ito expansion gained by Kulchitsky 
(Kulchitski and Kuznetsov, 1998). The main problem 
is that this expansion contains multiple stochastic 
integrals, which are not easily approximated. We will 
use the fundamental results of Kuznetsov (Kuznetsov, 
2010) to approximate these integrals properly. He 
discovered expansions of our multiple stochastic 
integrals using independent random variables jξ . 

We will use several of them (more details see 
(Kulchitski and Kuznetsov, 1998)): 
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Using them in the Taylor-Ito expansion in the 

Kloeden-Platen form (Kloeden and Platen, 1995), we 
get the explicit numerical scheme directly from this 
expansion. For the sake of brevity, we only present 
here the final result. Initially let us denote step of 
division 0{ }N

j jτ =  as h , 1,j N= . 
The explicit numerical scheme, which we have 

implemented, is as follows: 
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In the scheme (10)-(12) we made a number of 

some designations to simplify the recording of the 
scheme that was written above: 

 
j je x yσ σ= − + , j j j jg rx y x z= − − , 

j j jf b z x y= − + , 
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4 RESULTS OF NUMERICAL 
MODELING 

It was decided to start with intermediate values to 
understand how the system as a whole would behave. 
First the parameter 20r =  was fixed and two 
situations were modelled: at 0c =  and at 2c = . 
Parameter c  shows the intensity of stochastic 
influence. The state at 0c =  is given for comparison 
(Figure 1). 

Figure 1: 20, 0r c= = . 
 

At 2c =  the trajectory loses its regularity, which 
is reasonably predictable (Figure 2). 

Further, let us increase c  to 3 (Figure 3). 

 
Figure 2: 20, 2r c= = . 

 

Figure 3: 20, 3r c= = . 
 

Our numerical simulation using the special 
techniques described above, shows that the trajectory 
of the stochastically perturbed system seems like the 
Lorenz attractor while parameter r  is sufficiently far 
from classical value 24,06. 

Next, let us increase the parameter c  to 4, to test 
this assumption, and get a picture that is even more 
similar to Lorenz attractor (Figure 4). 
 

Figure 4: 20, 4r c= = . 
 

Then consider a different state of the system at 
13r =  and look at the effect of noise, but in three-

dimensional space. 
 

Figure 5: 13, 4r c= = . 
 
As be seen from the graph, with less r  perturbed 

systems also demonstrate similar behavior. Under 
these conditions, the change of attractor occurs much 
earlier than in a classic system. As stochastic intensity 
increases, the stochastic analogue of the Lorenz 
attractor with substantially smaller r  can be 
observed. Overall, there is a negative relationship 
between the stochastic factor c  and the bifurcation 
values of r . It is interesting to see how the system 
works with large values of r . We start with 200r =  
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and build a determine system (blue color with 0c = ) 
and interfered system (red color with 5c = ). 

Figure 6: 200, 0, 5r c c= = = . 
 

The graphs are quite similar, and here we clearly 
see auto-oscillating mode. By increasing r  to 300 
(Figure 7), and then up to 500 (Figure 8), we can 
obtain a predictable result, based on fact that r  is an 
analogue of the Rayleigh number. 
 

Figure 7: 300, 0, 5r c c= = = . 
 

As parameter r  increases, the role of noise will 
gradually decrease. The system will be a stochastic 
analogue of the auto-oscillating movement, which 
will differ from the unperturbed system only by a 
slight irregularity of the trajectory. 

Figure 8: 500, 0, 5r c c= = = . 

5 CONCLUSIONS 

In conclusion we would like to make the following 
observations and draw a parallel with the real 
physical system. All in all, it seems quite logical that 
stochastic interferences strengthen quasi-stochastic 
oscillations around equilibrium positions. As a result, 
a trajectory similar enough to the Lorenz strange 
attractor appears at smaller r . The same changes can 
be observed, for example, in real physical systems, 
where turbulence occurs earlier in the presence of 
some noise source than without it. Then, gradually, 
the noise reduces effect on the system, because the 
Rayleigh number is already high enough. The 
behavior of the system after the noise appearance 
demonstrates quite clearly that stochastic interference 
plays a significant role in describing turbulence. 
Lorenz wanted to use his model for long-term 
weather forecasting (Lorenz, 1963). Moreover, he 
wanted to prove the theoretical existence of such a 
method. By and large, due to the significant impact of 
additive interference, it is unlikely that such a method 
will ever be developed. 
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