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Abstract: Natural disasters are very common nowadays. Therefore, human lives are lost, and economical resources are 
destroyed, so, it is important to plan actions to mitigate these unwanted effects. The uncertainty associated to 
these phenomena is large. The solution shall somehow be robust, for instance the value of the losses shall be 
relatively small for a sufficient large set of possible cases. This contribution will provide an overview on the 
scenarios based robust mathematical model for the treatment of climatological emergencies models to assist 
in the task of decision making for natural disasters with emphasis on evacuation work. 

1 INTRODUCTION 

Mathematical modelling of complex logistics 
systems in the context of climatological emergencies 
management is currently an difficult problem because 
the uncertainty inherent to data received from an 
emergency. (Behl and Dutta 2019; Beresford and 
Pettit 2021; Rodríguez-Espíndola, Albores, and 
Brewster 2018; Yáñez-Sandivari, Cortés, and Rey 
2021; Zhang and Liu 2021).  

Climatological phenomena (Clarke, E. L. Otto, 
and Jones 2021) cause great physical damage and 
material losses due to natural events or phenomena 
such as earthquakes, hurricanes, floods, landslides, 
tsunamis, and others.  

A classic humanitarian logistics (HL) model 
envisages pre-emergency and post-emergency stages 
(Yáñez-Sandivari et al. 2021) (See Figure 1 ). 
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Figure 1: Emergency stages. 

Prior to an emergency, mitigation; consist in the 
idea of help reduce the risks of large-scale events.  

Preparedness requires having a clear idea of what 
actions need to be taken once an emergency occurs. 
Response and recovery are post-emergency stages. 
This paper will focus pre-emergency stages. 

The problem of evacuation has recently been 
addressed mainly in hurricane and flood 
emergencies, see for example (Dalal and Uster 
2021). A robust approach to problem 𝑃 entails a 
robust optimization model which may even be non-
linear, which would lead to greater complexity at 
the time of being solved.  
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Considering any optimization problem 𝑃 such 
that (See eq. 1). 𝑷 :  𝐦𝐢𝐧 𝒇 𝒙𝒔. 𝒕.  𝑭 𝒙 ≤ 𝟎𝒙 ∈ 𝑿  (1)

Where 𝐹: ℝ → ℝ  represents the problem 
constraints, 𝑓: ℝ → ℝ  is the objective function 
and the variable space is such that 𝑋 ⊆  ℝ . 

Starting from the problem 𝑃 , the uncertainty 
can be formalized by considering a family of 
uncertain scenarios 𝑃 𝑢  such that (See eq. 2): 𝑷 𝒖 :  𝐦𝐢𝐧 𝒇 𝒙, 𝒖𝒔. 𝒕.  𝑭 𝒙, 𝒖 ≤ 𝟎𝒙 ∈ 𝑿  (2)

Where 𝐹 ∙, 𝑢 : ℝ → ℝ , 𝑓 ∙, 𝑢 : ℝ →ℝ ∀ 𝑢 ∈  ℝ , which describes that a scenario 𝑢  is 
permitted to occur.  

The formalization discussed in (Goerigk 2012), 
suggests that it is at this point that the values that 𝑢 
can take in the optimization problem 𝑃 𝑢 , are not 
known but; it is assumed that 𝑢 is known to be in a 
given uncertainty set 𝒰 ⊆  ℝ  representing the 
probable scenarios of the analysis and the uncertainty 
optimization problem. 

Some authors (Akbari, Valizadeh, and 
Hafezalkotob 2021; Ben-Tal, Ghaoui, and 
Nemirovski 2009; Cao et al. 2021; Dönmez et al. 
2021; Fakhrzad and Hasanzadeh 2020; Goerigk 2012; 
Mahtab et al. 2021; Seraji et al. 2021) revived the 
conceptual approach of robust modelling (Goerigk 
and Schöbel 2011)  given around the 1960's (Gupta 
and Rosenhead 1968; Rosenhead, Elton, and Gupta 
1972).  

 
Figure 2. Basic procedure for detecting the robust approach 
in a problem 

Roughly speaking, this research aims to propose 
a generic linear robust optimization model for 
climatological emergencies with emphasis on the 
evacuation task with the vulnerable population as an 
unknown or uncertain parameter with the 
particularity using scenarios in climatological 

management considering the specific case of 
evacuation. 

2 APPROACHES FOR 
REPRESENTING 
UNCERTAINTY 

Mathematical models describing emergency 
situations have been presented in the literature, for 
example;(Cao et al. 2021), proposes a post-disaster 
relief model considering sustainability, multi-period, 
hierarchical relationships, equity, diffuse and 
insufficient supplies, split and unsplit demand, multi-
repository and multi-destination. (Seraji et al. 2021) 
presents a two-stage multi-objective mathematical 
programming model for resource location and 
distribution.  

In (Mahtab et al. 2021) is proposed a robust 
stochastic humanitarian logistics model to assist 
decision-makers in pre- and post-disaster 
management.  

(Zhang and Liu 2021) proposes a mathematical 
simulation model based on the vehicle routing 
problem with uncertain transport time for a post-
emergency period.  

(Akbari et al. 2021) proposes a mathematical 
simulation model based on the vehicle routing 
problem with uncertain transport time for a post-
emergency period.   

(Dönmez et al. 2021) proposes a comprehensive 
review of the research conducted on the problems of 
locating facilities under uncertainty in a humanitarian 
context.  

(Yáñez-Sandivari et al. 2021) conducts a 
comprehensive review of recent literature on 
humanitarian logistics and disaster response 
operations.  

In (Fakhrzad and Hasanzadeh 2020), the author 
analyzes the importance of logistics networks in 
strategic decisions for emergency relief distribution 
using a mathematical model for stock shortages and 
pre-disaster decision support. 

Other approaches use fuzzy optimization, 
neutrosophic solutions and even the modeling of 
these events with possibilistic optimization 
(Mohammadi et al. 2020; Özceylan and Paksoy 2014; 
Paydar and Saidi-Mehrabad 2014; Saati et al. 2015). 
However, with the searches performed, there is no 
model that integrates the various robust uncertainty 
management approaches. 

One of the fundamental problems detected in the 
previous contributions continues to be the uncertainty 
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and quality of the model as we seek an integral 
mathematical model that can absorb a humanitarian 
logistics problem under various approaches. 

2.1 Scenarios for Robust Optimization 

The concept established by Ben-Tal (Ben-Tal et al. 
2009) show feasibility for all scenarios as 
conservative in nature. This conceptualization is not 
always possible to apply given the complex data 
structure of a system (Goerigk and Schöbel 2011). 

In (Kouvelis and Yu 1997) a framework for 
working with scenarios is formalized. 

In (Kouvelis and Yu 1997) a clear definition of the 
case of discrete scenarios with the different types of 
robustness for mathematical optimization models is 
proposed. 

It is important to note the importance of the 
concept of robustness referred to by (Kouvelis and Yu 
1997) from (Mulvey, Vanderbei, and Zenios 1995) 
perspective: 
 A mathematical program solution is robust with 

respect to optimality (it is called a robust 
solution) if it remains close to the optimum for 
any input data scenario to the model.  

 A solution is robust with respect to feasibility if 
it remains close to feasible for any realization 
scenario (it is called model robust).  

For a better theoretical understanding of this 
approach, see (Goerigk and Schöbel 2011; Kouvelis 
and Yu 1997). 

2.2 Robust Stochastic Optimization  

In (Mulvey et al. 1995) an attempt is made to give a 
robust answer to the issue of stochasticity through 
(RSO) so, let 𝑃  be any (LP) with an uncertainty 
coefficients constraint (eq. 3.ii) such that (see eq. 3). 𝑷 :  𝐦𝐢𝐧 𝑪𝑻𝒙 + 𝒅𝑻𝒚 ∀ 𝒙 ∈ ℝ𝒏𝟏, 𝒚 ∈ ℝ𝒏𝟐𝒊           𝒔. 𝒕. 𝑨𝒙 = 𝒃 𝒊𝒊          𝑩𝒙 + 𝑪𝒚 = 𝒆𝒊𝒊𝒊           𝒙 ≥ 𝟎, 𝒚 ≥ 𝟎  (3)

For a set of Ω = 1,2, . . , 𝑠  scenarios are 
associated another set 𝑑 , 𝐵 , 𝐶 , 𝑒  of coefficients 
of the control constraints where the probability of the 
occurrence of the scenario 𝑝  is such that ∑ 𝑝 =1. 

Thus, the optimal solution of (eq. 3) may be 
robust with respect to "optimality" or robust with 
respect to "feasibility", in the first case; if it remains 
close to the optimum for any realization of the 
scenario 𝑠 ∈ Ω and it´s called “Robust Solution”. In 

the second case, if the solution remains "almost 
feasible" for any realization of the scenario 𝑠 ∈ Ω  
and it´s called “Robust Model” solution. 

The model proposed in (Mulvey et al. 1995) then 
seeks to use an alternative through the stochastic 
solution of linear programming, introducing a set of 
control variables 𝑦 , 𝑦 , … 𝑦  ∀ 𝑠 ∈ Ω  and another 
set of error vectors 𝑧 , 𝑧 , … . , 𝑧  ∀ 𝑠 ∈ Ω  to 
measure the infeasibility contained in the control 
constraints considering the following formulation 𝑃 𝜉  of the model of (RO) ( eq. 4). 𝐏 𝝃 : 𝐦𝐢𝐧 𝝈 𝒙, 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒔+𝝎𝝆 𝒛𝟏, 𝒛𝟐, … , 𝒛𝒏         𝒊                𝒔. 𝒕.  𝑨𝒙 = 𝒃                               𝒊𝒊 𝑩𝒔𝒙 + 𝑪𝒔𝒚𝒔 + 𝒁𝒔 = 𝒆𝒔  ∀𝒔 ∈ 𝛀𝒊𝒊𝒊 𝒙 ≥ 𝟎, 𝒚𝒔 ≥ 𝟎  ∀𝒔 ∈ 𝛀  (4)

where the first term 𝜎 𝑥, 𝑦 , 𝑦 , … , 𝑦  of the 
objective function measures the optimality of 
robustness, the penalty term being a measure of 
model robustness, the second term for 𝜌 𝑧 , 𝑧 , … , 𝑧  is a function for penalizing violations 
of control constraints in some scenarios, and 𝜔 
represents the goal programming weight used to 
derive a range of compensatory responses for model 
robustness. P 𝜉  prevents there being a single option 
for an aggregate objective function with multiple 𝜉 
scenarios such that 𝜉 = 𝐶 𝑥 + 𝑑 𝑦  becomes a 
random variable taking the value 𝜉 = 𝐶 𝑥 + 𝑑 𝑦  
with probability 𝑝 .  𝝈 ∙ = 𝒑𝒔𝒔∈𝛀 𝝃 (5)

In summary, this is the point of the author's 
contribution and where it is suggested to use the mean 
value function of stochastic linear programming 𝜎 ∙  
as the aggregation function of the model (see eq. 5). 

3 ROBUST MODEL FOR 
CLIMATOLOGICAL 
EMERGENCY 

To model the process, we will consider the stochastic 
problem for two stages according to the two 
operational moments described above and the 
following five scenarios: 

1.   Precipitation and intensity increases. 
2. Precipitation and decreasing intensity. 
3.   Winds and increasing intensity. 
4. Winds and decreasing intensity. 
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5. Sea penetrations. 
The estimated probabilities of each of these 

scenarios are input data. N possible evacuation 
centers, the location and capacity of each are known. 

Model and Notation: 

Let J={1,...,N} be the set of possible evacuation 
candidate center (CC). K : Cost of conditioning the (CC) considering 𝐶 : Capacity of candidate center j (CC), j ∈ J).  
I: Set of localities with vulnerable affected 
population.  𝑝𝑒𝑙 : Population of locality a vulnerable to rainfall,         
a ∈ I. 𝑝𝑒𝑙𝑙 : Population of locality a vulnerable to intense 
rainfall, a ∈ I. 𝑝𝑒𝑣 : Population of locality a vulnerable to wind,         
a ∈ I. 𝑝𝑒𝑣𝑓 : Population of locality a vulnerable to strong 
wind, a ∈ I. 𝑝𝑣𝑝 : Population of location a vulnerable to 
penetrations, a ∈ I. 
S={1,...,5}: Set of described scenarios. 

Decision variables: 𝑥 : Number of people from location a to be in 𝐶𝐶  
if scenario s in stage t. 

Model for each scenario: 

Restrictions: Evacuate all vulnerable. At least 20% 
in case of heavy rain and at least 10% in case of non-
heavy rain. Similarly in case of winds. All vulnerable 
in danger of penetration. 
Objective: For each scenario s decide how many 
people from each location are evacuated in stage 1 
and 2 (mitigation and preparation): 
 
Rainfall: ∑ 𝑥∈ ≥ 𝑝𝑟𝑜𝑏 ∙  𝑝𝑒𝑙𝑙      𝑎 ∈ 𝐼 ∑ 𝑥∈ ≥  𝑝𝑟𝑜𝑏𝑙 𝑝𝑒𝑙 − 𝑝𝑒𝑙𝑙   (6)

By wind: ∑ 𝑥∈ ≥ 𝑝𝑟𝑜𝑏 ∙  𝑝𝑒𝑣𝑓  𝑎 ∈ 𝐼 ∑ 𝑥∈ ≥  𝑝𝑟𝑜𝑏 ∙ 𝑝𝑒𝑣 −𝑝𝑒𝑣𝑓   𝑎 ∈ 𝐼  (7) 

Sea penetration: ∑ 𝑥∈ =  𝑝𝑣𝑝   𝑎 ∈ 𝐼  (8) 

Capacity constraints at the centers: ∑ ∑ 𝑥 +  ∑ ∑ 𝑥  ≤  𝐶   (9) 

Objective Function: min ∑ ∑ ∑ 𝐾 𝑋∈∈   (10) 

3.1 Case Simulation   

It is considered a cyclonic type of emergency in 
which there are 4 localities affected by this entity 
(Table 1) with their respective probabilities for each 
scenario at each stage and a possible candidate 
evacuation center for each location. 

Table 1: Data locality vulnerable people. 

 
The affected localities have people vulnerable to 

rains, winds, and sea penetration (probable scenarios 
of the emergency) and some occurrence probability 
for some scenarios (Table 2).  

Table 2: Probability assigned when scenario happen. 

 
The response seeks to minimize the costs of 

evacuating vulnerable people in each locality by 
considering the likely scenarios.  

AIMMS version 4.89.2.5 under community 
license was used to emulate the following results. 
(Table 3) shows the set of decisions that the decision-
maker must make to mitigate the effects of the 
example problem, while reducing evacuation costs 
for the planned centers a relationship can be 
visualized between the scenario that occurred and the 
people to be evacuated considerer Center Evacuation 
Capacity as { C1 : 175,  C2 : 90,  C3 : 312 } with the 
unitary person evacuation costs { C1 : $ 50,  C2 : $ 
48,  C3 : $ 72 }. 

A robust solution is sought for all scenarios, to 
exemplify the random case selected, in the case of sea 
penetration, an affected population of 85 people is 
visualized in L3 (Table 1); however, there is no 
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probability of sea penetration for this location, which 
is contemplated in the decision not to evacuate people 
in L3 due to sea penetration. 

Table 3: Decision Variable and objective results. 

 
 
The contributions of this research are moderate 

and are in full development with the aim of using 
applied robust optimization models to mitigate the 
effects of a climate catastrophe. 

4 CONCLUSIONS AND FUTURE 
WORK 

This contribution shows partial theoretical results on 
robust optimization models applied to the 
management of climatological emergencies related to 
doctoral research in progress at the University of 
Havana, Cuba. 

It is expected soon to obtain specialized 
simulations for the construction of a decision tool for 
climatic catastrophes with uncertainty management 
with different approaches. 
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