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Abstract: The paper discusses the possibilities of using the Bayesian logical-probabilistic model of fuzzy inference, 
previously proposed, researched and software implemented by the authors, in a neural network context. A 
multilayer structure of a neuro-fuzzy network based on a Bayesian logic-probabilistic model is presented. 
According to the authors, the proposed network structure is comparable to the well-known Takagi–Sugeno–
Kang and Wang–Mendel neuro-fuzzy networks. An example shows which network parameters can be used 
to train it.

1 INTRODUCTION 

Currently, the world is experiencing another wave of 
neural networks popularity as the most dynamically 
developing area in the field of artificial intelligence. 
Impressive achievements in this area are primarily 
associated with the rapid increase in computing 
power and the emergence of super-large data sets 
used to train artificial neural networks. 

The previous wave of interest to neural network 
technologies in artificial intelligence, during the 
1990s and 2000s, was marked by successful attempts 
to hybridize intelligent information processing 
systems (especially in automatic control and 
regulation systems), combine the advantages of fuzzy 
inference systems and neural networks in the so-
called fuzzy neural (hybrid) networks (Yarushkina, 
2004; Rutkovskaya et al., 2013; Osovsky, 2018). 

The effectiveness of the neural network apparatus 
is determined by their approximating ability, due to 
which neural networks are universal functional 
approximators capable of implementing any 
continuous functional dependence based on training. 
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At the same time, the disadvantages of neural 
networks include the inability to explain the output 
result, because the knowledge accumulated by the 
network are distributed among neurons in the form of 
weight coefficient values. 

Systems with fuzzy logic are deprived of this 
drawback; however, already at the stage of their 
design, there are required expert knowledge about the 
method of solving the problem of control or 
regulation, the formulation of rules, and membership 
functions. Therefore, there is no possibility to train 
such systems. 

The combination of neural network and fuzzy 
approaches in hybrid systems allows, on the one 
hand, to bring the training ability and the parallelism 
of calculations that are inherent to neural networks to 
fuzzy inference systems. On the other hand, it allows 
to strengthen the intellectual capabilities of neural 
networks by linguistically interpretable fuzzy 
decision-making rules (Yarushkina, 2004; 
Rutkovskaya et al., 2013; Souza, 2020). 

At that, there are distinguished two types of 
hybrids: neuro-fuzzy networks (NFN) and fuzzy 
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neural networks (FNN). Hybrid fuzzy neural 
networks (FNN) are networks (similar to the 
structures of classical neural networks) based on 
fuzzy neurons with fuzzy inputs and outputs and/or 
fuzzy weights. Neuro-fuzzy networks (NFN) can be 
defined as multilayer neuro-network fuzzy systems 
that use a fuzzy rule base to calculate the output signal 
and provide the ability to adaptively adjust the 
parameter values fed to the parametric layers. 

In the overview article (Souza, 2020) as well as in 
the works (Sinha and Fieguth, 2006; Wu et al., 2020; 
Kordestani et al., 2019; Siddikov et al., 2020; Zheng 
et al., 2021; Fei et al., 2021; Manikandan and 
Bharathi, 2017; Caliskan et al., 2020; Chertilin and 
Ivchenko, 2020; Vassilyev et al., 2020), the numerous 
examples of both types of hybrid networks usage are 
presented, that indicates the relevance and intensity of 
modern research and development in this field. 

The paper discusses the possibility of using a 
Bayesian logic-probabilistic model (BLP model) of 
fuzzy inference in the structure of a multilayer neuro-
fuzzy network (NFN). The model was proposed 
(Kozhomberdieva, 2019) at the International 
Conference on Soft Computing and Measurement 
(SCM’2019, St. Petersburg, Russia), researched and 
software implemented by the authors of this report 
(Kozhomberdieva and Burakov, 2019; 
Kozhomberdieva and Burakov, 2020; 
Kozhomberdieva et al., 2021). A demonstration 
example of solving the problem of fuzzy inference is 
given. The example shows which network parameters 
can be used to train it. According to the authors, the 
proposed network structure is comparable to the well-
known Takagi–Sugeno–Kang and Wang–Mendel 
neuro-fuzzy networks (Osovsky, 2018). 

2 NEURO-FUZZY NETWORK 
BASED ON THE BAYESIAN 
LOGICAL-PROBABILISTIC 
MODEL 

Let us give a brief description of the BLP fuzzy 
inference model proposed and described in details by 
the authors in (Kozhomberdieva, 2019; 
Kozhomberdieva and Burakov, 2019; 
Kozhomberdieva and Burakov, 2020; 
Kozhomberdieva et al., 2021). The BLP fuzzy 
inference model is based on the use of probabilistic 
logic and the Bayes’ Theorem when performing fuzzy 
inference according to a scheme similar to the well-
known Mamdani model. 

The original principle of the BLP model is the 
transformation of the base of fuzzy rules represented 
by the Boolean functions (BF) into a set of 
probabilistic logic functions (PLF). The PLF 
arguments are the membership functions values of the 
input linguistic variables (LV) terms and the 
calculated values are used as conditional probabilities 𝑃 𝑒|𝐻 , 𝑘 = 1, … , 𝐾,  which determine the 
correspondence degrees of the values set of the input 
variables 𝑥 , … , 𝑥  (“crisp” evidence) to assumptions 
about the truth of the Bayesian hypotheses 𝐻 , … , 𝐻 , 
corresponding to the values set of the output LV. The 
conditional probabilities are used to determine the 
posterior Bayesian probability distribution 𝑃 𝐻 |𝑒 ,𝑘 = 1, … , 𝐾  on a set of hypotheses. The resulting 
posterior probability distribution is used at the final 
stage of fuzzy inference – when defuzzifying the 
value of the output LV. 

We note an important feature of the BLP model – 
the requirement that the number of fuzzy rules and the 
number of terms of the output LV, which determines 
the set size of the Bayesian hypotheses, coincide. If 
necessary, the set of rules is reduced by combining all 
rules with the same conclusion into one fuzzy rule. 
The combined rule is a disjunction of antecedents of 
the combined rules, and the combined rule weight is 
defined as the arithmetic mean of the combined rules 
weights. 

To go from representations of fuzzy rules in the 
BF form to their representations in the PLF form, 
Boolean functions are transformed to orthogonal 
(ODNF) or perfect (PDNF) disjunctive normal form. 
The rules for the formal transition from the BF that 
specified in the PDNF or ODNF to the corresponding 
PLF are following (Ryabinin, 2015): 

1) logical variables 𝑧 , 𝑧 , … , 𝑧  are replaced 
with the corresponding probabilities 𝑝 , 𝑝 , … , 𝑝 ; 

2) instead of negations 𝑧 , 1 − 𝑝  are used; 
3) conjunctions and disjunctions are replaced 

with arithmetic multiplication and addition, 
respectively. 

The posterior probability distribution on the set of 
hypotheses is calculated by an equation based on the 
Bayes’ Theorem equation: 𝑃 𝐻 |𝑒 = ∙ 𝑒 𝐻∑ ∙ 𝑒 𝐻 ,  (1) 
where 𝐾  is the number of Bayesian hypotheses 
(output LV terms) equals to the number of PLF used 
to evaluate the truth degree of evidence in favor of 
each hypothesis, 𝑤  is the weight of the 𝑘-th rule, 𝑤 ∈ 0, 1 . In the equation (1), there are no prior 
probabilities used in the classical Bayes’ Theorem 
equation, since in the context of fuzzy inference, the 
prior probability distribution on the set of hypotheses 
is assumed to be uniform (the hypotheses are equally 
probable). 
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Figure 1: Structure of a neuro-fuzzy network based on a BLP model. 

During defuzzification, the final value of the 
output variable 𝑦 is determined as the mathematical 
expectation (average value) of a discrete random 
variable 𝑦: 𝑦 = 𝑀 𝑦 = ∑ 𝑦 ∙ 𝑃 𝐻 |𝑒 ,  (2) 
where 𝑃 𝐻 |𝑒  is the 𝑘-th element of the posterior 
probability distribution calculated by the equation (1), 
and 𝑦  is the characteristic value of the corresponding 𝑘-th term of the output LV, which is by default taken 
as the central point of the interval on which this term 
is defined. 

Figure 1 shows the structure of a neuro-fuzzy 
network based on the BLP model, the neurons of 
which perform the operations necessary to calculate 
the value of some output function 𝑦 = 𝑓 𝑥 , … , 𝑥  
using a set of input variable values 𝑥 , … , 𝑥 . The 
network has seven layers: 
• the first (parametric) layer performs separate 

fuzzification of each input variable, determining 
the membership function values for each fuzzy 
rule. In order to simplify the figure, the parameters 
to be adapted within the network training process 
are schematically indicated in Figure 1 only for 
the trapezoidal membership function 𝜇 𝑥 , 
further used in the example in paragraph 3; 

• the second (non-parametric) layer calculates, 
basing on a set of rules transformed into a PLF set, 
the conditional probabilities values 𝑃 𝑒|𝐻 ,𝑘 = 1, … , 𝐾. Depending on the task solved by the 

neuro-fuzzy network, the fuzzy rule base can be 
either formed by an expert, or (in the absence of 
linguistic information) is generated using a well-
known universal algorithm for constructing a 
fuzzy rule base based on numerical data (Wang 
and Mendel, 1992; Rutkovskaya et al., 2013); 

• the third (parametric) layer multiplies the results 
obtained from the second layer on the weight 
coefficients of the fuzzy rules 𝑤 ∈ 0, 1 , which 
can be used as parameters within the network 
training process; 

• the fourth (non-parametric) layer consists of a 
single adder neuron that calculates the sum of the 
weighted conditional probabilities 𝑃 𝑒|𝐻 , 𝑘 = 1, … , 𝐾, given from the third layer; 

• the fifth (non-parametric) layer consists of 
neurons that perform the division operation in 
accordance with the equation (1) to obtain 
posterior Bayesian probability distribution 𝑃 𝐻 |𝑒 ,  𝑘 = 1, … , 𝐾, on the set of hypotheses 
that the output LV has some assigned value from 
its term-set; 

• the sixth (parametric) layer consists of neurons 
each of that multiplies the probability 𝑃 𝐻 |𝑒 , 𝑘 = 1, … , 𝐾  on the corresponding characteristic 
value 𝑦  of the output LV term. To calculate the 
characteristic value, a convex combination of two 
boundary points 𝑦  and 𝑦  of the 
corresponding interval of the output variable scale 
is applied. The combination coefficient   0, 1  
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defines the shift of the characteristic value of the 
term within the interval. Parameters 𝑦 , 𝑦  
and   are the network settings, the use of which 
is shown in the example in paragraph 3; 

• the seventh (non-parametric) layer consists of a 
neuron-adder that generates the final value of the 
output variable 𝑦 = 𝑓 𝑥 , … , 𝑥  in accordance 
with the equation (2). 

3 EXAMPLE OF SOLVING THE 
PROBLEM AND SETTING UP 
THE NEURO-FUZZY 
NETWORK 

As an explanatory example, we use the well-known 
demonstration problem “Dinner for Two”, which, 
despite the simplicity of the solution, completely 
allows the authors to show the possibilities of using a 
neuro-fuzzy network based on the BLP model as a 
universal approximator of continuous functional 
dependence based on training. 

Let it be necessary to develop an expert system to 
determine the tips amount to be left to the waiter of the 
establishment, depending on the level of service and 
the ordered dishes cooking quality. The visitor 
estimates the service and food quality on a 10-point 
scale, and the amount of tips paid – as a percentage 
(from 0 to 25% of the cost of dinner). This fuzzy 
model is included in the MATLAB demo examples 
(https://www.mathworks.com/help/fuzzy/fuzzy-
inference-process.html), but in this paper it is 
presented in the edition used by the authors earlier in 
(Kozhomberdieva, 2019; Kozhomberdieva and 
Burakov, 2019; Kozhomberdieva and Burakov, 
2020). 

In the fuzzy inference system, the corresponding 
LVs for the estimated indicators Service and Food are 
formulated, the membership functions of their terms 
are defined on the indicator scales, and a system of 
fuzzy rules is formed that uses statements about the 
LV values in antecedents and conclusions. Graphs of 
the membership functions of the input LVs are shown 
in Figure 2. 

The scale of the output variable Tip, in accordance 
with the conditions of the problem, is divided into 
three non-overlapping intervals [0, 5], [5, 20], 
[20, 25], corresponding to the linguistic values 
“small”, “average” and “big”, respectively. Note that 
the definition of membership functions for the terms 
of the output LV in a neuro-fuzzy network based on 
the BLP model is not required. 

Figure 2: Membership functions 𝜇 𝑥  of input LV terms. 

The following fuzzy rules are used: 
1) IF Service is “poor” OR Food is “rancid” 

THEN Tip is “small”; 
2) IF Service is “good” THEN Tip is “average”; 
3) IF Service is “excellent” AND Food is 

“delicious” THEN Tip is “big”. 
These rules are firstly presented as BFs, specified 

in the PDNF, and then transformed into a set of PLF. 
Obtained probabilistic functions are used to calculate 
conditional probabilities that estimate the degree to 
which a set of values of input variables 𝑥 , and 𝑥  
(“crisp” evidence) fits the assumptions about the truth 
of Bayesian hypotheses about the value (“small”, 
“average”, or “big”) of the output LV: 𝑃 𝑒|𝐻 = 𝜇 𝑥 𝜇 𝑥 − 𝜇 𝑥 ∙ 𝜇 𝑥 , 𝑃 𝑒|𝐻 = 𝜇 𝑥 , 𝑃 𝑒|𝐻 = 𝜇 𝑥 ∙ 𝜇 𝑥 . 

For example, in the calculations we use the input 
values of the quality of service and food estimates 𝑥 = 𝑥 = 5. Let us set all the fuzzy rules weights 𝑤  
equal to 1, and as the characteristic values of the 
output LV terms, we will take by default the average 
value of the boundary points corresponding to the 
terms of the intervals 𝑦  and 𝑦  on the output 
variable scale. Then, for given membership functions 
(see Fig. 2), the posterior Bayesian probability 
distribution 𝑃 𝐻 |𝑒 , 𝑘 = 1, 2, 3, calculated by the 
equation (1) will be represented by the set of values  0.26, 0.64, 0.10 , and the desired tip size according 
to the equation (2) will be 𝑦 = 11%. 

Let us transform the fuzzy inference system built 
to solve the “Dinner for Two” problem using the BLP 
model into a neuro-fuzzy network, the structure of 
which corresponds to the network structure in  

(2)(x)
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0.5

0 1 2 3   4 5    6   7 8 9  10  x

1
(2)(x) 2

(2)(x)

rancid delicious

Service

Food

Neural Network Interpretation of Bayesian Logical-Probabilistic Fuzzy Inference Model

53



(a) (b)

Figure 3: Surface plot of the output function 𝑦 = 𝑓 𝑥 , 𝑥 . a) – the values of the parameters are presented in Table 1, b) – 
the values of the parameters are presented in Table 2. 

Figure 1. Recall that the network is trained by 
changing the parameters on the parametric layers, and 
specify which parameters are used: 

1. The membership functions 𝜇 𝑥  of the 
input LV terms are trapezoids described by four 
parameters 𝑎 , 𝑏 , 𝑐 , 𝑑 ,  which are the x-
coordinates of the vertices of the trapezoids on the 
membership functions graphs (the triangular 
membership function is considered as a special case 
of the trapezoidal, when 𝑏 =   𝑐 ); 

2. Weight coefficients of fuzzy rules 𝑤 ∈0, 1  (by default they are taken equal to 1); 
3. Boundary points of the intervals 𝑦  and 𝑦  corresponding to the terms of the output LV on 

the output variable scale, as well as the bias 
coefficients of the characteristic value for each term 
  0, 1  (by default they are taken equal to 0.5). 
The characteristic value of the term 𝑦  used in the 
equation (2) is calculated as a convex combination of 
boundary points: 𝑦 = 1 − 𝛼 ∙ 𝑦 𝛼 ∙ 𝑦 . (3) 

Table 1: Example 1 of configuring network settings. 

Input LV Service Food
Terms Poor Good Excell. Rancid Delicious
Parameters of the membership functions and their values

aj
(i) 0 1.5 3 0 2

bj
(i) 0 5 8.5 0 9

cj
(i) 1.5 5 10 2 10

dj
(i) 6 8.5 10 6 10

Weights of fuzzy rules 
wk 1 1 1 

Output LV Tip 
Terms Small Average Big

Parameters of terms output LV and their values

yk
start 0 5 20

αk 0.5 0.5 0.5 
yk

end 5 20 25
y = f(5, 5) = 11% 

 
To demonstrate the possibilities of parameters 

setting up a neuro-fuzzy network based on the BLP 
model, Table 1 shows the values of the parameters 
and the result of calculating the value of the output 
function 𝑦 = 𝑓 𝑥 , 𝑥  for the example considered 
above, and Table 2 – for the example with changed 
network parameters. 

Table 2: Example 2 of configuring network settings. 

Input LV Service Food
Terms Poor Good Excell. Rancid Delicious
Parameters of the membership functions and their values

aj
(i) 0 1 7 0 2

bj
(i) 0 4 9 0 9

cj
(i) 1 4 10 5 10

dj
(i) 4 9 10 9 10

Weights of fuzzy rules 
wk 0.75 1 0.5 

Output LV Tip 
Terms Small Average Big

Parameters of terms output LV and their values 
yk

start 0 5 20
αk 0 0.5 1 

yk
end 5 20 25

y = f(5, 5) = 6.5% 
 
Figures 3.a and 3.b show plots of the resulting 

surfaces, which differ markedly from each other. 
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4 CONCLUSIONS 

Numerous examples of the use of neuro-fuzzy 
networks in automatic control and regulation systems 
published in open sources testify to the relevance and 
intensity of modern research and development in this 
field. 

The paper presents the structure of a neuro-fuzzy 
network based on the BLP model of fuzzy inference, 
previously proposed, researched and software 
implemented by the authors. An example shows 
which network parameters can be used to train it. 

According to the authors, the proposed seven-
layer network structure with three parametric layers 
is comparable to the well-known Takagi–Sugeno–
Kang and Wang–Mendel neuro-fuzzy networks. 

When choosing an appropriate fuzzy rule base at 
the stage of network building and then training it, a 
network based on a BLP model can be used as a 
universal approximator of a continuous functional 
dependence. The authors plan to continue research in 
this direction. 
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