
A Comparative Analysis: Spelling Checker Methods for Syntactic 
Ambiguity Detection in Software Requirements Statements Using 

SMART Rules Between TextBlob and CyHunspell 

Esti Mulyani, Fachrul Pralienka Bani Muhamad, Mohammad Yani and Muhamad Alfarizi 
Informatic Engineering, Politeknik Negeri Indramayu, Lohbener, Indramayu, Indonesia 

Keywords: Syntactic Ambiguity Detection, SMART Rules, Software Requirement Statements, Spelling Checkers.  

Abstract: Software requirements tend to be presented by software analysts based on their academic background, 
experience limitation, and structural differences. All those things might cause errors in the software 
requirement creation process. These faults can lead to misinterpretation and even incorrect implementation of 
program code. Structural error is one of the software requirement error types. This type can potentially create 
ambiguity that has many meanings and confuses the reader. In previous studies, SMART rules have been 
proposed to detect ambiguity that may appear or be contained in the software requirements statement. The 
SMART rules refer to several criteria for the order of word categories (POS tags) which are considered to 
have no clear clue or potential to obscure meaning. Before the SMART rule is implemented, it is necessary 
to check the spelling of each word in a sentence to get the correct spelling. There are several methods to 
correct the spelling, i.e., TextBlob and CyHunSpell. In this study, an evaluation of the ambiguity detection 
performance of software requirements statements using SMART rules was carried out by comparing two 
spell-checking methods, TextBlob and CyHunspell. The test scenario in this study was carried out by taking 
twenty-five syntactically ambiguous and unambiguous statements from the PURE dataset. Determination of 
ambiguity of statements in this scenario is annotated manually based on matching SMART rules. The 
experiment demonstrates that CyHunspell has a better performance than TextBlob. 

1 INTRODUCTION 

The Software Requirements Statement is the initial 
stage in the software development process, describing 
the needs needed by customers and software 
developers and how the system should run 
(Nurfauziah, 2017). Software Requirements are also 
needed in the production of Software Requirements 
Specification (SRS) documents. Therefore, the 
statement of software requirements is very important 
in making the SRS document so that the quality of the 
resulting document will provide results that affect the 
software development process in the future. 

In requirements engineering, the process of 
searching and searching for requirements is a 
complicated thing to do. There is always a 
misinterpretation of needs between customers and 
developers (Enda, 2018). Errors that often arise are 
the use of words that are ambiguous, unclear, 
inconsistent, spelling errors, and incompleteness. 
This can lead to misunderstandings or interpretations 

that will be difficult for those involved in the 
development process. If ambiguous statements about 
software requirements are not detected and corrected 
immediately in the early stages of development, 
misinterpretation will cause problems in the future. 
Therefore, it is necessary to deal with ambiguity 
issues to avoid negative impacts such as repair costs, 
lower software quality, delayed software release 
times, and software failure can be avoided. Therefore, 
a method is needed to identify the use of potentially 
ambiguous words in the statement of software 
requirements. There exist some types of ambiguity in 
software requirement statements, namely, syntactic, 
lexical, and pragmatic ambiguity. However, this 
paper only focuses on discussing the proposed 
approaches used to detect sintactic ambiguity in the 
statement of software requirements. To achieve this 
goal, a review of previous research has been carried 
out which has discussed several methods to detect 
ambiguity in software requirements statements. Note 
that, in the experiment section, we only use English 
as the input of both TextBlob and CyHunspell. 

120
Mulyani, E., Muhamad, F., Yani, M. and Alfarizi, M.
A Comparative Analysis: Spelling Checker Methods for Syntactic Ambiguity Detection in Software Requirements Statements Using SMART Rules Between TextBlob and CyHunspell.
DOI: 10.5220/0011723600003575
In Proceedings of the 5th International Conference on Applied Science and Technology on Engineering Science (iCAST-ES 2022), pages 120-126
ISBN: 978-989-758-619-4; ISSN: 2975-8246
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



The rest of this paper is structured as follows. In 
Section 1, we introduce the issue of ambiguity in 
software requirement statements. In Section 2, we 
brief related articles to this topic. Section 3 presents 
the result and analysis of our experiment on 
CyHunspell and TextBlob. Finally, Section 4 
concludes the result of experiments. 

2 LITERATURE REVIEW 

2.1 Related Reviews 

Many studies have been conducted regarding the 
ambiguity in software requirements. To detect 
ambiguity in the statement of software requirements, 
a literature study was carried out as a tool for applying 
research methods. The following is a literature study 
on the approach used to detect ambiguous or 
ambiguous requirements statements in software 
requirements specification documents to provide 
recommendations for improving grammar in English: 

1. This research was conducted by Erik Kamsties, 
Daniel M. Berry, and Barbara Paech in 2001 
entitled “Detecting Ambiguities in Requirements 
Documents Using Inspections”. The Study uses 
an approach with inspections carried out manually 
in detecting ambiguity. In this study, the approach 
used is still ineffective because the needs analysis 
is done manually and relies heavily on 
subjectivity and the ability of an expert to analyze 
ambiguity. 

2. Research by Hussain, H. M in 2007 entitled 
"Using text classification to automate ambiguity 
detection in SRS documents". The study attempts 
to detect ambiguity by utilizing a specially created 
repository for listing unwanted words. Focusing 
on detecting ambiguity that is done automatically 
but has drawbacks because the repository used is 
still static and the scope of the problem is also 
limited, this will certainly affect the performance 
of the method performance. 

2.2 Software Requirements 

Software requirements are specific attributes that are 
specifications of functional requirements and non-
functional requirements of a software system (Enda, 
2018). Based on this statement, software 
requirements are conditions, criteria, requirements, or 
capabilities that must be possessed by software to 
meet what is required or desired by the user. Software 
that is good and follows the needs of users is very 

dependent on the success of conducting a needs 
analysis. When identifying software requirements, 
the information obtained has not been structured. The 
user will express what he needs in everyday language 
that is used by the user. 

2.3 SRS Documents 

Software Requirements Statements that are 
functional and non-functional are written in the 
software requirements specification or SRS 
documents. The SRS document describes a set of 
services required by users and used by system 
developers. SRS can be written in several methods, 
namely natural language, structured natural language, 
semi-formal language, and formal language. Natural 
language is easier for stakeholders to understand. 
Natural language is more advantageous because it is 
more flexible to accommodate the description of 
changing needs. However, it also has a weakness, 
which is easy to confuse and difficult to analyze 
automatically (Nurfauziah, 2016).  

2.4 Ambiguity of Software 
Requirements Statement 

The chain from a human error to fault to failure is not 
unbroken and inevitable. Generally, developers either 
detect and correct faults without investigating the 
underlying errors or use software testing to reveal 
system failures that they then repair (Anu., et al., 
2018). SRS Documents must be of good quality to 
avoid possible damage or failure of the software in 
the planning and testing stages. Software quality at 
the requirements engineering stage (Carlson, et al., 
2014). There are several types of ambiguity in 
software requirements, lexical ambiguity, syntactic 
ambiguity, semantic ambiguity, pragmatic ambiguity, 
and generality. 

2.5 Identification Based on SMART 
Rules 

Software requirements can be said to be of quality if 
they are Specific, Measurable, Attainable, Realisable, 
and Traceable (SMART). This SMART rule is 
focused on a Specific pattern of rules, namely the 
recommended guideline is "Avoid ambiguities such 
as some, several, many" (Mannion et al., 1995). 
Based on the statement above, the SMART rules that 
are built are: 

1. If there is some/JJ + NNS pattern, then the pattern 
is categorized as ambiguous. 

A Comparative Analysis: Spelling Checker Methods for Syntactic Ambiguity Detection in Software Requirements Statements Using
SMART Rules Between TextBlob and CyHunspell

121



2. If there is several/JJ + NNS patterns, then the 
pattern is categorized as ambiguous. 

3. If there is many/JJ + NNS patterns, then the 
pattern is categorized as ambiguous. 

This method works based on a set of rules in the 
form of a phrase pattern for each part of the word or 
POS (Part of Speech) along with ambiguous words. 
The advantage of this method is that the pattern 
matching technique used can be faster and more 
efficient in detecting ambiguous words by comparing 
the patterns of the rules that have been made.  

2.6 Text Preprocessing 

Text Preprocessing is an important task and step in 
Text Mining, Natural language Processing (NLP), 
and Information Retrieval (IR) (Hermawan and 
Ismiati, 2020). In the field of text mining, data 
preprocessing is used to extract important results 
from unstructured data. Meanwhile, information 
retrieval is used to decide which documents in the 
collection should be retrieved to meet the user's need 
for information.  

Familiar text processing such as tokenization, 
case folding, stopword removal, and stemming 
(Rahimi., et al., 2020). Below is an explanation of 
each stage of text preprocessing. 

● Remove Punctuation 
Remove punctuation is a step of text preprocessing 
that is used to remove unnecessary punctuation 
marks or symbols. Punctuation marks or symbols 
are removed because they do not affect the text 
preprocessing process. The decision of whether to 
include or remove punctuation is the first 
preprocessing choice (Denny and Spirling, 2018). 

● Case Folding 
The initial stage of text preprocessing is the case 
folding stage. Case folding is a method for turning 
all the letters in a dataset into capital or all small 
(Mustaqim., et al., 2020) 

● Tokenization 
The tokenization stage is the stage of separating 
or cutting data in the form of phrases, clauses, or 
sentences into words. This process segments large 
texts into sentences that are then tokenized into 
words (Hassani., et al., 2021). 

● Filtering 
After the tokenization stage is filtering. Filtering 
is used to retrieve important words from the 
tokenization stage (Ratniasih., et al., 2017). 
Words that have no meaning are called stopwords, 
like conjunctions and, and, after, and so on. 
Eliminating stopwords is very useful in the text 

preprocessing process because it can speed up 
processing which means maximizing processing 
time. 

2.7 Part of Speech Tagging 

Part of speech (POS) tagging is the process of 
determining the correct POS of each word in the text 
(Thavareesan and Mahesan, 2020). In language 
processing, one of the concepts that need to be 
understood to process and use good and correct 
grammar is to determine the word class. Word class 
or word type is a grouping of words to find a system 
in the language. Words are complex forms composed 
of several elements. Word classes are divided into 
five categories based on syntactic, function, and 
meaning categories, namely nouns, verbs, adjectives, 
adverbs, and task words. Methodology 

2.8 Existing Methods 

At this research stage, an auxiliary application will be 
built for ambiguity detection on software 
requirements. Application development is done by 
developing the SMART rule method to detect 
ambiguous words in the statement of software 
requirements. The solution flow proposed in this 
study can be seen in the flowchart of the proposed 
method in figure 1. 

 
Figure 1: Proposed Method. 

The following is an explanation of the 
components of the proposed method flowchart from 
Figure 1 as follows: 
● Spell Check 

iCAST-ES 2022 - International Conference on Applied Science and Technology on Engineering Science

122



Spell checker is a technique of checking every 
spelling in a sentence, using tools to check the 
spelling of a sentence namely Textblob and 
Cyhunspell. There is a method to retrieve the text 
or sentence to check. The method used by 
Textblob is spellcheck() whose output will 
display word recommendations that are written 
correctly and Cyhunspell uses the suggest() 
method to display word recommendations that are 
written correctly. 

● Preprocessing 
Preprocessing is the process of converting raw 
data into a form that is easier to understand. This 
process is important because raw data often do not 
have a regular format. In addition, data mining 
also cannot process raw data, so this process is 
very important to do to simplify the next process. 

● SMART Rules Repository 
SMART Rules Repository is storage containing 
ambiguous words and part of speech of the words 
that will be stored in a table which will be used in 
the SMART module. The repository will be used 
by the SMART module in the process of selecting 
the correct rules to analyze the ambiguity of the 
requirements stated. 

● WordNet 
WordNet is used to recommend synonyms for 
ambiguous words in the SMART rule table. 
Synonym searches are only performed on words 
that have the same POS as the word being 
checked. If synonyms are found, then the sentence 
will be declared ambiguous. 

● SMART Module 
The SMART module is used to analyze the 
ambiguity of each requirement statement that has 
been processed from the previous steps. The 
analysis process is assisted by other components, 
namely the SMART rule repository and WordNet. 

2.9 Method Development 

2.9.1 Requirements Statement Collection 

The Collection of statements of software 
requirements from the Public Requirements Dataset 
(PURE) is a public dataset. The data set contains 79 
documents and includes 34,268 sentences that can be 
used for natural language processing tasks. PURE can 
be used as a benchmark in tasks, such as detection of 
ambiguity, categorization of requirements, and 
identification of equivalence requirements. 
 
 

2.9.2 Spell Check Process 

Drafting documents is an implied part of most 
positions of employment. Most employees lose 
command over their writing skills. This 
disengagement from writing, can lead to grammatical 
flaws and/or spelling errors and also lead to the use of 
stagnant vocabulary (Pisat, et al., 2020). 

The initial process before entering the 
preprocessing process is a spell check first. In this 
process, the sentence will be checked for spelling 
errors. If there is a spelling error, it will result in 
where the spelling is wrong and will be recommended 
the correct spelling of the wrong word. If no errors 
are detected in the spelling of each word, it will be 
used as input for the next process. 

2.9.3 Preprocessing 

After the spell check process is done, the next step is 
pre-processing. In pre-processing, it is used to prepare 
text before it is used in testing with the aim of parsing 
noise in the text or data so that it can improve 
performance. The pre-processing techniques used can 
be seen in the points below: 
a. Remove Punctuation 

In this stage, the text or data is carried out in the 
process of removing punctuation. This will 
remove symbols or punctuation that have no 
effect, such as punctuation marks, exclamation 
points, and question marks. This process is done 
at the beginning to get the maximum text or data. 

b. Case Folding 
In this process, uppercase or capital letters will be 
changed to lowercase letters (lowercase), and only 
letters a to z are accepted in the case folding 
process. Characters other than the letters 'a' to 'z' 
(punctuation marks and numbers) will be 
removed from the data. 

c. Tokenization 
The tokenization process will break the sentence 
into words or tokens. Tokenization uses a library 
from the Natural Language Toolkit (NLTK), 
namely word_tokenize. 

2.9.4 POS Tagging 

Part of speech is commonly known as the type of 
word in a sentence such as a verb, adjective, or noun. 
Part of Speech tagging is a process of marking the 
word class or part of speech on each word in a 
sentence. Stanford POS Tagger is used to give a 
tagset or a mark on every word that has gone through 
pre-processing. Stanford POS Tagger is a tool for 
reading text and determining the language word class 

A Comparative Analysis: Spelling Checker Methods for Syntactic Ambiguity Detection in Software Requirements Statements Using
SMART Rules Between TextBlob and CyHunspell

123



of each word, such as nouns, verbs, adjectives, etc. 
The library used in this stage comes from NLTK by 
importing StanfordTagger. 

2.9.5 SMART Rules Repository Creation 

Before being used by the SMART module, it is 
necessary to create a SMART rule repository that 
contains words that contain more or have multiple 
meanings. The words are stored and then matched 
with the word class or POS of the word and POS2 
shows the POS pairs that make a sentence ambiguous. 
As in the following example, the multiple with POS 
is JJ and the pair POS2 request is NNS, so the 
sentence is ambiguous. 

There are 28 of words identified as ambiguous 
with POS and POS2 which have the possibility of 
ambiguity. Below is a sample of some ambiguous 
words with POS and POS2 which can be seen in 
Table 1 

Table 1: Sample SMART Rules Repository. 

   ID Word      POS       POS2 

    1. Several JJ NNS 

    2. Many JJ NNS 

    3. Some JJ NNS 

    4. Obviously RB JJ 

    5. Who WP MD 

2.9.6 SMART Module 

After the previous stages have been completed, the 
next step is to build the main module whose task is to 
analyze the ambiguity of each statement of software 
requirements that has been processed from the initial 
stage. At this stage using syntactic ambiguity which 
uses rules based on matching between POS and 
POS2. The analysis process is assisted by a 
previously created SMART rules repository 
containing words identified as having the possibility 
of ambiguity along with the POS and POS2 of the 
words in the SMART rule repository. In this SMART 
module, matching is done based on words that have 
been tagged in the POS tagging process using a 
Stanford POS tagger, then the analysis process begins 
by matching each word in the sentence with 
ambiguous words in the rule dictionary. If there is a 
match between one word and the word stored in the 
rule dictionary, then the sentence is considered 
ambiguous.  

3 RESULT AND ANALYSIS 

3.1 System Implementation 

This research consists of three parts, checking the 
spelling of the word, the class of the word in the 
sentence, and seeing whether the sentence contains 
ambiguous words. The system implementation process 
for building software will be explained in this section. 

3.1.1 Obtain Software Requirement 
Statements 

The collection of software requirements statements 
was obtained from the Public Requirements Dataset. 
50 software requirements statements are used to 
match SMART rules. Table 2 is a sample obtained to 
be used as a statement of software requirements. 

Table 2: Software Requirement Statements. 

No. Statement 

1. 
This database will be built for a particular system 
and may not be portable but results to queries will 
be portable between many environments. 

2. A bulk entry can be used to add many assets 

3. 
The RLCS shall support multiple users logged on, 
up to the limit of the number of users defined in 
the database. 

4. 
The user interfaces should be designed to make 
them user intuitive. 

5. 
The system should be available 24 hours a day, 7 
days a week. 

3.1.2 Initial Stage 

Statements that have been obtained previously will be 
checked first against the writing of words or the 
spelling of words in the statement sentences that are 
entered for processing to the next process. The initial 
stage is to check the sentence whether there are words 
that are wrong in writing or spelling can be seen in 
Figure 2. 

 

Figure 2: Spell Check. 

iCAST-ES 2022 - International Conference on Applied Science and Technology on Engineering Science

124



3.1.3 Pre-Process Stage 

If the results of the spell checker produce perfect 
sentences, then the pre-processing stage is carried out 
first so that the data is cleaner and avoids punctuation 
that can block the next process. The pre-processing 
stages consist of case folding, remove punctuation, 
and tokenizing. The process of case folding and 
remove punctuation become one method in the 
program code. The lower() method is used to 
generalize the first letter of a word to lowercase 
(a.k.a. text normalization). Meanwhile, re.sub(“[^a-
zA-Z]”) is used so that the system only accepts input 
in the form of letters of the alphabet, which can be 
seen in Figure 3. 

 

Figure 3: Case Folding and Remove Punctuation. 

The next pre-process stage is tokenization. 
Tokenization uses a library from NLTK with the type 
word_tokenize. Tokenization will generate tokens 
from a statement of needs in the form of a sentence. 
Previously a complete statement sentence became a 
separate word, which can be seen in Figure 4. 

 

Figure 4: Tokenization. 

3.1.4 POS Tagging Stage 

After the pre-processing stage is complete, the  
next step is the POS tagging stage, which is to give  
a word class to each word in the sentence that is 
entered in the process of collecting software 
requirements statements. This stage uses a Stanford 
POS Tagger library provided by NLTK to assign a 
word class to each word. When executing the 
pos_tag() method, the tokenized sentence will be 
assigned a word class for each word that has become 
a token. The implementation of POS tagging can be 
seen in Figure 5. 

 

Figure 5: POS Tagging Stage. 

3.1.5 Checking Sentence with SMART 
Module 

After getting the word class on each word that has 
been tagged POS. Furthermore, it can check whether 
the entered sentence contains ambiguous words. 
Matching is done based on words that have been 
tagged in the POS tagging process using a Stanford 
POS tagger, then the analysis process begins by 
matching each word in the sentence with ambiguous 
words in the rule dictionary. If there is a match 
between one of the words with the word stored in the 
rule dictionary, then the sentence is considered 
ambiguous. The results of the analysis are in the form 
of a conclusion if the statement is ambiguous or 
unambiguous. At this stage using the help of 
list(nltk.bigrams()) to be able to match each word 
class with two adjacent items can be seen in Figure 6. 

 

Figure 6: Result Checking Sentence. 

3.2 Match Results 

This section is the result of matching with the 
SMART rule repository which contains words that 
may contain multiple meanings matched with word 
classes that have been tagged in the POS tagging 
process. If there is a word match in the input sentence 
with a word in the SMART rule repository, then the 
sentence is declared ambiguous. Table 3 is the result 
of matching the spell check method. 
 
 
 

A Comparative Analysis: Spelling Checker Methods for Syntactic Ambiguity Detection in Software Requirements Statements Using
SMART Rules Between TextBlob and CyHunspell

125



Table 3: Match with SMART Rules Repository. 

Spell Check Methods Total Ambiguous Word Detect 

Textblob  15 

Cyhunspell  25 

CyHunspell provides recommendations for 
correcting words that have been registered in the 
SMART repository, so that detection of ambiguous 
sentence structures is better than TextBlob. 

4 CONCLUSIONS 

In this research, a comparative analysis of the spell 
checker method has been carried out to be integrated 
with SMART rules. Based on the results of the study, 
it was found that CyHunspell gave better detection 
results than TextBlob. Detection of ambiguous 
statements with the SMART Requirements approach 
which refers to specific criteria is a suitable criterion 
because it explains that it is necessary to avoid words 
that contain ambiguity, for example some, several, 
and many with pairs of word classes being nouns. If 
there is a word match in the input sentence with a 
word in the SMART rule repository, then the sentence 
is declared ambiguous. 

A spell check is performed at the beginning before 
performing the rule-matching step. The statement 
sentence will be checked first against the writing of 
the word or the spelling of the word in the statement 
sentence that is entered for processing to the next 
process. Pre-processing is an important stage because 
if you don't do pre-processing, then the data is 
declared unclean.  

REFERENCES 

Anu, V., Hu, W., Carver, J. C., Walia, G. S., & Bradshaw, 
G. (2018). Development of a human error taxonomy for 
software requirements: A systematic literature review. 
Information and Software Technology, 103, 112-124. 

Carlson, N., & Laplante, P. (2014). The NASA automated 
requirements measurement tool: a reconstruction. 
Innovations in Systems and Software Engineering, 
10(2), 77-91.essbout Analyit. Politicalsis, 26(2), 168-
189. 

Denny, M. J., & Spirling, A. (2018). Text preprocing for 
unsupervised learning: Why it matters, when it 
misleads, and what to do a 

Enda, D. (2018). Rekomendasi perbaikan pernyataan 
kebutuhan yang rancu dalam spesifikasi kebutuhan 
perangkat lunak menggunakan teknik berbasis aturan 

(Doctoral dissertation, Institut Teknologi Sepuluh 
Nopember). 

Hassani, A., Iranmanesh, A., & Mansouri, N. (2021). Text 
mining using nonnegative matrix factorization and 
latent semantic analysis. Neural Computing and 
Applications, 33(20), 13745-13766. 

Hermawan, L., & Ismiati, M. B. (2020). Pembelajaran text 
preprocessing berbasis simulator untuk mata kuliah 
information retrieval. Jurnal Transformatika, 17(2), 
188-199. 

Hussain, H. M. (2007). Using text classification to 
automate ambiguity detection in SRS documents 
(Doctoral dissertation, Concordia University). 

Kamsties, E., Berry, D. M., & Paech, B. (2001). Detecting 
ambiguities in requirements documents using 
inspections. In Proceedings of the first workshop on 
inspection in software engineering (WISE’01) (Vol. 
13). 

Mannion, M., & Keepence, B. (1995). SMART 
requirements. ACM SIGSOFT Software Engineering 
Notes, 20(2), 42-47. 

Mustaqim, T., Umam, K., & Muslim, M. A. (2020). Twitter 
text mining for sentiment analysis on government’s 
response to forest fires with vader lexicon polarity 
detection and k-nearest neighbor algorithm. In Journal 
of Physics: Conference Series (Vol. 1567, No. 3, p. 
032024). IOP Publishing. 

Nurfauziah, S. (2016). Pendeteksian Ketidaklengkapan 
Kebutuhan Dengan Teknik Klasifikasi Pada Dokumen 
Spesifikasi Kebutuhan Perangkat Lunak (Doctoral 
dissertation, Institut Teknologi Sepuluh Nopember). 

Pisat, T., Bartakke, M., & Patil, H. (2020). Synonym 
Suggestion System using Word Embeddings. In 2020 
4th International Conference on Trends in Electronics 
and Informatics (ICOEI)(48184) (pp. 505-508). IEEE. 

Rahimi, N., Eassa, F., & Elrefaei, L. (2020). An ensemble 
machine learning technique for functional requirement 
classification. symmetry, 12(10), 1601. 

Ratniasih, N. L., Sudarma, M., & Gunantara, N. (2017). 
Penerapan text mining dalam spam filtering untuk 
APLIKASI chat. Majalah Ilmiah Teknologi Elektro, 
16(3), 13. https://doi.org/10.24843/mite.2017.v16i03 
p03  

Thavareesan, S., & Mahesan, S. (2020). Word embedding-
based Part of Speech tagging in Tamil texts. In 2020 
IEEE 15th International Conference on Industrial and 
Information Systems (ICIIS) (pp. 478-482). IEEE. 

iCAST-ES 2022 - International Conference on Applied Science and Technology on Engineering Science

126


