
A Class Balancing Methods Comparison in Software Requirement

Classification Using a Support Vector Machine

Fachrul Pralienka Bani Muhamad, Esti Mulyani, Munengsih Sari Bunga

and Achmad Farhan Mushafa
Politeknik Negeri Indramayu, Indonesia

Keywords: Class Balancing, Classification, Feature Extraction, Pure Dataset, Software Requirements.

Abstract: Miss analysis of software requirements in the development stage whether functional or non-functional leads

to a significant impact on the quality derivation and cost & time escalation. Especially in agile approaches,

such as scrum, some non-functional requirements often go unnoticed, because of a high focus on business

functionality that tends to be prioritized. Previous research has been carried out in classifying software

requirements, especially non-functional requirements using the PROMISE dataset with the Bag of Words

(BoW) feature extraction and the Support Vector Machine (SVM) algorithm. The results obtained from the

combination of these methods provide a better accuracy value than the combination of feature extraction and

other classification algorithms. However, the software requirement dataset tends to be imbalanced considering

that there are several non-functional requirements types, so the data number of each class might differ. In

another study, it was stated that the imbalance of datasets could give not optimal classification results, so it is

necessary to balance the data. This research proposes class balancing on the dataset after the feature extraction

is carried out. The output of the balanced class is used for the classification process. The PURE dataset is used

in this research considering that the dataset is open to researchers. After experimenting with the combination

of BoW feature extraction, as well as class balancing methods (i.e. SMOTE, Borderline SMOTE, and SVM

SMOTE), and classified using the SVM algorithm, it was found that BoW with SVM SMOTE produces the

best value average with an accuracy of 78.7%, precision of 80.2%, recall of 78.7%, and F1-Score of 78.9. It

has higher results than software classification without a class balancing in enhancement average value

accuracy of 0.03%, precision of 0.05%, recall of 0.03%, and F1-Score of 0.04%.

1 INTRODUCTION

Software development requires a comprehensive
development process starting from the analysis of
Software Requirements and selecting the technology
to be used/developed to test the quality of the
Software that has been created. According to H. F.
Hofmann and F. Lehners (Aminu Umar, 2020) of the
many processes in software development, software
requirements specifications are very important which
will determine the quality of the software itself.
Software requirements are divided into two types,
namely Functional requirements (FR) and Non-
Functional requirements (NFR). FR is the main
feature or process that the software will carry out.
Meanwhile, NFR contains requirements that focus on
the limitations or behavior of the software. NFR is
based on the ISO 25010:2011 standard which consist
of several categories including Security, Usability,

Reliability, Portability, Performance, Compatibility,
and Maintainability (Mulyawan et al., 2021).

Unlike the traditional approach, which relies on
detailed processes and comprehensive planning,
determining software requirements with the Agile
approach can still be done by a Product Owner, but
given the relatively large and changeable Product
Backlog, and reduced levels of human concentration
and focus when performing If the work is repetitive
then more effort is needed to determine the software
requirements. Therefore, we need a model that can
provide information regarding the label description of
software requirements, both functional and non-
functional requirements. Our research is driven by the
following research questions (RQ):
RQ1: What is the effect of class balancing methods

in software requirements classification using a
Support Vector Machine?

366
Muhamad, F., Mulyani, E., Bunga, M. and Mushafa, A.
A Class Balancing Methods Comparison in Software Requirement Classification Using a Support Vector Machine.
DOI: 10.5220/0011803100003575
In Proceedings of the 5th International Conference on Applied Science and Technology on Engineering Science (iCAST-ES 2022), pages 366-369
ISBN: 978-989-758-619-4; ISSN: 2975-8246
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

RQ2: Which of the class balancing method give the
best result?

RQ3: How far does the class balancing method
enhance the classification result without class
balancing?

The rest of the paper is organized as follows:
Section 2 discusses related work. The section
introduces the classification techniques used in this
work in detail. Section 4 presents the experiment
results and discusses their implications. In Section 5
We conclude this work.

2 RELATED WORK

In this Section we present some papers related to the
analysis of requirements, including survey,
classification and summarization of requirements.

Research by Ariful Haque, Abdur Rahman, and
Saeed Siddik in 2019 entitled "Non-Functional
Requirements Classification with Feature Extraction
and Machine Learning: An Empirical Study". This
study tries to automate the classification of Non-
Functional requirements with four Feature
Extractions and seven Machine Learning algorithms.
This study uses the PROMISE dataset (Haque et al.,
2019). The result of the research is that the Support
Vector Machine algorithm with Feature Extraction
Bag of Word produces higher Precision, Recall, and
F1-Score values than other algorithms and Feature
Extraction.

Research by Zijad Kurtanovic and Walid Maalej's
in 2017 entitled "Automatically Classifying
Functional and Non-Functional Needs Using Guided
Machine Learning". This study tries to calculate the
level of automation of functional and non-functional
requirements classification using Machine Learning
Support Vector Machine and Lexical Features
algorithms (Kurtanovic & Maalej, 2017). The result
of this research is that the Support Vector Machine
algorithm is successful in classifying Functional and
Non-Functional requirements by getting the Precision
and Recall values reaching ~92%.

Research by S Tiun, U A Mokhtar, S H Bakar,
and S Saad in 2020 entitled "Classification of
functional and non-functional requirements in
software requirements using Word2vec and fast
Text". This study tries to automate the classification
of Non-Functional requirements with two
combinations of Feature Extraction and four Machine
Learning algorithms. This study uses the RE17
dataset (Tiun et al., 2020). The result of this research
is that the performance of Word2vec Feature
Extraction and fast text classification is not much

better than other machine Learning algorithms such
as Logistic Regression combined with Bag of Word
but better than Support Vector Machine combined
with Bag of Word.

3 METHOD

This paper proposed a technique for finding the best
combination of balancing class and machine learning
approaches to software requirement classification.
We preprocessed the dataset by manually labeling
each software requirement statement. First, we
converted the original NFR dataset to a CSV file. The
whole process of this research is divided into the
following five steps and depicted in Figure 1.

3.1 Pure Dataset

The data collection in this paper uses a public dataset,
and is used in general in research where the
classification of software requirements for the dataset
in question is the PURE (Public Requirement)
dataset.

Table 1: Numbers and Percentages of Manually Labeled

User Review Sentences in the Dataset.

Category Statement Proportion

Usability 102 12%

Reliability 53 6%

Security 106 12%

Performance 109 12%

Maintainability 35 4%

Portability 41 5%

Functional

Requirement
439 50%

Total 885 100%

3.2 Method Details

There are 5 (five) steps in this study to produce the

desired outcome i.e., Preprocessing, Feature

Extraction, Class Balancing, Processing, and

Evaluation.

A Class Balancing Methods Comparison in Software Requirement Classification Using a Support Vector Machine

367

Figure 1: The Software Requirement Classification

Process.

a. Step 1: Preprocessing

Before starting the feature extraction process, the
word to be used must be cleaned first through the text
preprocessing process, preprocessing was used in this
study using library Natural Language Toolkit
(NLTK), as shown in Figure 1:

• Remove Punctuation
A process to clean sentences from punctuation
marks or perform replacements on the target
string based on the specified pattern. In the
Remove Punctuation process used is to remove
punctuation marks and numbers.

• Case Folding
A process to changing capital letters to lowercase
or regular letters (Rahimi et al., 2020).

• Tokenization
A process of separating input data into tokens
(Binkhonain & Zhao, 2019).

• StopWords
A process of removing auxiliary verbs,
prepositions, pronouns, adverbs, and conjunctions
in sentences (Binkhonain & Zhao, 2019) like the,
be, to, in, is, etc.

• Stemming
A process of reducing inflected (or sometimes
derived) words to their word stem, base or root

form (Binkhonain & Zhao, 2019). For example,
the words ‘goes’, ’gone’, and ‘going’ will map to
‘go’.

• Joining Text
In this process the words that become tokens are
combined into 1 sentence.

b. Step 2: Feature Extraction

This step converts the pre-processed re- requirements
document into a format that can be understood by the
machine learning model (Ramos et al., 2018). In this
step, the document is represented as a vector, where
the value of this word is weighted through different
techniques, such as binary methods. Techniques in
vectorization such as the following:

• Bag of Words:
This vector space model represents unstructured
text as a numeric vector, where it establishes the
presence of feature words from all the words of an
instance. In the process, the software
requirements are converted into numerical vectors
in such a way that each document is represented
by 1 vector (row) (Haque et al., 2019).

c. Step 3: Class Balancing

On such data learning classification methods
generally perform poorly because the classifier often
learns better than the majority class. The reason for
this is that learning classifiers attempt to reduce
global quantities such as the error rate, and do not take
the data distribution into consideration. As a result,
samples from the dominant class are well-classified
whereas samples from the minority class tend to be
misclassified (Poolsawad et al., 2014). This paper
uses one strategy of sampling data. SMOTE generates
synthetic examples for the minority class; where
SMOTE offers three additional options to generate
samples. Those methods focus on samples near the
border of the optimal decision function and will
generate samples in the opposite direction of the
nearest neighbors class.

d. Step 4: Processing

Three classification techniques of class balancing i.e.
SMOTE, SVM SMOTE, and BORDERLINE
SMOTE has been used in the above step to balance
class, which act as the input of machine learning
algorithms of training classifiers. The
experimentation has been conducted using SVM
machine learning algorithms. The various balancing
class was applied for requirements classification to
compare the performance.

iCAST-ES 2022 - International Conference on Applied Science and Technology on Engineering Science

368

e. Step 5: Evaluation

Each of the classifiers trained in the previous section
will output for a given requirement whether it belongs
to a category or not. For example, in order to classify
requirements according to category performance, the
framework will return the list of requirements for
which it received a fit with the answer. Also, the other
documents will be classified accordingly. The
combination of four textual feature extraction
methods and SVM machine learning algorithms have
been applied in this software requirements
classification framework. The textual data has been
converted into vector representations to be fed as
input in machine learning algorithms.

4 RESULT

In this paper, the evaluation of the machine learning
model focuses on the values of the parameters that
will be used, including the average score of 2 fold of
Accuracy, F1-Score, Precision and Recall.

Table 2: Comparison averaage score all method.

METHOD

AVERAGE SCORE

A
C

C
U

R

A
C

Y

F
1

-

S
C

O
R

E

P
R

E
C

IS
I

O
N

R
E

C
A

L
L

SMOTE 0.70 0.70 0.73 0.70

SVM SMOTE 0.78 0.78 0.80 0.78

BORDERLINE

SMOTE
0.72 0.73 0.75 0.72

Without Class

Balancing
0.75 0.74 0.75 0.75

5 CONCLUSION

It can be concluded that the class balancing method
can enhance the SVM method in software
requirements classification accuracy of 0.03%,
precision of 0.05%, recall of 0.03%, and F1-Score
0.04%. Class balancing SVM SMOTE gives the best
result among the rest of them.

REFERENCES

Aminu Umar, M. (2020). Automated Requirements

Engineering Framework for Agile Development.

ICSEA 2020: The Fifteenth International Conference

on Software Engineering Advances, c, 147–150.

Binkhonain, M., & Zhao, L. (2019). A review of machine

learning algorithms for identification and classification

of non-functional requirements. In Expert Systems with

Applications: X (Vol. 1). Elsevier Ltd.

https://doi.org/10.1016/j.eswax.2019.100001

Haque, A., Rahman, A., & Siddik, S. (2019). Non-

Functional Requirements Classification with Feature

Extraction and Machine Learning : An Empirical

Study. 2019 1st International Conference on Advances

in Science, Engineering and Robotics Technology

(ICASERT), 2019(Icasert), 1–5.

Kurtanovic, Z., & Maalej, W. (2017). Automatically

Classifying Functional and Non-functional

Requirements Using Supervised Machine Learning.

Proceedings - 2017 IEEE 25th International

Requirements Engineering Conference, RE 2017, 490–

495. https://doi.org/10.1109/RE.2017.82

Mulyawan, M. D., Kumara, I. N. S., Bagus, I., Swamardika,

A., & Saputra, K. O. (2021). Kualitas Sistem Informasi

Berdasarkan ISO / IEC 25010 : 20(1).

Poolsawad, N., Kambhampati, C., & Cleland, J. G. F.

(2014). Balancing class for performance of

classification with a clinical dataset. Lecture Notes in

Engineering and Computer Science, 1(July 2014), 237–

242.

Rahimi, N., Eassa, F., & Elrefaei, L. (2020). SS symmetry

An Ensemble Machine Learning Technique for. Ml, 1–

25.

Ramos, F., Costa, A., Perkusich, M., Almeida, H., &

Perkusich, A. (2018). A non-functional requirements

recommendation system for scrum-based projects.

Proceedings of the International Conference on

Software Engineering and Knowledge Engineering,

SEKE, 2018-July(July), 149–154.

https://doi.org/10.18293/SEKE2018-107

Tiun, S., Mokhtar, U. A., Bakar, S. H., & Saad, S. (2020).

Classification of functional and non-functional

requirement in software requirement using Word2vec

and fast Text. Journal of Physics: Conference Series,

1529(4). https://doi.org/10.1088/1742-

6596/1529/4/042077

A Class Balancing Methods Comparison in Software Requirement Classification Using a Support Vector Machine

369

