
Pipeline for Visual Container Inspection Application using Deep
Learning

Guillem Delgado a, Andoni Cortés b and Estı́baliz Loyo c

Vicomtech Foundation, Basque Research and Technology Alliance (BRTA),
Mikeletegi 57, 20009, Donostia-San Sebastián, Spain

Keywords: Deep Learning, Shipping Container Inspection, Ship to Shore Inspection, Port Application.

Abstract: Containerized cargo transportation systems are associated to many visual inspection tasks. Especially during
the process of loading and unloading containers from and to the vessel. More and more of these tasks are being
automatized in order to speed up the overall process of transportation. This need for optimized processes calls
for new vision systems based on the latest technologies to reduce operation times. In this paper, we propose
a pipeline and a complete study of each of its parts in order to provide an end-to-end system that solves and
automatizes the process of inspection of a loading or unloading freight container from and to the vessel. We
outline all the components involved in a separated way. Tackling from the acquisition of the images at the
beginning of the process, to visual inspection tasks such as containers’ id detection, text recognition, damage
classification or International Maritime Dangerous Goods (IMDG) detection. In addition, we also propose a
heuristic algorithm that is capable of managing all the information from the multiple tasks in order to provide
as much insights as possible out of the system.

1 INTRODUCTION

Containerized freight transport is the predominant
method used nowadays to transport cargoes around
the world. Its ability to store and organize provides
an advantage against other methods of transportation.
Moreover, the development of efficient hardware and
software lowered the time on the procedure of goods
exchanges and lowered the cost of it. This leads to the
desirability of this kind of transportation and reduces
the final consumer price of goods. This is especially
important in maritime transportation as it is responsi-
ble for approximately 90% of global transportation,
consequently becoming a backbone of global trade
(Filom et al., 2022).

Automation is nothing new in this field, since it
is becoming more and more common to automate the
many tasks associated with each link in the transporta-
tion chain. Specially in port environments where the
main tasks regarding the inspection of containers are
usually reviewed by a port operator during the loading
and unloading of the containers with a Ship To Shore
(STS) crane. These tasks include the detection of the

a https://orcid.org/0000-0003-2240-9723
b https://orcid.org/0000-0002-7158-0175
c https://orcid.org/0000-0001-8232-2828

IMDG markers, container marker label recognition
and seal presence detection, among others. In order
to avoid conflicts between transportation companies
and wharf, the visual inspection of containers must
be carried out focusing on potential structural defects.
Currently, two operators work in parallel. One person
enters all these data into a terminal device, while the
other one does the container inspection. This takes
about 30 seconds per container. However, delays re-
lated to unnecessary waiting times means multiple
people blocked for their respective tasks.

Due to the latest achievements of Deep Learning
techniques in computer vision, it allowed advances in
research regarding visual task of inspection of con-
tainers, such as segmentation of damages, IMDG
marker detection, text recognition, corrosion inspec-
tion and so on.

Nevertheless, this automation has several draw-
backs that has not been tackled yet, to the best of
our knowledge. First of all, these deep learning algo-
rithms require a big amount of data in order to work
properly. Acquiring this data is an arduous challenge
considering the fact that there are several privacy and
confidentiality constraints in ports. In addition, there
is a lot of time and cost that it is needed to devote
in the data collection process which makes applying

404
Delgado, G., Cortés, A. and Loyo, E.
Pipeline for Visual Container Inspection Application using Deep Learning.
DOI: 10.5220/0011590900003332
In Proceedings of the 14th International Joint Conference on Computational Intelligence (IJCCI 2022), pages 404-411
ISBN: 978-989-758-611-8; ISSN: 2184-3236
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



and comparing state-of-the art techniques a difficult
task. Secondly, the communication between the oper-
ation center and the STS crane tends to be located far
from each other. This leads the operation center to be
isolated making difficult to perform an effective data
transmission. Thus, it is difficult to remotely analyse
the information, due to bandwidth constrains. Finally,
different inner visual task modules must be synchro-
nized in order to associate correctly the retrieved in-
formation with a logical heuristic process.

In this work, we present an architecture that faces
globally the visual inspection process of containers,
grouping and solving multiple visual inspection tasks.
Furthermore, we propose a custom heuristic algo-
rithm where we interpret and associate retrieved data
in order to provide detailed information within a video
stream transmitted via 5G. We train the state-of-the
art models and validate the whole pipeline using syn-
thetic labelled data for a multi-camera system in a
STS crane.

The paper is organized as follows: Section 2 de-
scribes the state of the art of the different visual tasks;
Section 3 describes the proposed architecture, ex-
plaining the setup, the synthetic data generation, the
visual inspection tasks solved and the heuristic algo-
rithm; Section 4 explains the experimentation and the
results obtained; finally, Sections 5 and 6 present the
conclusion and future lines of work.

2 RELATED WORK

Deep Learning is being employed more and more
in all computer vision tasks, including the visual
inspection of shipping containers in port environ-
ments where neural networks have proven to provide
more accurate results compared to traditional meth-
ods. Variations of state-of-the art networks has been
proposed in order to solve different tasks. W Zhiming
et al. (Zhiming et al., 2019) used Faster Region-based
Convolutional Neural Networks (Faster-RCNN) with
a binary search tree to find the container identifier.
X Li et al. (Li et al., 2020) proposed a variation of
the Mask-RCNN for damage detection called Fmask-
RCNN which introduces changes in the backbone, fu-
sions in the Feature Pyramid Network (FPN) and mul-
tiple fully connected layers. Furthermore, A Bahrami
et al. (Bahrami et al., 2020) introduced neural net-
works architectures to detect corrosion in containers
using different state-of-the art models such as Faster
R-CNN, Single-Stage object Detection (SSD) Incep-
tion V2 and SSD-MobileNet. They included an an-
chor box optimizer in order to localize and detect the
corrosion from the containers. Wang et al. (Wang

et al., 2021) also proposed a lightweight neural net-
work to only classify damages from containers us-
ing mobile phone devices. In addition, Verma et al.
(Verma et al., 2016) addressed the problem of text
recognition and put up a proposal for a solution in the
form of an end-to-end pipeline that combines Region
Proposals for detection with Spatial Transformer Net-
works for text recognition. Bu et al. (Bu et al., 2018)
also proposed a method for text recognition in order
to recognize container numbers in arbitrary directions
and complex backgrounds. Other methods proposed
in X. Feng et al. used You Only Look Once (YOLO)
detector and Convolutional recurrent neural network
(CRNN) and Efficient and Accurate Scene Text De-
tector (EAST) algorithms for text recognition (Feng
et al., 2020b) (Feng et al., 2020a).

Nevertheless, all these methods use data that is
typically not public, making the process of compar-
ing the state of the art difficult. Therefore, synthetic
data generation has received a lot of attention lately as
it has proven to be a good approach to tackle the lack
of data (Cortés et al., 2022). It already exists methods
for creating synthetic data for Deep Learning models
to train on, using the 3D components and description
file of the scene as the input data (Aranjuelo et al.,
2021). However, these methodologies have not been
applied yet to the containerized freight transportation
field, to the best of our knowledge.

3 PIPELINE

In this work, we present a pipeline that includes mul-
tiple modules, from modules for the purpose of detec-
tion and classification used in visual tasks, to modules
focused on the connectivity and delivery of informa-
tion, as well as a heuristic process for extracting infor-
mation. The proposed setup can be seen in Figure 1.
The pipeline consists in multiples cameras that trans-
mit a video stream through 5G. Single camera setups
could be used also in this pipeline. Then, a visual in-
spection tasks module uses deep learning state-of-the
art models in order to solve multiple proposed tasks.
The results are coded and sent via broker to another
client that process temporally the data and provides
information given a sequence of loading or unloading
containers with an STS crane. The aim of the pipeline
is to generate information regarding these containers
and compare them between a list of the containers that
should be loaded and unloaded for each day. Before
anything else, synthetic data had to be generated in
order to overcome the lack of data. Thus, allowing to
train multiple inspection tasks with minimal effort. In
this section we present the physical setup used in the

Pipeline for Visual Container Inspection Application using Deep Learning

405



port, describing the architecture of the cameras and
processes to automatize. Next, we present the process
of creating the synthetic data in order to train state-
of-the art models and validate the entire pipeline as
real data is scarce on this field. We also introduce the
different visual tasks and how they are used to extract
multiple features from the container and how they are
sent through a broker. Finally, we present a heuris-
tic algorithm that is in charge of receiving the data
and extract useful readable information for operators
in order to automatize their process.

Figure 1: Overall pipeline used for visual inspection of con-
tainers.

3.1 Setup

Our setup is based in Luka Koper’s port, where we
installed four cameras placed in different parts of the
STS crane so we can monitor the process of loading
and unloading the container on each side of it. We
define them as Camera A, Camera B and Cameras Cl
and Cr, as we can see in Figure 2. Cameras A and B
will be at the bottom of the crane, on the lower hori-
zontal beam and will be always point at the Back and
Front side of the container, that means towards land
and sea sides. Meanwhile, Cameras Cl and Cr will
be located in the upper horizontal beams, at 13m of
height. Those cameras will point at, what we refer as,
the Door and the No Door of the container.

The process we aim to automatise is the loading
and unloading of containers from ship to shore or
from shore to ship. The unloading process mainly
consists of using the STS crane to discharge vessels
continuously. Once they are moved from the ship
to the shore, they are placed in one of the available
rails and manual inspection is performed. Operators
give emphasis on possible structural damages in or-
der to prevent disputes between transportation com-
panies and wharf. It takes a minimum of 30 seconds
and multiple operators to perform all manual checks.
In addition, delays might occur related to unnecessary
waiting times, such as STS crane idling or uneven dis-
tributed movements on the yard. Once the container
is successfully inspected, it is transported through the
rails to its destination. The loading process consists
of the same steps as stated previously, but the other

Figure 2: Configuration of the virtual cameras inside the 3D
scenario.

way around.
The port has available 5G connection which will

be used to transmit four videos’ streams at high res-
olution (3840x2160) in order to process the images
without any latency. However, we will not delve in
further details about the 5G connection as it is not
within the scope of the paper.

3.2 Synthetic Data

One of the main problems found recurrently in the
state of the art is lack of publicly accessible port data
and is one of the major constraints on port-related re-
search. Since ports are important nodes in nations’
supply chains, most of them withhold specific in-
formation about their operations in order to preserve
their competitive advantage. Furthermore, there isn’t
a trustworthy benchmark for well-known port-related
issues that may be used as a performance evaluation
indicator. That is why in order to validate this pipeline
we also generate our own synthetic data to train mul-
tiple visual tasks and test the entire proposed pipeline
including the heuristic algorithm. The synthetic data,
called SeaFront (Delgado et al., 2022), is publicly
available and it can be used as a baseline for other
research. This datasets consist of two splits of train-
ing and validation and it contains a total of 9888 im-
ages. For training there are 7910 images and 1978
for validation. In addition, a test set is also available
with 2480 images. We can train multiple tasks with
this data as it allows us to train detection and/or seg-
mentation of damages, more specifically perforations,
dents, and bents of the container. It also provides
detection information regarding IMDG markers, con-
tainer’s position, and text identifier. We also generate
annotations for text recognition tasks. Finally, it of-
fers the possibility to train Cl and Cr Cameras for a
binary classification of door or no door. In addition,
we generate an extra 20 sequences of 30 images for

NCTA 2022 - 14th International Conference on Neural Computation Theory and Applications

406



each camera in order to validate the entire pipeline
and provide results and metrics.

On the other hand, we create a synthetic dataset (a
sample can be seen in Figure 3) for optical character
recognition (OCR) tasks using multiple backgrounds
and placing the 26 upper case letters with 10 different
numbers using multiple fonts. This dataset consists of
images with vertical and horizontal labelled character
sequences. Characters inside the images are gener-
ated randomly and placed in such a way that the se-
quence of characters occupies the entire image. Sev-
eral augmentation processes are also applied to the
generation of each character. These include the fol-
lowing processes: scale changes, light changes, shad-
ows addition, padding, elastic transformations, rota-
tion, blurring and a last step to add a random image as
background. Although a subset of five system fonts
have been defined to generate character’s glyphs, this
could be changed according to the context of the ap-
plication.

Figure 3: Detection patches from real images (left). Syn-
thetic character sequence generated image (right).

3.3 Visual Inspection Tasks

In this paper, we focus mainly on four visual inspec-
tion tasks that are found recurrently in the state of
the art and aims to automatize the manual inspection
of the containers. First of all, the damage detection
and segmentation where we aim to predict the loca-
tion and the label of its four possible damages (dents,
bents, bents on axis and perforations) and the con-
tainer. The location of these five classes can be via
detection or segmentation. By using detection, we
provide bounding boxes with a set of coordinates and
its class confidence. By using semantic segmentation,
we predict a class per-pixel of all the image. Sec-
ondly, the IMDG detection where we aim to detect
multiple elements in the image. This includes the con-
tainer, any vertical or horizontal text and the different
26 IMDG markers. Another visual inspection task is
to perform a binary classification whether a door from
a container is present or not. This is especially useful
when loading and unloading containers such that do
not follow the same orientation and we need to know
where exactly is the door. Finally, the text recogni-
tion task, where given some crops of images where
text appears, we aim to provide sequences of recog-

nized characters. These texts can have multiple orien-
tations such as horizontal or vertical writing and can
have occlusions.

All these visual tasks will be processed inde-
pendently in each camera defined previously. Each
camera’s instance reads from its stream and starts
analysing the image before sending a message
through a broker with its results. Thus, we propose
the following algorithm to process multiple tasks.
Input: image
damages = Segmentation.infer(image)
detections = Detection.infer(image)
textsDetection = detections.getTextDet()
containers = NonMaxSup(damages, detections)
IF no containers
sendEmptyMessage()

ENDIF
IF Camera is Cl or Cr
door = Classifier.infer(image)

ENDIF
FOR container in containers
croppedImage = CropFromContainer(image,

container)
textsDet = TextDetection.infer(croppedImage)

ENDFOR
texts = textsDetection + textsDet
FOR bbox in texts
IF bbox not visited
btree = Node(bbox)

ENDIF
FOR bbox+1 in texts
IF bbox+1 not visited

inserted = btree.insert(bbox+1)
ENDIF
IF inserted

bbox+1 is visited
ENDIF
btreelist.append(btree)

ENDFOR
FOR btree in btreelist
bbox = btree.getbbox()
cropText = CropFromText(image, bbox)
letters = CharRecog.infer(cropText)

ENDFOR
sendMessage(detections, damages,

door, letters)

First, we infer the bounding boxes location of the
container using two different models. If the same con-
tainer is detected from both models, we perform a non
maximum suppression in order to remove those sim-
ilar containers. On the other hand, if no container is
found, we prepare and send an empty message. Ad-
ditionally, we infer the IMDG and the texts’ location,
we classify the image as Door or NoDoor and we pro-
vide the segmentation of the damages. Once we have
all the predictions ready, we include them in the mes-
sage to be sent only if the container’s confidence is
above a given threshold. We also perform the recog-
nition of the detected text. In order to do so, we use

Pipeline for Visual Container Inspection Application using Deep Learning

407



the CRAFT (Baek et al., 2019) detector in addition to
our trained character detector to generate a list of text
bounding boxes. The reason we use CRAFT along
with our trained model is because it is more robust on
horizontal orientation rather than vertical orientation.
As it is needed to provide solid results in both cases,
we decided to merge both models’ detections using a
binary tree. Due to visual distortion or model’s preci-
sion, the predictions do not line precisely in the same
orientation. Therefore, to solve these issues we group
these bounding boxes either horizontally or vertically.
Using a binary tree allows to be efficient while being
able to customize the insertions within the tree. We
traverse each bounding box while creating a binary
tree if it has not been previously inserted in another
tree. Subsequently, we get the bounding box for each
tree and use our character detector network in order to
provide a single text for each box. In order to insert a
bounding box inside the binary tree, certain tolerance
angle is used, and they are determined according to
empirical experience.

Finally, once all the tasks has been processed, we
encode a message in Base64 and send it via our Kafka
broker as a JSON message which will be read by the
heuristic algorithm.

3.4 Heuristic Algorithm

The main objective of the heuristic algorithm is to
process the raw information from the multiple detec-
tions in the video stream and provide some useful in-
sights. As we can see in Figure 4, the algorithm is
composed by multiple modules that handle the infor-
mation along time and once the container has disap-
peared, it fuses the information extracted from the se-
quence. The proposed modules used are the Prepro-
cess, the imFusion, the checkIso, the seqFusion and
the sendContainer. The algorithm works as follows.
After the visual inspection tasks are executed, some
rule decisions must be defined so that the data de-
tected can be post analysed. In order to process the
data, we must take into consideration sequences of
containers. This means that when a container is de-
tected for the first time in a camera, a possible report
will start to be considered. However, due to the pro-
posed setup, a minimum of one JSON message will be
received from the Kafka client up to a 4 in total from
all the multiple video streams. We will consider that
the container sequence has ended when no detection
has been provided during a given time. First of all,
M = max(1,mcameras) received JSON messages will
be pre-processed. We check first if multiple contain-
ers are next to each other, and their Intersection over
Union (IoU) is less than a certain threshold. If this

condition does not apply, it will remove the one with
lower confidence. This is done to avoid multiple false
positive detections and to detect multiple containers
that can be carried in a single journey. Next, it checks
if all the detected damages are inside its correspon-
dent container. Regarding the imFusion module, it
restructures the data and aggregates the four indepen-
dent streams to one, so it makes it clear and easier to
work with. It also changes the text confidence accord-
ing to the face. We weight more Cl and Cr cameras
as they are nearer the trajectory of the container tend
to have more resolution on the text. Thus, providing
a better prediction of the detected text. The checkISO
module is in charge of proving that the different pro-
posed text comply with the ISO6346 regulation (ISO,
2022). The ISO6346 code consists of three parts: four
capital letters, six digits, and one check digit. There
may be extra characters, but these eleven ISO char-
acters are defined by the ISO standard are considered
unique. To do so, we iterate over all the candidates
that have 11 characters and check the text using the
corresponding steps proposed in the ISO (ISO, 2022).
If the last control digit is correct after the calculations,
then the proposed text is validated. Otherwise, the
proposal is discarded. In addition, the Type and Size
code are also provided and checked by using look up
tables. The seqFusion module, is in charge of stor-
ing and aggregating all the information within a frame
and to provide the final information over time. We de-
fine then a sequence as a set of frames-timesteps that
refers to the same element(s) (one or two containers).
Therefore, it fuses all the data from the different in-
stances and provides a single JSON, sets the times-
tamp range, the identifiers, the IMDG, the doors, the
damages and finally outputs a JSON file with all the
information. The detailed algorithm is the following:
function seqFusion(timestamp, data):

checkFinished(timestamp,data)
IF finished

setTimestampRange()
setIDS()
setIMDG()
setDoor()
setDamages()
resetVariables()
return data

ENDIF
function checkFinished(timestamp,data):

FOR i, k in enumerate(data)
sequencedata[k] += data[k]

ENDFOR
IF sequencedata is empty

begin_timestamp = timestamp
last_timestamp = timestamp

ENDIF
IF timestamp - last_timestamp > th_time

return True

NCTA 2022 - 14th International Conference on Neural Computation Theory and Applications

408



ELSE
last_timestamp = timestamp
return False

The modules used inside seqFusion are:

• setTimestampRange: Set the timestamp from the
beginning to the end.

• setIDS: Set one or more identification numbers
that passed the ISO check. If no text is detected
set it as UNKNOWN. If multiple ID are available,
it checks the coordinates and decide which one is
on the left and on the right.

• setIMDG: Get the unique IMDG detections and
set the face where it was located. In case multiple
containers are present, location will determine in
which containers they should go.

• setDoor: For Cl and Cr cameras, set door face
as the maximum occurrences predicted. In case
there are multiple containers, and their doors are
not visible, set to NO VISIBLE.

• setDamages: Similar to IMDG, get the unique
damage for all detections and set the face where
located. In case of multiple containers, location
will determine in which containers they should go.

Figure 4: Overall pipeline for the heuristic algorithm defin-
ing the different modules.

4 EXPERIMENTS AND RESULTS

In this section, we demonstrate how training a model
using precisely created synthetic images can yield re-
sults that are competitive with those of real datasets,
which are challenging to get due to private entities
in port environments and the difficulties of anno-
tating them. In addition, we show how our pro-
posed pipeline and heuristic algorithm can provide
useful information from multiple streams of videos.
For training and evaluation purposes, we used a sin-
gle NVIDIA Tesla V100-SXM2 of 32 GB. All the

tasks have been validated and tested using a synthetic
dataset previously mentioned that has not been seen
during training.

4.1 Visual Container Tasks

Using a Cascade Mask R-CNN (Cai and Vasconcelos,
2019), we solved detection and segmentation simul-
taneously. We utilize the detection power of cascade
regression using a mix of Cascade R-CNN and Mask
R-CNN. After that, we segment the detections using
the Mask R-CNN. We trained the model for 20 epochs
with a decreasing learning rate at 16 and 19 epochs.
We used the MMDetection framework (Chen et al.,
2019) in Pytorch, with a batch size of 16 samples and
a ResNet50 (He et al., 2016) backbone with an input
image of 1333x800. We provide the average precision
(AP) for an intersection over the union (IOU) thresh-
old of 0.5 (AP50), 0.75 (AP75) and 0.5:0.05:0.95 (AP).
We also provide these metrics for small, medium and
large objects (APS, APM , APL), for detection in Table 1
and segmentation in Table 2. As we can see, we have
solid results, especially in large objects but the net-
work has troubles detecting smaller objects. Never-
theless, regarding the detection and segmentation we
have a viable method.

Table 1: Average precision of detection of damages.

AP AP50 AP75 APS APM APL
71.5 89.9 79.2 12.5 50.3 77.8

Table 2: Average precision of segmentation of damages.

AP AP50 AP75 APS APM APL
67.5 88.6 74.4 12.6 45.8 73.3

Regarding the detection of the IMDG markers, we
used YOLOv5 using Ultralytics Pytorch framework
(Jocher et al., 2021). We trained the model for 150
epochs with learning rate of 0.01 using all 28 classes.
We used a batch size of 16 and an input image reso-
lution of 640x640 letterbox scaled. As we can see in
Table 3, some classes are simpler to distinguish from
others. Some classes have greater inter-class corre-
lation than others, making it more difficult to distin-
guish between them. Other classes, however, have
more pronounced and robust visual traits, and the de-
tector can quickly detect them. With a mAP of 74.9,
the detector’s overall precision reaches a precision of
67.9 and a recall of 84.0. Even if the results can po-
tentially be improved, we believe that these results
present also a baseline to help further research in this
field.

The door/no door classification has been solved
using ResNet-50. We trained the model for 100

Pipeline for Visual Container Inspection Application using Deep Learning

409



Table 3: Metrics for items detection model.

Class P R AP50 AP
text 89.0 87.9 91.5 73.2
C1.1 54.5 59.3 65.2 59.0
C1.2 29.3 42.8 28.9 26.0
C1.3 28.9 49.9 30.3 27.4
C1.4 30.6 54.7 34.5 31.3
C2.1 50.4 65.4 53.3 47.8
C2.2 46.4 71.6 47.7 42.4
C2.3 87.3 98.7 98.9 87.6
C2.4 80.5 96.5 97.0 87.8
C2.5 43.1 72.7 46.3 40.7
C3.1 45.7 86.3 47.8 42.8
C3.2 49.2 83.1 51.5 45.7
C4.1 85.0 97.7 98.8 89.9
C4.2 90.8 95.6 97.4 88.0
C4.3 89.0 96.6 98.3 89.2
C4.4 85.5 97.5 97.9 88.7
C5.1 90.4 97.1 98.4 89.6
C5.2 91.4 96.0 97.6 89.3
C5.3 83.8 97.1 97.9 89.3
C6.1 47.2 69.0 49.0 44.1
C6.2 65.3 78.3 80.7 72.6
C7.1 78.0 94.6 95.0 85.1
C7.2 47.1 88.4 52.1 46.4
C7.3 85.1 88.0 92.6 83.7
C7.4 51.9 91.5 52.6 46.0
C8.1 88.7 98.4 98.5 89.3
C9.1 87.5 97.3 97.3 86.9

container 100 100 99.5 99.5

epochs. We carried out two main experiments. The
first one was using a subset from cameras Cl and Cr
and the second one, containing more negatives, we
used the camera Cr as positives images and Cl , A and
B cameras as negative images. We can see excellent
outcomes in Table 4. Although some false positives
have surfaced in experiment two due to the fact that
we added more negatives, the classifier keeps the ac-
curacy and recall quite high.

Table 4: Precision and recall of door classification.

Precision Recall
Experiment 1 100 100
Experiment 2 90.4 96.0

Finally, the text recognition task has been solved
training a character detector which can handle the hor-
izontal and vertical text recognition. We trained a
YOLOv5 for 150 epochs with learning rate of 0.01
and used all Latin letters from A to Z and numbers
from 0 to 9. We used a batch size of 16 and an input
image resolution of 640x640 letterbox scaled. Model
was trained with 9.600 images and validated with
2.400 images. The data used was entirely syntheti-
cally generated, trying to minimize the domain gap
effect between real and synthetic using an iterative er-
ror analysis procedure. Regarding the text recogni-

tion, we used crops from the SeaFront synthetic data.
We achieve a character precision and recall of 83.16%
and 66.82% respectively. In addition, we calculated
the Normalized Edit Distance (1-N.E.D) with a value
of 62.78%. It seems that we might have low values,
but this dataset is pretty challenging as multiple oc-
clusions might occur due to IMDG markers placed
in text, deformations or perforations removing part of
the text or the same structure can hide parts of the text.

4.2 Pipeline Testing

In order to validate the entire pipeline, we follow the
same methodology as stated previously using syn-
thetic data. Thus, we created 20 sequences that con-
sists of a single container being loaded with an STS
crane. We calculate the accuracy of the different vi-
sual tasks for the outcomes of all sequences. As we
can see in Table 5, we have solid results in most
of the tasks. We are able to perform really well
in the ID recognition, the IMDG detection and the
Door/NoDoor classification. However, we do not per-
form that great on damage detection as it leads to lots
of false positive due to unseen negative samples, such
as when there is no container visible on one of the
cameras.

Table 5: Accuracy of the different tasks within the se-
quence.

ID IMDG Damages Doors
75.0 71.1 33.1 95.0

5 CONCLUSIONS

This study presents a pipeline with state-of-the art al-
gorithms that allows the first step towards automatiz-
ing port tasks. We overcome the restrictions imposed
by the capture of real tagged images using synthetic
data and provide results and baselines for multiple vi-
sual container inspection tasks.

By combining multiple tasks within the presented
pipeline, we are able to automatize a loading and un-
loading process of an STS by using deep learning and
computer vision techniques. These tasks have been
validated using synthetic data. In addition, we pro-
posed an algorithm that tackle the issue of ID recog-
nition by using multiple deep learning algorithms and
a custom binary tree.

We also presented a heuristic algorithm that it is
a set of rules that are connected logically and are
designed to solve the presented issue. We are able
to process multiple tasks and extract useful insights
from multiple video streams. Therefore, proposing a

NCTA 2022 - 14th International Conference on Neural Computation Theory and Applications

410



pipeline that can be used for automatizing the current
STS cranes.

6 FUTURE WORK

Future work includes extending the inspection tasks
in order to automatize even further the current man-
ual tasks and increase the performance of the cur-
rent ones, as some still have room for improvements.
Also, we would like to investigate state-of-the art
deep learning models using temporal information in
order to provide better results to the heuristic algo-
rithm. In addition, we would like to study with an
extended research regarding the potential domain gap
between synthetic data and real data.

ACKNOWLEDGEMENTS

This work has been partially done under the frame
of the project 5GLOGINNOV (Grant agreement ID:
957400) funded by the European Comission under
the H2020-ICT-2018-20 programme, within the topic
ICT-42-2020 - 5G PPP – 5G core technologies inno-
vation.

REFERENCES

Aranjuelo, N., Garcı́a, J., Unzueta, L., Garcı́a, S., Elordi,
U., and Otaegui, O. (2021). Building synthetic simu-
lated environments for configuring and training multi-
camera systems for surveillance applications. In VISI-
GRAPP (5: VISAPP), pages 80–91.

Baek, Y., Lee, B., Han, D., Yun, S., and Lee, H. (2019).
Character region awareness for text detection. In
CVPR, pages 9365–9374.

Bahrami, Z., Zhang, R., Rayhana, R., Wang, T., and Liu,
Z. (2020). Optimized deep neural network architec-
tures with anchor box optimization for shipping con-
tainer corrosion inspection. In 2020 IEEE SSCI, pages
1328–1333. IEEE.

Bu, W., Yan, S., Chen, J., Yang, C., and Liu, C. (2018).
Visual recognition of container number with arbitrary
orientations based on deep convolutional neural net-
work. In 2018 10th IHMSC, volume 2, pages 204–
207. IEEE.

Cai, Z. and Vasconcelos, N. (2019). Cascade r-cnn: high
quality object detection and instance segmentation.
IEEE transactions on pattern analysis and machine
intelligence, 43(5):1483–1498.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X.,
Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng,
D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu,
R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W.,

Loy, C. C., and Lin, D. (2019). MMDetection: Open
mmlab detection toolbox and benchmark.

Cortés, A., Rodrı́guez, C., Vélez, G., Barandiarán, J., and
Nieto, M. (2022). Analysis of classifier training
on synthetic data for cross-domain datasets. IEEE
Transactions on Intelligent Transportation Systems,
23(1):190–199.

Delgado, G., Cortés, A., Garcı́a, S., Aranjuelo,
N., Loyo, E., and Berasategi, M. (2022).
Seafront: Synthetic dataset for visual container
inspection. https://datasets.vicomtech.org/di21-
seafront/readme.txt.

Feng, X., Wang, Z., and Liu, T. (2020a). Port container
number recognition system based on improved yolo
and crnn algorithm. In 2020 AIEA, pages 72–77.
IEEE.

Feng, X. Q., Liu, Q., and Wang, Z. W. (2020b). Port con-
tainer number detection based on improved east algo-
rithm. In Journal of Physics: Conference Series, vol-
ume 1651, page 012088. IOP Publishing.

Filom, S., Amiri, A. M., and Razavi, S. (2022). Applica-
tions of machine learning methods in port operations–
a systematic literature review. Transportation Re-
search Part E: Logistics and Transportation Review,
161:102722.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR, pages
770–778.

ISO (2022). ISO 6346:2022 Freight containers — Coding,
identification and marking. International Organization
for Standardization.

Jocher, G., Stoken, A., Chaurasia, A., Borovec, J.,
NanoCode012, TaoXie, Kwon, Y., Michael, K.,
Changyu, L., Fang, J., V, A., Laughing, tkianai,
yxNONG, Skalski, P., Hogan, A., Nadar, J., imyhxy,
Mammana, L., AlexWang1900, Fati, C., Montes, D.,
Hajek, J., Diaconu, L., Minh, M. T., Marc, albinx-
avi, fatih, oleg, and wanghaoyang0106 (2021). ul-
tralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models,
Roboflow integration, TensorFlow export, OpenCV
DNN support.

Li, X., Liu, Q., Wang, J., and Wu, J. (2020). Container dam-
age identification based on fmask-rcnn. In Interna-
tional Conference on Neural Computing for Advanced
Applications, pages 12–22. Springer.

Verma, A., Sharma, M., Hebbalaguppe, R., Hassan, E., and
Vig, L. (2016). Automatic container code recognition
via spatial transformer networks and connected com-
ponent region proposals. In 2016 15th ICMLA, pages
728–733. IEEE.

Wang, Z., Gao, J., Zeng, Q., and Sun, Y. (2021). Multi-
type damage detection of container using cnn based
on transfer learning. Mathematical Problems in Engi-
neering, 2021.

Zhiming, W., Wuxi, W., and Yuxiang, X. (2019). Automatic
container code recognition via faster-rcnn. In 2019 5th
ICCAR, pages 870–874. IEEE.

Pipeline for Visual Container Inspection Application using Deep Learning

411


