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Abstract:  One of the core elements of the concept of computer vision consists of image classification, object detection 
and segmentation. The multi-task deep learning method is implemented in the process of converting images 
into text through a multi-layer process to express complex image understanding. In this study, the system will 
convert the video into text and sentences. This synchronization is based on the Multitask Deep Learning 
method that combines the Convolutional Neural Network (CNN) system in the image area, Recurrent Neural 
Network (RNN) with LSTM (Long Short Term Memory) in the sentence area, CCN (Caption Content 
Network) and RCN (Recurrent Convolutional Network) on the labeling process and the relationship between 
objects as well as with a structured goal that aligns the two modalities through multimodal embedding. 
PyTorch is an extension of the Torch Framework which was originally written in the Lua programming 
language. The syntax that PyTorch uses is not much different in terms of functionality compared to other 
frameworks. Testing the results of converting images into text based on Multi Task Deep Learning with the 
RNN method using LSTM or BERT with scoring using f1-score, precision and recall. The results will be 
plotted using AUC (Area Under The Curve) and ROC (Receivers Operating Characteristics)graphs.

1 INTRODUCTION 

Computer vision is an automated process that 
integrates a large number of processes for visual 
perception, such as image acquisition, image 
processing, recognition, and decision making. 
Computer vision is expected to have a high level of 
ability as a human visual. These capabilities include: 
-Detection of objects, determine objects at the scene 
and their boundaries 
-Recognition, label the object. 
-Description, assigns properties to the object. 
-3D Inference, interprets a 3D scene from a 2D view. 
-Interpreting motion, interpreting motion. 
Computer vision combines cameras, edge or cloud-
based computing, software, and artificial intelligence 
(AI) so the system can “see” and identify objects. 
Intel has a comprehensive portfolio of AI deployment 
technologies, including CPUs for general-purpose 
processing, computer vision, and vision processing 
units (VPUs) for acceleration. Computer vision 
systems that are useful in a variety of environments 
can quickly identify objects and people, analyze 
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audience demographics, inspect production outputs, 
and many other things. (L. R. Jácome-Galarza, 2020). 

2 DEEP LEARNING 

Development of Deep Learning and Image 
Processing methods through a system capable of 
solving high-level image understanding problems to 
change visual images in the context of sentences 
The development of machine learning technology 
with multi-task deep learning uses several methods 
including the Convolutional Neural Network (CNN) 
which functions to extract visual features in the form 
of images, through the Recurrent Neural Network 
(RNN), especially the LSTM type for captioning 
various image areas of object elements by detecting 
relationships between objects. object. (S. Bai et al, 
2018). 
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2.1 Multi Task Learning 

Multi Task Learning (MTL) is used in machine 
learning applications, ranging from natural language 
processing, speech recognition, computer vision, and 
drug discovery. MTL comes in many forms: study 
together, learn to learn, and learn by task are just a 
few of the names used to refer to it. Generally, after 
optimizing more than one function it effectively 
performs multi-task learning (as opposed to task 
learning. The most commonly used way to perform 
multi-task learning in multi-task neural networks is 
usually done by sharing hidden layer parameters 
either hard or soft. hard parameters is the most 
commonly used approach for MTL in neural 
networks.(O. Sener and V. Koltun, 2018). 

2.2 Deep Relationship Network 

In MTL for computer vision, the approach often 
shares convolution layers, while learning the task-
specific full connected layers by leveraging these 
models with Deep Relationship Networks. In addition 
to the shared structure and special layers, which can 
be seen in Figure 1, they placed the previous matrix 
on a fully connected layer, which allowed the model 
to study the relationships between tasks, similar to 
some Bayesian models. 
 

 

Figure 1: Deep Relationship Network with convolutional 
layers together and fully connected with prior matrices (X. 
Liu, P. He, W. Chen, 2019). 

2.3 Recurrent Neural Network (RNN) 

Generative image modeling is a major problem in 
unsupervised learning. Probabilistic density models 
can be used for a variety of tasks that range from 
image compression and reconstruction forms such as 
image inpainting (eg, see Figure 1) and deblurring, to 
the creation of new images. When the model is 
conditioned on external information, possible 
applications may also include creating images based 
on text descriptions or simulating future frames in 
planning tasks. One of the great advantages of 
generative modeling is that there is practically a large 
amount of image data available to study. However, 
because the images are high-dimensional and highly 
structured, estimating the natural image distribution 

becomes very challenging. A glance at an image is 
enough for a human to show and explain a large 
amount of detail about a visual scene, however, this 
ability becomes an elusive task for visual recognition 
models. In this model the input process is a set of 
pictures and descriptions of sentences that match the 
following figure 2. (A. Karpathy and L. Fei-Fei, 
2019). 
 

 

Figure 2: Model Set of Drawings and Appropriate 
Description (A. Karpathy and L. Fei-Fei, 2019). 

One of the most important constraints in generative 
modeling is building the original occlusion solution 
model in Figure 2. Completion images are sampled 
from Pixel RNN. This exchange has produced a wide 
variety of generative models, each with its 
advantages. Most of the work focuses on stochastic 
latent variable models such as VAE which aim to 
extract meaningful representations, but are often 
accompanied by difficult inference steps that can 
hinder their performance. One effective approach to 
modeling the combined distribution of pixels in an 
image is to display them as the product of a 
conditional distribution. The resulting Pixeln RNN 
consists of/up to twelve two-dimensional layer Long 
Short Term Memory (LSTM) memories. The first 
type is the Row LSTM layer where convolution is 
applied along each row a similar technique is 
described in (A. Karpathy and L. Fei-Fei, 2017).  

 

Figure 3: Model Set of Drawings and Appropriate 
Description. 

Figure 3 can be explained as follows: 
 
Left : To generate xi pixels one condition on all 
previously created pixels to the left and above xi. 

Deep Learning Methods for Video to Text Converter Applications with Phytorch Library

43



Center : To generate pixels in the multi-scale case, we 
can also condition the sub-sampled image pixels (in 
light blue). 
Right : Connectivity diagram inside a masked 
convolution. In the first layer, each RGB channel is 
connected to the previous channel and to the context, 
but is not connected to the channel itself. In the next 
layer, the channel is also connected to the subtitle. 

3 SYSTEM AND 
ARCHITECTURAL MODEL 

Author The architectural model of understanding 
imagery in the context of language can be divided into 
3 processes: 
1. Detect Objects and text areas. 
2. The overall system architecture framework which 
is the relationship between object features, subject 
features, caption features and context features. 
3. Object and network proposal caption region As 
represented in the following image simulation. 

3.1 Objects and Text Areas 

As shown in Figure 4 below, the initial process begins 
with video extraction by determining object detection 
and the detected text area on a scene graph. Then 
determine the Caption Region, Relationship Region, 
and Object Region. Furthermore, feature extraction 
consisting of Caption Feature, Relationship Feature 
and Object Feature and combining/processing 
Relationship Feature, Caption Feature and 
Relationshipo Context Feature with CCN (Caption 
Context Network) method to produce Caption 
Feature and Caption Context Feature in a Caption 
Generation. The final part is to combine and process 
the Subject Feature, Relationship Feature and Object 
Feature with the RCN (Relationship Context 
Network) method to produce Relationship Detection 
and then extract the feature object to produce Object 
Detection.(D. Shin and I. Kim,2018). 

 

Figure 4: Object Detection Network and Text Region. 

3.2 Dataset Exploration 

Each The dataset used in this system uses the 
Tensorflow platform, with the Inception3 
Architecture and the encoders and decodercnn 
methods. The Tensorflow dataset is a benchmark 
dataset for object detection of image segmentation. 
Detection of objects is done by regression (object 
restriction) and classification.(S. Ren, K. He, R. 
Girshick, 2017). 
 
1. Setting up a Library / Data library (In research 
using Pytorch) 
2. Downloading Data 
3. Loading Data 
4. Distribution of Objects in the Tensorflow Dataset 
5. Utilities function (object constraint area) 

3.3 Preprocessing 

At this stage there are four processes, namely: 
1. Image Representation 
Sentence description can create a reference to the 
object and its attributes, so according to Girshick's 
method to detect objects in each image with RCNN. 
(L. R. Jácome-Galarza, 2020).  CNNs were pre-
trained on ImageNet and tuned to 200 classes by 
using the top detected locations in addition to the 
entire image and calculating the representation based 
on the Ib pixels within each bounding box as follows. 
 
v = Wm[CNN✓c(Ib)] + bm, (1) 
 
Where CNN(Ib) converts the pixels inside the 
bounding box Ib into 4096 dimension activation of 
the fully connected layer just before the classifier. (S. 
Bai and S. An, 2018). 
 
2. Sentence Representation 
To establish the inter-modal relationship, then to 
represent the words in the sentence in the same h-
dimensional embedding space as the image region. 
The simplest approach might be to project each 
shared word directly into this embedding. However, 
this approach does not consider word order and 
context information in sentences. To solve this 
problem, Bidirectional Recurrent Neural Network 
(BRNN) is used to calculate word representation. 
BRNN takes a sequence of N words (encoded in a 1-
of-k representation) and transforms each into an h-
dimensional vector. However, the representation of 
each word is enriched by the varying sized context 
around that word. (S. Aditya, Y. Yang, C. Baral, 
2017). Using index t = 1. . . N to indicate the position 
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of a word in a sentence, the exact form of BRNN is 
the following equation: 
 
xt = Ww t(2) 
et = f(Wext + be) (3) 
hf = f(et + Wf hf (4) 
htb = f(et + Wbhtb+1 + bb) (5) 
st = f(Wd(htf + htb) + bd) (6) 
 
Here, t is an indicator column vector that has one in 
the t-th word index in a vocabulary word. The W w 
weight determines the word embedding matrix which 
we initialize with the word2vec weights of dimension 
300 and is retained because of the overfitting 
problem. However, in practice we find little change 
in final performance when this vector is trained, even 
from random italization. (A. Van Den Oord, N. 
Kalchbrenner, 2016). 
 
3. Alignment Objective (Transforming Images and 
Sentences Into a Collection of Vectors in the Same h-
Dimensional Space) 
Since the control is at the picture and sentence level 
as a whole, the picture-sentence score is formulated 
as a function of the individual word-area scores. 
Intuitively, a picture-sentence pair must have a high 
match score if the words have convincing support in 
the picture. Karpathy et al's model (X. Liu, P. He, W. 
Chen, 2019) interprets the dot product vii T s t 
between the i-th region and the t-th word as a measure 
of similarity and uses it to determine the score 
between k image and l sentence as: (A. Karpathy and 
L. Fei-Fei, 2017). 
 
4. This process is carried out by aligning the image 
from the training set and the corresponding sentence. 
We can interpret the quantity vi T s t as the non-
normalized log probability of the t-th word describing 
the bounding box in the figure. However, in the end 
to create a text snippet rather than a single word, by 
aligning the extended and contiguous word order to a 
single bounding box. Note that the nave solution of 
assigning each word separately to the region with the 
highest score is insufficient because it causes the 
words to scatter inconsistently into different regions. 
The data encoding process is carried out with the 
ENDOCDERCNN (Encoding-Decoding CNN) 
Algorithm as shown in Figure 5 below. 
 

 

Figure 5: Data frame process flow with ENDOCDERCNN 
algorithm. 

3.4 Mapping Method with Pythorch 
Library  

The system is built on a web-based basis, which is 
implemented using the Python Programming 
Language and the PyTorch Library, as shown in 
Figure 9 below. PyTorch is a development of the 
Torch Framework which was originally written in the 
Lua programming language. The syntax that PyTorch 
uses is not too different from the functions in 
compared to other frameworks, PyTorch has a neater 
and simpler syntax. The following is an image of the 
mapping process using PyTorch to classify video data 
using CNN. PyTorch is a development of the Torch 
Framework which was originally written in the Lua 
programming language. The syntax that PyTorch uses 
is not too different from the functions in compared to 
other frameworks, PyTorch has a neater and simpler 
syntax. The following is an image of the mapping 
process using PyTorch to classify video data using 
CNN. The data has gone through pre-processing and 
feature extraction and is neatly stored in Ndarray 
Numpy format with four dimensions measuring 1036 
x 3 x 79 x 26. The ftrs.npy file has data features and 
the lbls.npy file has the appropriate data labels. There 
are 10 label classes with almost the same data for each 
class. (X. Liu, P. He, 2019). 

 

Figure 6: Basic Phytorch Workflow. 

Modeling in PyTorch is not bound by any specific 
rules. The model used is usually in the form of a class 
with a forward(x) function to calculate the forward 
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propagation process. The torch.nn library is an 
important part that stores Neural Network functions. 
The model we use above is the CNN model with an 
additional 1 fully connected layer. It can be seen that 
we defined Conv2d, Maxpool2d and two linear 
layers. The forward function is used for the forward 
propagation process when data is inputted. It also 
appears that we use the ReLU activation function for 
each neuron. 

4 PROCESS AND RESULT 
ANALYSIS 

Python Programming Language and done on Google 
Collab platform. For an example of a 5 minute video, 
the first step is to import the library needed to 
understand the image, in this case using Tensor flow 
version 2. Next, download the dataset that has been 
stored on Google Drive. A short video dataset with a 
duration of 5 minutes as shown in Figure 10 below.  
 

 

Figure 7: CCTV video recording data with a duration of 5 
minutes. 

The next step is to extract the previously downloaded 
dataset, then convert the mp4 video into an image 
using opencv. In the process of compiling the dataset, 
the dataset is created by describing each image in 
written form, and the text generation process is still in 
English according to the existing library. 
In the process of making the dataset, namely 
collecting images taken from CCTV recording 
videos, then a description of each object in the image 
is written and then stored in csv form to be loaded into 
the tensorflow dataset. Load the csv into python for 
inclusion in the tensorflow dataset then process the 
Train Caption. In Figure 10, the following is an 
example of an image dataset and its description. 

 
 

 

Figure 8: Image dataset and description. 

Preprocess using InceptionV3 convert the image 
to the expected format of InceptionV3 by resizing the 
image to 299 x 299 after normalizing the image so 
that it is between the range -1 and 1. The next process 
is to make CNN Encoder and CNN Train. For details 
of the architecture above, we use a cnn encoder with 
a pre-trained model using resnet-50 to encode the 
image into an embedded image or feature vector. 
After that, the embedded image is entered into the 
RNN decoder. Texts also need to be pre-processed 
and prepared for training. In this example, to generate 
text, aim to build a model that predicts the next 
sentence token from the previous token, So I convert 
the text associated with any image into a tokenized 
word list, before sending it to a PyTorch tensor which 
we can use to train network. The next step is to divide 
the data into train and validate and create a tensorflow 
dataset using tf.data. These steps are performed by: 

-Extract features from CNN InceptionV3 into 
vector shapes (8, 8, 2048). 

-Converts to shape (64, 2048). 
-Enter via CNN Encoder. 
-Features in the decoder with RNN (here GRU) to 

generate images into writing. 
After the process of sharing training data and 

validation data, the next step is the model training 
process. The two components of the model, namely 
the encoder and decoder, train these components 
together by passing the output of the encoder, which 
is a vector of latent space, to the decoder, which, in 
turn, is an iterative neural network. Example No. Of 
Epochs = 1 Batch Size = 32 and so on.  

Based on the results of the training model by 
calculating losses from Epoch 1 to Epoch 100, we get 
Real Captions and Predicted Captions as shown in 
Figure 10 below. 
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Figure 9: Real Caption and Prediction Caption. 

5 MODEL TRAINING AND 
TESTING 

Modeling in PyTorch is not bound by any specific 
rules. The model used is usually in the form of a class 
with a forward(x) function to calculate the forward 
propagation process. The torch.nn library is an 
important part that stores Neural Network functions. 
The model we use above is the CNN model with an 
additional 1 fully connected layer. It can be seen that 
we defined Conv2d, Maxpool2d and two linear 
layers. The forward function is used for the forward 
propagation process when data is inputted. 

5.1 Split Datase 

We need to share the dataset that we have for training 
and testing purposes. Data sharing can be done using 
the help of the Scikit Learning library with a 
proportion of 80% for training and 20% for testing. 

The text must be aligned to the left with the 
linespace set to single and in 9-point type. We need 
to share the dataset that we have for training and 
testing purposes. Data sharing can be done using the 
help of the Scikit Learning library with a proportion 
of 80% for training and 20% for testing. 

5.2 Change to Tensor 

The divided dataset is converted to a tensor and also 
starts initializing the initial parameters of the Model, 
such as optimization and evaluation algorithms. The 
criterion variable stores the evaluation function used, 
namely Cross Entropy. And the optimizer variable 
stores the optimization function that will be used, 
namely Adagrad. In the test using the epoch value of 
1 to 100. 

5.3 Testing Process 

Testing is done inside torch.no_grad() to avoid 
accidentally calling autograd. When the program is 
run, an error value will be displayed during the 
training process. The error value will decrease 
indicating the training process is going well. After 
training, the accuracy value will be displayed. For 
data and epochs that have been defined, the author 
gets an accuracy of about 40-50%. In testing the 
training model, there is a comparison between the 
epoch and loss of each feature. Epoch testing on 
sample images is carried out from epochs 1 to 100, 
with loss results as shown in Figures 12 to 14 below. 
 

 

Figure 10: Epoch 1 to 36, Batch 0. 

 

Figure 11: Epoch 37  to 72, Batch 0. 
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Figure 12: Epoch 73 to 100, Batch 0. 

 

Figure 13: Comparison plot graph of label X for Epoch and 
label Y for Loss. 

Epoch is an iteration with reverse propagation, based 
on previous research, the optimal number of epochs 
is influenced by various factors such as learning rate, 
optimizer, and amount of data. Based on the results of 
the study, the epochs used were 10, 20, 30, 40, 50, 
60,70, 80, 90, 100. In this study, epochs 1 to 100 were 
used to obtain the largest total loss in epoch 1 of 3,581 
and the smallest total loss. on epoch 91 is 0.0135. 
Based on Figures 13, 14 and 15 through the following 
epoch results, it can be seen that there is a correlation 
between the accuracy and loss values in the training 
data and the number of epochs or iterations. (A. Y. N. 
Richard Socher, Andrej Karpathy, 2014) The larger 
the epoch used, the higher the accuracy value on the 
data train. Inversely proportional to the accuracy 
value, the greater the epoch used, the lower the loss 
value generated in the training data. Based on this, it 
can be concluded that to reduce the loss value 

obtained, it can be done by increasing the number of 
epochs in the training process, so that the model will 
produce a higher accuracy value. Based on the results 
of the validation test for accuracy and loss for 100 
epochs, the following optimization was obtained. 

Table 1: Comparison Table Accuracy and Loss Validation. 

Epoch 
Accuracy 

Validation 
Loss 

Validation 
10 1.417357 1.3940 
20 1.234550 1.1343 
30 0.726811 0.6227 
40 0.447890 0.5403 
50 0.297522 0.3181 
60 0.205348 0.1776 
70 0.134186 0.1297 
80 0.074352 0.0899 
90 0.046751 0.0458 
100 0.181535 0.1956 

 
Accuracy is a matrix to evaluate the results of the 
model classification. Accuracy is the division of the 
model's predictions that are considered correct with 
the predicted total. (D. Ariyoga, R. Rahmadi, and R. 
A. Rajagede, 2021). 

6 CONCLUSION 

Implementation of multi-task deep learning in video 
understanding to convert video into sentence text 
consists of processing stages, namely object and text 
area detection, determining Caption Region, Relation 
Region, and Object Region which then extracts 
features consisting of Caption Features, Relationship 
Features and Object Features and combine/process 
Relationship Features, Caption Features and Context 
Relation Features with the CCN (Caption Context 
Network) method and the RCN (Relationship Context 
Network) method. The accuracy results obtained for 
classifying accuracy validation against loss are 
obtained from the results of research with 100 epochs, 
the largest total loss is obtained in epoch 1 of 3.581 
and the smallest total loss is at epoch 91, which is 
0.0135. 
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