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Abstract: The purpose of accelerated life test is to promote more failure units of test products in a shorter time, so as to 
predict the reliability of products under normal conditions based on the failure data collected under accelerated 
conditions. In view of the right censored data, some statistical optimality is considered. In the framework of 
generalized linear model, the semi-parametric Cox proportional hazard model is used to obtain the accelerated 
life test scheme under the U- and D-optimal criteria. From the perspective of prediction variance, the fitting 
effect is best when the shape parameter 𝛼 is 1.5 in Weibull distribution. The uncertainty of model parameters 
is evaluated by Monte Carlo technique to verify the feasibility of the test scheme. 

1 INTRODUCTION 

A large number of products in the market have a long 
expected life. In order to ensure the stable perfor-
mance of product life during the service period, it is 
unrealistic to completely observe the product life due 
to limiting factors. Therefore, accelerated life test 
(ALT) is introduced. ALT ensures that more products 
failure data can be obtained in a shorter time, and the 
reliability of products can be inferred by establishing 
statistical models. However, when faced with irregu-
lar experimental design areas, the regular design loses 
some statistical "optimality" and needs to be "tai-
lored" design. 

Censored data results from inaccurate observa-
tions of failure times. The definition of right censored 
data is that the starting time of the test is known, but 
the test fails to fail at the end of the test, thus, the sur-
vival time is longer than the observed time. There is 
a huge literature on ALTs. Song Wu et al (Wu, Lu, 
Li, 2021) briefly described the relevant theoretical 
knowledge of ALT. Under the assumption of lognor-
mal distribution, Xiaopei Li et al (Li, Li, Liang, 2021) 
proposed the relationship between single stress varia-
ble and product life. Yi Dai et al (Dai, Liu, 2020) ap-
plied the maximum likelihood theory to design the 
optimal test under the condition that the product life 
obeys the minimum extreme value distribution. The 
literature described above are performed under single 
stress conditions. In fact, most product life is affected 

by multiple stress variables. Xu et al (Xu, Fei, 2007) 
discussed the dual-stress variables with no interaction 
between. Park and Yum (Park, Yum, 1996) assumed 
the interaction between stress factors and verified it. 
The process of obtaining the information matrix is 
particularly complex, thus, focusing on the hazard 
rate and under the assumption of proportional hazard 
model (PH), the ALT scheme is transformed into an 
optimization problem under the generalized linear 
model (GLM). For different statistical optimality, 
Guo and Pan (Guo and Pan, 2007) used GLM method 
to obtain the plan under D-criterion. Juan Wang 
(Wang, Ma, Wang, 2017) discussed the ALT scheme 
with 2 stress factors under the I-optimal criterion for 
interval censored data. In addition, due to the uncer-
tainty of model parameters, literature (Dror, Stein-
berg, 2006; Ozol-Godfrey, Anderson-Cook, Robin-
son, 2008) has discussed the wrong designation of rel-
evant parameters. 

2 ACCELERATED LIFE TEST 
MODEL 

The purpose of using D-optimal is to maximize the 
determinant of the expected information matrix. The 
goal of the U-optimal is to minimize the overall vari-
ance of the model parameter estimator. Specifically, 
the D-optimal criterion is expressed as: 
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𝜉∗ ≔ 𝑎𝑟𝑔𝑚𝑎𝑥క |𝑿ሺ𝜉ሻᇱ𝑾𝑿(𝜉)| 
U-optimal criterion: 𝜉∗: = 𝑎𝑟𝑔𝑚𝑖𝑛క 𝑥௨௦௘ᇱ ⋅ (𝑿(𝜉)ᇱ𝑾𝑿(𝜉))ିଵ ⋅ 𝑥௨௦௘ 𝑥௨௦௘ represents the stress under the use condition, 𝑿(𝜉) represents the model matrix of n×p, n and p rep-

resent testing numbers and model parameters, respec-
tively, and W is the weight matrix related to the vari-
ance of the predicted life. 

Under the assumption of PH, the failure function 
can be expressed as: 𝑓(𝑡) = ℎ(𝑡)𝑅(𝑡) = ℎ଴(𝑡)𝑒𝒙ᇲ𝜷(𝑅଴(𝑡))௘𝒙ᇲ𝜷 ℎ଴(𝑡) is underlying hazard function, β is the vec-
tor of regression coefficients, and 𝜂 = 𝒙ᇱ𝜷 is the lin-
ear prediction of the model. 𝑅଴(𝑡) is reliability func-
tion, the relationship with the cumulative hazard 
function is 𝑅(𝑡) = 𝑒𝑥𝑝 (−𝐻(𝑡)). For the right cen-
sored failure time dataset, (𝑡ଵ, 𝑟ଵ ),…(𝑡௜ , 𝑟௜ ),…(𝑡௡, 𝑟௡)，i=1, 2, 3, …n, 𝑡௜ is the failure or survival time 
of the ith data, 𝑟௜  is indicator variable of censored 
time. If the ith test unit fails, 𝑟௜ takes the value 1; oth-
erwise, it is 0. After simplification, the likelihood 
function can be expressed as: 

𝐿 = ෑ(𝑓(𝑡௜))௥೔(𝑅(𝑡௜))ଵି௥೔ = ෑ(ℎ(𝑡௜))௥೔𝑅(𝑡௜)௡
௜ୀଵ

௡
௜ୀଵ  

take the logarithm of both sides: 

𝑙𝑛 𝐿 = ෍ሾ𝑟௜ 𝑙𝑛 ℎ(𝑡௜) + 𝑙𝑛 𝑅(𝑡௜)ሿ௡
௜ୀଵ= ෍[𝑟௜(𝑙𝑛 ℎ଴ (𝑡௜) + 𝒙௜ᇱ𝜷)௡

௜ୀଵ+ 𝑒𝒙ᇲ𝜷 𝑙𝑛 𝑅଴(𝑡௜)] 
let 𝑢௜ = 𝐻(𝑡௜ ,𝒙௜) = 𝑒𝑥𝑝(𝒙௜ᇱ𝜷)(− ln𝑅଴(𝑡௜)), this is: 

𝑙𝑛 𝐿 = ෍[𝑟௜ 𝑙𝑛(1𝑡௜) + (𝑟௜ 𝑙𝑛 𝑢௜ − 𝑢௜)]௡
௜ୀଵ  

The form 𝑟௜ 𝑙𝑛 𝑢௜ − 𝑢௜ can be regarded as the log-
likelihood function form of Poisson distribution with 
mean 𝑢௜. So, in the GLM: indicator variable 𝑟௜ can 
be regarded as poisson distribution with mean 𝑢௜, the 
connection function is the logarithmic function, 𝑙𝑛 𝑢௜ = 𝜂௜ + compensation term, the compensation 
term is 𝑙𝑛 𝐻଴(𝑡௜). 

In the GLM described above, using the elements 𝑢௜ , 𝑖 = 1, …𝑛  construct weight matrix, 𝑾 =𝑑𝑖𝑎𝑔{𝑢ଵ,𝑢ଶ, . . . ,𝑢௡}, then the model estimation pa-
rameter 𝜷෡ is: 

𝑉𝑎𝑟(𝜷෡) = (𝑿(𝜉)′𝑾𝑿(𝜉))ିଵ 
Among them, (𝑿(𝜉)′𝑾𝑿(𝜉))ିଵ is the expected 

Fisher information matrix, and the number of ele-
ments in matrix X is n×(p+1): 

𝑿 = ൦1 𝑥ଵ,ଵ ⋯1 𝑥ଵ,ଶ ⋯⋮ ⋮ ⋱ 𝑥௣,ଵ𝑥௣,ଶ⋮1 𝑥ଵ,௡ ⋯ 𝑥௣,௡൪ 𝑢௜ in the weight matrix is a function of the failure 
time 𝑡௜. Therefore, it is more appropriate to express 
the weight matrix by the expected value of 𝑢௜: 𝑾 =𝑑𝑖𝑎𝑔{𝐸(𝑢)}: 𝐸(𝑢௜) = 𝐻(𝑡௜ ,𝒙௜) = 𝑒𝑥𝑝(𝛽଴ + 𝒙௜ᇱ𝜷) ∙ 𝐸(𝑡௜)= 𝜆଴𝑒𝒙ᇲ𝜷 ∙ 𝐸(𝑡௜) 𝜆଴ is the failure rate, 𝛽଴ = 𝑙𝑛𝜆଴, which is the in-
tercept term of linear prediction. Explicitly censoring 
time, the expectation function is 𝐸(𝑡௜) = [1 −𝑒ିு(௧ೝ,𝒙೔)] ଵఒబ௘𝒙೔ᇲ𝜷. 

Finally get the expected value: 𝐸(𝑢௜) = [1 − 𝑒ିு(௧ೝ,𝒙೔)] 
3 THE EXAMPLE ANALYSIS 

3.1 The Scheme Affected by 
Temperature and Humidity 

Consider tests related to metal oxide semiconductors 
(Zhu, Elsayed, 2011). Assuming that the lifetime of 
the semiconductor is affected by two stress variables, 
temperature and humidity. 100 samples is planned to 
be tested, and the test is set to be censored at 50 hours. 
It is assumed that lifetime obeys the Weibull distribu-
tion, and the cumulative hazard function is 𝐻(𝑡,𝒙) =𝜆଴𝑡ఈ𝑒𝒙ᇲ𝜷, 𝛼 is the shape parameter. Various factors 
are considered in this paper, and 𝛼 = 1.5 is taken as 
the value. In the test, under normal conditions, the 
temperature and humidity range is (25℃, 25%)-
(45℃, 40%). In the ALT, set temperature range of 
(60℃-110℃), humidity range is (60%-90%), the 
temperature of natural stress level is expressed as 𝑆ଵ = 11605/𝑇 , T is an unit with Kelvin, natural 
stress level of relative humidity is expressed as 𝑆ଶ =ln ℎ, h is relative humidity. To normalize the pro-
cessing, the following linear transformation of tem-

perature and humidity is used: 𝑥ଵ = ௌభିௌభಹௌభಽିௌభಹ , 𝑥ଶ =ௌమିௌమಹௌమಽିௌమಹ, 𝑆ு(0, 0) said the highest stress level, 𝑆௅(1, 1) 
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minimum levels of stress, 𝑥ଵ and 𝑥ଶ are the coding 
stress variables corresponding to 𝑆ଵ and 𝑆ଶ. In this 
paper, the interaction effect of temperature and hu-
midity is considered and the previous empirical for-
mula is followed: 𝜂 = −4.086𝑥ଵ − 1.476𝑥ଶ +0.01𝑥ଵ𝑥ଶ. 

Figure 1 and Figure 2 show the test protocol under 
U- and D-criterion and the contour plots of predicted 
variance in the use area. The process of calculating 
100 test points is more complicated, using a clustering 
algorithm to aggregate the points into four different 
stress level combinations. Small square area of a 
graphic after the corresponding standardized test area, 
the origin (0, 0) corresponding to (110℃, 90%), point 
(1, 0)-(60 ℃, 90%), (0, 1)-(110 ℃, 60%), (1, 1)-(60 
℃, 60%). The circle diameter corresponds to the as-
signed sample size under the test conditions, and the 
contour lines outline the positions where the predicted 
variance are equal. Comparing the two figures, it can 
be seen that the predicted variance under the U-crite-
rion scheme is smaller than that under the D-criterion; 
It can be seen from Figure 1 that under the U-crite-
rion, the number of test samples assigned to point (1, 
1) is the largest. The reason may be that the low stress 
level is closer to the normal operating conditions, and 
more test samples have been censored when they do 
not reach the high stress level. According to Figure 2, 
the number of samples distributed around each stress 
point under the D-criterion is roughly balanced. 

 
Figure 1: U-optimal criterion design plot. 

The graphical evaluation tool further compares 
the test protocols under the U- and the D-criterion. In 
the FUS (Fraction of Design Space) plot, the pre-
dicted variance of the ordinate increases with the in-
crease of the ratio of test areas, and the vertical red 
line represents the mean. The results show that the 
predicted variance of D-criterion is larger than that of 
U-criterion. In the VDUS (Variance Dispersion of 
Use Space) diagram, ave, min and max respectively 

represent the mean, minimum and maximum value. It 
can be clearly seen that the predicted variance value 
under the D-criterion test scheme is larger. 

 
Figure 2: D-optimal criterion design plot. 

 
Figure 3: FDS design plot. 

 
Figure 4: VDUS design plot. 

The prediction results are expected to be accurate 
from the perspective of predicted variance, and the 
shape parameter 𝛼 in Weibull distribution is an inde-
terminate variable. The above results are obtained un-
der the assumption that 𝛼 = 1.5. In order to show the 
rationality of the method, the case of 𝛼 taking other 
values is further discussed. When 𝛼 = 1 , the pre-
dicted variance under D- and U-criteria are 4.33 and 
3.58, respectively, and when 𝛼 = 2 , the predicted 
variance are 2.14 and 1.92. The experimental results 
show that the predicted variance of the U-criterion is 
always smaller than that of the D-criterion for differ-
ent values of 𝛼. In addition, in terms of sample num, 
when the value of 𝛼 changes, the sample num under 
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D-criterion does not change significantly, on the con-
trary, the sample num under U-criterion changes sig-
nificantly, especially the num of point (1, 1) decreases 
with the increase of the value of 𝛼. The results show 
that U-criterion has a more obvious influence on the 
value change. 

3.2 Model to Evaluate 

The coefficients specified are taken from previous ex-
perimental results; therefore, ALT protocol with as-
sumed model coefficients needs to be evaluated. The 
previous scheme assumes that the real value of stress 
coefficient is not more than ±20% away from the set 
value. In this paper, Monte Carlo technology is used 
to analyze the uncertainty of the model coefficient, 
calculate the fluctuation range of the error, and verify 
the robustness in reverse. 

The Monte Carlo technique uses repeated random 
sampling method to obtain numerical results, which 
is beneficial to the processing of complex tests. First, 
specify the right censored data type, input the sample 
size, expectation matrix, linear predictor coefficient 
and other relevant variables; Secondly, the GLM was 
fitted to obtain the values in the model matrix. Fi-
nally, Monte Carlo simulation is used to evaluate the 
intercept term, temperature coefficient 𝑥ଵ, humidity 
coefficient 𝑥ଶ , and interaction coefficient 𝑥ଵ𝑥ଶ  in 
the linear predictor given the values of the running 
matrix and the statistical model fitted to the data. The 
expected test result is (0, 0, 0, 0). The actual test re-
sults are as follows: the intercept term change rate is 
19.65%, 𝑥ଵ  is 19.27%, 𝑥ଶ  is 19.95%, 𝑥ଵ𝑥ଶ  is 
19.17%. The test results show that the change rate of 
each coefficient is less than 20%, thus, the error rate 
of the test scheme is acceptable. The coefficients in 
the linear predictor vary within the range, which will 
not affect the operation of the test scheme, and the 
scheme is still robust. 

4 CONCLUSION 

In this paper, we discuss the ALT scheme based on 
optimal criteria in the framework of GLM with right 
censored data. However, the method of parameter es-
timation is based on determining the failure data dis-
tribution, and the parameters are fixed. In fact, in 
many cases, the failure data are limited or non-exist-
ent, which makes it difficult to determine the data dis-
tribution. In this case, the Bayesian method is an op-
tion. In the following research, when the failure data 
are interval censored, Bayesian method is used to ob-
tain the posterior distribution according to the prior 

estimation of parameters, so as to reduce the depend-
ence of model parameters. 
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