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Abstract: The article discusses the application of the solution of the Boussinesq problem to determine the pressure on 
the load-bearing arched structure element of a soil-filled bridge structure, taking into account: the distribution 
of pressure in the soil from the test static load along the widths of the roof of the bearing element, the 
horizontal component of the pressure from the impact of the static test load, the repulsion of the soil mass due 
to the introduction bed rest. As a result, the values obtained in the study of the displacements of sections of 
the bearing element at characteristic points with the values obtained during field tests of a road bridge in the 
Vologda Region at 156 km of the A—114 Vologda - Novaya Ladoga highway. 

1 INTRODUCTION 

Currently, the spread of backfill bridges is limited due 
to many factors, one of which is the lack of a simple 
and logically reflecting the work of the design of the 
methodology for taking into account temporary loads 
(Heger, 1982; Heger, 1985). 

Such artificial structures are calculated using finite 
element models created in modern automated software 
systems (Rubin, 2016; Shamshina, 2018; Permikin, 
2020). However, the results obtained with such 
calculations are difficult to analyze and verify, and the 
values of the forces in the structural elements are often 
overestimated (Safronov, 2010). The models 
themselves are difficult to construct and perceive, and 
modeling of soil backfill with a lack of experience in 
designing soil-filling structures is difficult to 
implement due to the unpredictable behavior of the 
soil mass over time (Kevin, 2016; Erdogmus, 2010). 

In the course of previous research on the topic of 
an analytical approach to modeling the distribution of 
pressure from a temporary load (Volkov, 2019), it was 
noted that the application of the solution of the 
Boussinesq problem (Khan, 1988; Gorbunov-
Posadov, 1985) to determine the pressure on the load-
bearing structural element gives unsatisfactory errors 
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based on the results of comparing the deflections 
obtained with the deflections obtained during static 
load tests of the bridge. 

The authors propose to improve the laws of 
pressure distribution and achieve greater convergence 
of the calculation results with the results of full-scale 
static tests by introducing the following calculation 
provisions: 

1. accounting for the distribution of pressure in 
the soil thickness from the static test load along the 
width of the arch of the bearing element; 

2. taking into account the horizontal component 
of the pressure from the impact of a static test load; 

3. taking into account the resistance of the soil 
massif by introducing the coefficient of subgrade 
reaction. 

To confirm the consistency of the method 
proposed by the authors for collecting temporary 
loads on the bearing element of a backfill bridge, a 
correlation was carried out between the values 
obtained during the study of the displacement of the 
sections of the bearing element at characteristic points 
with the values obtained during field tests of a road 
bridge in the Vologda Region at 156 km of the A—
114 Vologda - Novaya Ladoga highway (Safronov, 
2010). 
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2 INITIAL DATA 

The physical and mechanical properties of the soil 
massif were adopted based on the results of 
laboratory studies and field tests that have been 
preserved since the construction (Table 1). 

Table 1: The physical and mechanical properties of the 
soil massif 

Modulus of 
deformation 
E, MPa 

Poisson's 
ratio v 

Coefficient 
of 
adhesion c, 
MPa 

Internal 
friction 
angle 
φ, 
degrees 

Ultimate 
tensile 
stress R 

t, MPa 

22.6 0.3 0.001 30 0 

To obtain the displacements of the arch nodes in 
characteristic sections, the authors propose to use the 
PC "LIRA-CAD".  

As initial data, the concentrated loads from the 
wheels of a three-axle car Ni, the coordinates of the 
points of forces x of the application of loads, the 
radius of the arch of the backfill bridge R, the width 
of the arch along the ground B were used.  

The vertical pressure from the filling ground and 
the own weight of the structure are not taken into 
account, since during field tests it was the relative 
displacements of the sections from the static test load 
that were measured. 

3 BUILDING A GEOMETRIC 
SCHEME 

As a design scheme, a two-hinged, once statically 
indeterminate circular arch with a radius along the 
neutral axis R = 6 m, the width of the arch along the 
edge of the filling B = 14 m, the total width of the arch 
b = 16 m was adopted. When constructing a 
geometric scheme, the curved elements of the arch 
between the nodes located on the axis were replaced 
by rectilinear rods due to the specifics of constructing 
flat calculation schemes in the Lira PC.  

The step of the arrangement of nodes with 
numbers i = 1,3—49 on the x axis in the geometric 
scheme is 0.5 m. Then each of the 24 circular 
segments obtained was divided in half by the bisector, 
and the intersection points of the bisector and the 
neutral axis were modeled by nodes numbered 
i=2,4—48. Number of nodes – 49 pcs. Number of 
rods -48 pcs. 

The load from a three-axle VOLVO FM 400 car 
with a total weight of 41 tons with a load on the rear 
trolley of 312 kN and the front axle of 90 kN will be 

taken as six concentrated forces (from each wheel in 
three axes) 𝑁 , = 78 кН; 𝑁 , = 78 кН; 𝑁 , =45 кНand positioned symmetrically relative to the 
axis of the roadway with coordinates𝑦 = ±1,05 м, 
and relative to the arch lock - according to the loading 
schemes shown in Figures 1, 2, 3. Loading schemes 
in Figure 1 correspond to loading schemes when 
measuring deflections in sections n=II, III, IV 
(Safronov, 2010). 

 
A) 

 
B) 

 
C) 

Figure 1: Schemes of loading the bridge with a test load 
when measuring deflections in the section a) n = II 
(Safronov, 2010); b) n= III (Safronov, 2010); c) n= IV 
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(2)

(3)

4 DETERMINATION OF 
VERTICAL PRESSURE ON THE 
ARCH SURFACE 

The law of distribution and transmission of vertical 
pressure in a soil massif along the length of the arch 
span is generally accepted in the form of the 
Boussinesq problem (Khan, 1998): 𝑝 = ∙ ∙∙ ∙( ) , ,  (1) 

where p jnz is the value of the transmitted vertical 
pressure from the force N j at the point of the half-
space in the section n, kN/m2 (n=II, III, IV); 

N j is the value of the concentrated load from the 
wheel , kN (j=1, 2, 3, 4, 5, 6); 

z is the depth of the point at which the pressure is 
determined; 

x is the coordinate of the horizontal projection of 
the point at which the pressure is determined, relative 
to the arch lock. 

The laws of vertical pressure change 𝑝 (𝑥, 𝑦)have the following form, shown in Figures 
2, 3, 4 

 
Figure 2: Stress distribution p II z on the surface of the arch. 

 
Figure 3: Stress distribution p III z on the surface of the arch. 

 
Figure 4: Stress distribution p IV z on the surface of the 
arch. 

Laws of change of vertical distributed force P j II 
z, Pj III z, Pj IV z (kN/m), allowing to determine the load 
at any point located on the axis of the arch, from each 
of the concentrated forces N j have the form. 

 𝑃 ,   (𝑥)=  117
∙ ((36 – 𝑥 ) . –  6.67)π ∙ (((36 – 𝑥 ) . – 6.67) + ( 𝑥 + 4.4) + (𝑦 ± 1,05) ) . 𝑑𝑦 

 𝑃 ,   (𝑥)=  117
∙ ((36 – 𝑥 ) . –  6.67)π ∙ (((36 – 𝑥 ) . – 6.67) + (𝑥 + 3) + (𝑦 ± 1,05) ) . 𝑑𝑦 

 𝑃 ,   (𝑥)= 67,5
∙ ((36 – 𝑥 ) . –  6.67)π ∙ (((36 – 𝑥 ) . – 6.67) + ( 𝑥 –  0.7) + (𝑦 ± 1,05) ) . 𝑑𝑦 

 𝑃 ,   (𝑥)=  117
∙ ((36 – 𝑥 ) . –  6.67)π ∙ (((36 – 𝑥 ) . – 6.67) + ( 𝑥 + 1.4) + (𝑦 ± 1,05) ) . 𝑑𝑦 

 𝑃 ,   (𝑥)=  117 ∙ ((36 –  𝑥  ) . –  6.67)π ∙ (((36 – 𝑥 ) . – 6.67) + 𝑥 + (𝑦 ± 1,05) ) .  𝑑𝑦 

 𝑃 ,   (𝑥)= 67,5
∙ ((36 – 𝑥 ) . –  6.67)π ∙ (((36 – 𝑥 ) . – 6.67) + ( 𝑥 –  3.7) + (𝑦 ± 1,05) ) . 𝑑𝑦 

(4) 

(5)

(6) 

(7) 
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 𝑃 ,   (𝑥)=  234
∙ ((36 –  𝑥 ) . –  6.67)π ∙ (((36 –  𝑥 ) . –  6.67) + ( 𝑥 − 1.6) + (𝑦 ± 1,05) ) . 𝑑𝑦 𝑃 ,   (𝑥)=  234
∙ ((36 –  𝑥 ) . –  6.67)π ∙ (((36 –  𝑥  ) . –  6.67) + (𝑥 − 3) + (𝑦 ± 1,05) ) . 𝑑𝑦 

 𝑃 ,   (𝑥)= 135
∙ ((36 – 𝑥 ) .  –  6.67)π ∙ (((36 – 𝑥 ) .  –  6.67) + ( 𝑥 –  6.7) + (𝑦 ± 1,05) ) . 𝑑𝑦 

The laws of pressure change are compiled taking 
into account the minimum filling thickness along the 
road axis of 0.67 m (Safronov, 2010). 

The area of determination of the laws (2) — (10) 
along the x axis are the intervals selected taking into 
account the possibility of transferring pressure from a 
concentrated force. The boundaries of the intervals 
are the points of contact with the surface of the arch 
of radius vectors originating at the place of 
application of loads N j (Figures 5, 6, 7). 

 
Figure 5: Places where the radius vectors touch the arch 
surface. Section n=II. 

 
Figure 6: Places where the radius vectors touch the arch 
surface. Section n=III. 

 
Figure 7: Places where the radius vectors touch the arch 
surface. Section n=III. 

The total ordinates of pressure P nz over the entire 
span of the arch for each of the sections n are found 
by the superposition principle 𝑃 = ∑ 𝑃 .    (11) 

The laws of load change 𝑃 (𝑥) have the 
following form, presented in Figures 8, 9, 10. 

 
Figure 8: Distributed load values P II z along the longitudinal 
axis of the arch. 

 
Figure 9: Distributed load values P III z along the 
longitudinal axis of the arch. 
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Figure 10: Distributed load values P IV z along the 
longitudinal axis of the arch. 

5 DETERMINATION OF 
HORIZONTAL PRESSURE ON 
THE ARCH SURFACE 

The law of distribution and transmission of vertical 
pressure in a soil massif along the length of the arch 
span is generally accepted in the form of the 
Boussinesq problem (Khan, 1998): 𝑝 = ∙ ∙ ∙∙ ∙( ) , ,   (11) 

notation in formula (11) – see notation in formula 
(1). 

The laws of change of horizontal pressure Pjnx 
from each of the concentrated forces along the span 
length have the form 

𝑃 ,   (𝑥)=  117
∙ ((36 –  𝑥  ) . –  6.67) ∙ (𝑥 + 4.4)π ∙ (((36 –  𝑥 ) . –  6.67) + ( 𝑥 + 4.4) + (𝑦 ± 1,05) ) .  𝑑𝑦 

(12)  

 𝑃 ,   (𝑥)=  117
∙ ((36 –  𝑥  ) . –  6.67) ∙ (𝑥 + 3.0)π ∙ (((36 –  𝑥  ) . –  6.67) +  (𝑥 + 3.0) + (𝑦 ± 1,05) ) .  𝑑𝑦 

(13)  

 𝑃 ,   (𝑥)= 67.5
∙ ((36 – x ) .  –  6.67) ∙ (𝑥 − 0.7)π ∙ (((36 – x ) .  –  6.67) + ( x –  0.7) + (y ± 1,05) ) .  𝑑𝑦 

(14)  

 𝑃 ,   (𝑥)=  117
∙ ((36 –  𝑥  ) . –  6.67) ∙ (𝑥 + 1.4)π ∙ (((36 – 𝑥 ) . – 6.67) + ( 𝑥 + 1.4) + (𝑦 ± 1,05) ) .  𝑑𝑦 

(15)  

 𝑃 ,   (𝑥)=  117 ∙ ((36 –  𝑥  ) . –  6.67) ∙ 𝑥π ∙ (((36 –  𝑥  ) . –  6.67) +  𝑥 + (𝑦 ± 1,05) ) .  𝑑𝑦 
(16)  

 𝑃 ,   (𝑥)= 67.5
∙ ((36 – x ) .  –  6.67) ∙ (𝑥 − 3.7)π ∙ (((36 – x ) . – 6.67) + ( x – 3.7) + (y ± 1,05) ) .  𝑑𝑦 

(17)  

 𝑃 ,   (𝑥)=  117
∙ ((36 –  𝑥  ) . –  6.67) ∙ (𝑥 − 1.6)π ∙ (((36 –  𝑥 ) . –  6.67) + ( 𝑥 − 1.6) + (𝑦 ± 1,05) ) .  𝑑𝑦 

(18)  

 𝑃 ,   (𝑥)=  117
∙ ((36 –  𝑥  ) . –  6.67) ∙ (𝑥 − 3.0)π ∙ (((36 –  𝑥  ) . –  6.67) +  (𝑥 − 3.0) + (𝑦 ± 1,05) ) .  𝑑𝑦 

(19)  

 𝑃 ,   (𝑥)= 67.5
∙ ((36 – x ) .  –  6.67) ∙ (𝑥 − 6.7)π ∙ (((36 – x ) .  –  6.67) + ( x –  6.7) + (y ± 1,05) ) .  𝑑𝑦 

(20)  

The area of determination of the laws (12) — (20) 
along the x axis are the intervals selected taking into 
account the possibility of transferring pressure from a 
concentrated force (see Figures 7, 8, 9). 

The total pressure ordinates Pnx over the entire 
span of the arch for each of the sections n are found 
by the superposition principle 𝑃 = 𝑃 .                                (21) 

It is worth noting that the rods with node numbers 
1-25 are assigned only those loads P n x that have a 
positive direction relative to the x axis, that is, with a 
positive sign before the ordinates. Rods with node 
numbers 25-49 are assigned only those loads P n x that 
have a negative direction relative to the x axis, that is, 
with a negative sign before the ordinates. 
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Ordinate values of distributed loads P II z, PIII z, PIV 
z, PII x, PIII x, PIV x are shown in table 2. 

6 DETERMINATION OF 
COEFFICIENTS OF 
SUBGRADE REACTION 

The coefficients of subgrade reaction c 1 for each rod 
are calculated in accordance with Appendix B (SP 
24.13330.2011 ). The coefficient of subgrade reaction 
in the Lira PC acts in the direction of the local axis of 
the rod z. The calculated value of the coefficient of 
subgrade reaction is found by the formula  𝑐 = 𝑐 / 𝑠𝑖𝑛 ε , (22)

The coefficient of subgrade reaction is set only to 
those rods whose movement occurs "beyond" the 
contour of the undeformed circuit. 

The values of the coefficients of subgrade 
reaction for the left half of the arch are given in Table 

3. The values of the coefficients of subgrade reaction 
for the right half of the arch are similar to those given. 

7 DETERMINATION OF 
DISPLACEMENTS 

To determine the displacements of the desired 
sections z k, the authors proposed to use the Mohr 
method using the rule of A.K. Vereshchagin (Volkov, 
2019; Polyakov, 2011).  

The displacements were calculated taking into 
account the influence of longitudinal forces and 
shearing forces arising in the rods according to the 
formulas (Polyakov, 2011 ): 𝑍 = 𝑀 𝑀𝐸𝐼 𝑑𝑥 + 𝑁 𝑁𝐸𝐴 𝑑𝑥 + 𝑄 𝑄𝐺𝐴 𝑑𝑥, 
𝑋 = 𝑀 𝑀𝐸𝐼 𝑑𝑥 + 𝑁 𝑁𝐸𝐴 𝑑𝑥 + 𝑄 𝑄𝐺𝐴 𝑑𝑥, 

Table 2: Ordinate values of distributed loads. 

x, m i P II z, kN/m P III z, 
kN/m P IV z, kN/m P II x, kN/m P III x, kN/m P IV x, kN/m 

-6.0 1 - - - - - - 

-5.5 3 19.67 - - -5.06 - - 

-5.0 5 43.02 - - -14.25 - - 

-4.5 7 57.59 - - -13.13 - - 

-4.0 9 73.02 7.72 - -6.36 -9.13 - 

-3.5 11 82.75 9.79 - 4.42 -11.44 - 

-3.0 13 85.90 14.15 - 17.64 -15.36 - 

-2.5 15 66.60 27.63 - 35.30 -28.42 - 

-2.0 17 28.21 57.78 - 27.81 -39.85 - 

-1.5 19 8.98 119.41 0.58 11.85 -25.37 -2.10 

-1.0 21 4.36 97.55 0.94 2.05 19.33 -3.51 

-0.5 23 5.99 81.72 1.57 -5.59 -19.41 -5.22 

0.0 25 19.95 153.44 3.64 -18.46 10.28 -9.42 

0.5 27 70.85 64.02 12.23 -19.07 49.43 -21.01 

1.0 29 56.79 18.75 51.42 23.34 24.89 -44.84 

1.5 31 19.15 8.99 119.45 17.81 11.85 -25.64 

2.0 33 8.07 7.95 98.59 10.35 1.54 3.66 

2.5 35 4.61 15.03 94.06 6.83 -5.82 -0.30 

3.0 37 3.27 25.85 86.60 5.10 -12.28 15.86 

3.5 39 - 31.06 61.54 - -3.46 22.97 

4.0 41 - 25.03 44.18 - 3.42 19.16 

4.5 43 - 17.77 28.74 - 5.26 5.65 

5.0 45 - 12.65 26.25 - 4.90 4.00 

5.5 47 - 9.25 11.08 - 3.90 -3.11 

6.0 49 - - 7.46 - - -0.78 
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where M nz, Q nz, N nz are diagrams of bending 
moments, longitudinal forces and shearing forces 
from the action of the test load in sections n; 

M kz, Q kz, N kz – diagrams of bending moments, 
longitudinal forces and shearing forces from the 
action of a single load in the direction of the z axis at 
node k; 

M kx, Q kx, N kx – diagrams of bending moments, 
longitudinal forces and shearing forces from the 
action of a single load in the direction of the x axis at 
node k; 

E – modulus of elasticity of the construction 
material; 

G is the shear modulus of the construction 
material; 

I red is the axial moment of inertia of the reduced 
section; 

A red is the area of the reduced section. 
It is advisable to compare with the results of field 

tests the displacements from the Lira PC, calculated 
by the formula 

Δ = 𝑋 + 𝑍 , 
where X n k is the horizontal displacement of the k-

th characteristic section of the arch; 
Z n k — vertical displacement of the k-th 

characteristic section of the arch;  
Δ nk is the total displacement of the k-th 

characteristic section of the arch. 
Displacements X n k and Z n k The complete 

displacements of the characteristic cross sections of 
the arch Δ n k, mm, located in 0.25 L, 0.5 L and 0.75 L 
span are shown in Table 4. 

Table 4: Calculated displacements of characteristic 
sections. 

k x k,m Δ II k, mm Δ III k, mm 
Δ IV k, 
mm 

1 -3 -0.16 -0.13 0.14 
2 0 -0.14 -0.36 -0.17 
3 3 0.10 -0.12 -0.22 

Table 3: Calculation of coefficients of subgrade reaction. 

i The depth of the center 
of gravity of the rod, m 

Proportionality 
coefficient, kN/m 4 

Coefficient of subgrade 
reaction c 1, kN/m3 α  Coefficient of subgrade 

reaction c z, kN/m 3 
24 25 0.67 

6,000 

4020 0.017 230341 

23 24 0.68 4080 0.070 58489 

22 23 0.7 4,200 0.105 40180 

21 22 0.74 4440 .139 31903 

20 21 0.78 4680 0.191 24527 

19 20 0.83 4980 0.225 22138 

18 19 0.9 5,400 0.276 19591 

17 18 0.97 5820 0.309 18834 

16 17 1.06 6360 0.358 17747 

15 16 1.16 6960 0.342 20350 

14 15 1.27 7620 0.485 15718 

13 14 1.41 8460 0.485 17450 

12 13 1.55 9300 0.515 18057 

11 12 1.71 10260 0.559 18348 

10 11 1.9 11400 0.602 18943 

9 10 2.09 12540 0.643 19509 

8 9 2.32 13920 0.695 20039 

7 8 2.57 15420 0.731 21084 

6 7 2.86 17160 0.777 22081 

5 6 3.19 19140 0.805 23780 

4 5 3.58 21480 0.865 24821 

3 4 4.04 24240 0.904 26819 

2 3 4.86 29160 0.951 30655 

1 2 6.06 36360 0.992 36658 
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8 COMPARISON OF THE 
OBTAINED RESULTS WITH 
THE RESULTS OF A  
FULL-SCALE EXPERIMENT 

For the convenience of comparing the existing results 
with the results obtained, we will summarize them in 
Table 5. 

9 CONCLUSIONS 

We hope you find the information in this template 
useful in the preparation of your submission. 
Comparing the calculated values of Δk with the 
calculated values obtained by modeling the structure 
in the Lira PC zk, as well as with the displacements 
obtained during full-scale tests of ze, it can be noted 
that the values calculated according to the method 
proposed by the authors have deviations of up to 17 
percent from the values obtained during full-scale 
tests. It is also worth noting that the deviations of the 
results obtained during the study are 5 times less than 
the deviations obtained during the calculation in 
(Volkov, 2019) when compared with the results of 
field tests. 

Thus, the computational model using the theory 
of a linearly deformable half-space proposed by the 
authors for calculating the pressure acting from 
temporary loads reliably reflects the work of backfill 
structures, which allows us to apply the problems of 
elasticity theory with a sufficient degree of accuracy 
to describe the distribution of stresses in the soil from 
temporary loads when collecting loads on the load-
bearing elements of backfill bridges. 
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