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Abstract: The paper investigates a one-dimensional model of a wave coming ashore with a subsequent collapse. For 
modelling, a system of shallow water equations is taken, which considers the effect of gravity. A non-
stationary self-similar variable is introduced in the system of shallow water equations. For a system of 
equations written in new variables, a boundary condition on the sound characteristic is formulated. The power 
series is used to construct the solution. Algebraic and ordinary differential equations are solved to find the 
coefficients of the series. The convergence of this series is proved. The locally analytical solution of the 
problem of wave overturning in the space of physical variables is constructed. The obtained analytical 
solutions can be useful for setting boundary and initial conditions in numerical simulation of a tsunami wave 
over a long period of time. 

1 INTRODUCTION 

Approximate shallow water equations are often used 
in numerical modelling of tsunami waves coming 
ashore. In such models, problems with a movable 
boundary are solved, in which the shoreline (the 
water-land boundary) moves to the shore. Since the 
water depth becomes zero at the shoreline, a feature 
appears in the system of equations (Vol’cinger, 
Klevannyj, Pelinovskij, 1989). To correctly account 
for this feature in calculations, it is necessary to 
construct an analytical solution in the vicinity of the 
shoreline (Hibberd, Peregrine, 1979). Earlier in 
(Carrier, Greenspan, 1958), analytical solutions of a 
system of one-dimensional shallow water equations 
were obtained to describe the output to a flat slope of 
non-collapsing standing waves. In (Carrier, Wu, Yen, 
2003) and (Kanoglu, 2004), the dependence of the 
trajectory of the point of shoreline on the initial 
waveform was considered. The formula for 
calculating the maximum value of the wave height on 
a flat angular slope was obtained in (Sanolakis, 1987). 
The models obtained in (Carrier, Greenspan, 1958; 
Carrier, Wu, Yen, 2003; Kanoglu, 2004; Sanolakis, 
1987) are approximate, since the coastal slope in them 
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is a flat slope, and not a curved surface as it is 
observed in nature. The movement of the wave on 
such a surface has a more complex form. The main 
difficulty here is to model the motion along the 
curved surface of the water-land boundary for 
crashing waves. This work is devoted to solving this 
problem. 

Note that the first approximation of the system of 
shallow water equations exactly coincides with the 
equations of motion of a polytropic gas with the 
polytropic exponent γ = 2. In this case, the shoreline 
for shallow water equations in the system of gas 
dynamics equations is the gas-vacuum boundary. In 
(Bautin, Deryabin, 2005), solutions of one-
dimensional and multidimensional problems of 
modelling gas motion in vacuum are given. In 
(Bautin, Deryabin, 2005) the problem of the breakup 
of a special discontinuity is solved. Here is the 
formulation of this problem.  

It is assumed that the surface Γ separates the gas 
from the vacuum. If the density of the gas on one side 
of the impenetrable surface of the gas is strictly 
greater than zero, and on the other is equal to zero, 
then they say that this is the problem of the breakup 
of a special discontinuity. In the problem, it is 
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required to describe the movement of gas after the 
instant destruction of the wall Γ. The self-similar 
solution of such a problem in the one-dimensional 
case was first found by B. Riemann for plane-
symmetric flows. In the future, the solution of this 
problem was constructed in special functional spaces 
after replacing the dependent and independent 
variables. Such a solution method became possible in 
(Bautin et al., 2011) to describe the overturning of the 
wave. The constructed solution has the form of a 
power series converging in the vicinity of the 
boundary. Using spatial variables, the law of motion 
of the water-land boundary is obtained and the values 
of the velocity of the liquid on it are found. In this 
paper, locally converging series are also constructed 
– the solution of the wave overturning problem, but 
unlike (Bautin et al., 2011), the solution is constructed 
using non-stationary self-similar variables in physical 
space. 

2 MATERIALS AND METHODS 

The characteristic Cauchy problem is taken as the 
object of research. In (Bautin, 2009), one can find 
formulations and proofs of theorems about the 
existence and uniqueness of solutions to such 
problems. The method of constructing solutions is as 
follows. A nonlinear system of differential equations 
describing the physical conservation laws is chosen. 
Boundary and initial conditions are set for it using 
analytical functions. A local theorem on the existence 
and uniqueness of the solution of the initial boundary 
value problem is proved. The analytical solution is 
constructed in the form of a power series, and its 
convergence is proved. 

2.1 Statement of the Problem 

The flow of an incompressible inviscid fluid without 
vortices under the action of gravity is considered. Let 
the layer of such a liquid be bounded by a free surface 
and an impermeable bottom. The Cartesian 
coordinate system is introduced so that the line z = 0 
corresponds to the level of the stationary liquid. The 
bottom is given by the function z = – h(x). 

At time t = 0, the liquid wave is separated from 
the land by the point Γ (the shoreline). Moreover, 
there is a dry shore to the left of Γ, and the sea to the 
right (fig. 1). 
 

 

 
Figure 1: Wave, shore and shoreline (point) Г. 

 
Figure 2: Waveform at time t = 0. 

 

 
Figure 3: I — dry shore, II — disturbed wave, III — 
undisturbed wave. 

Consider the system of shallow water equations in 
the first approximation (Ovsyannikov, 2003; 
Khakimzyanov et al., 2001): 

0,
,

t x x

t x x x

Н uH Hu
u uu gH gh

+ + =
+ + =

 (1.1)

where g is the acceleration of gravity, and the 
unknown functions: H is the height of the liquid 
measured from the bottom to the upper level of the 
liquid, u is the velocity of the liquid. It is also assumed 
that at time t = 0 the waveform has the form of a step 
with a straight vertical part (fig. 2). The vertical 
equation has the form x = x00, and the height of the 
vertical part is equal to H00 = H0(x00). At the initial 
moment of time, the analytical functions are known:  

0 0 00( ), ( ), .u u x H H x x x= = >   
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Moreover, it is assumed that u(x00) = u00 < 0 and for 
all x ≥ x00, the values of the function H0(x) > 0 are 
strictly positive. The fluid flow defined by such 
functions is called the background flow (undisturbed 
wave). After overturning the step at time t = 0, a 
disturbed wave is formed, which, at t > 0, is separated 
from the undisturbed wave by the line Γ1 (the line of 
weak discontinuity), from the land by the boundary 
Γ0 — the shoreline (the water-land boundary) (fig. 3): 
 

0
( , ) | 0.ГH t x =  

 
In the problem, it is required to construct 

analytical functions describing the motion of a fluid 
in the region of disturbed and undisturbed waves and 
the motion of the boundary Γ1. Note that the system 
(1.1) and the initial data satisfy the conditions of 
Kovalevskaya's theorem. According to this theorem, 
its only solution has the form (Bautin, 2009):  
 

0 0( , ), ( , ).u u t x H H t x= =  
 

In system (1.1), we introduce a new unknown 
function:  
 

1/ 2 2( , ) ( , ), ( ).C t x H t x H C= =  
 

After the transformations, we get: 
 

1 0,
2

2 .

t x x

t x x x

C uC Cu

u uu gCC gh

+ + =

+ + =
 (1.2)

 
In these new designations, the background flow 

will have the form: 
 

0

0 0
00 00

( , ),

( , ) ( , ), .

u u t x

C C t x H t x C H

=

= = =
 

 
Let's write down the differential equation and the 

initial condition for the motion of Γ1: x = x1(t) 
(Ovsyannikov, 2003): 
 

0 0
1 1 1( , ) ( , ),tx u t x gC t x= +  1 00(0) .x x=  (1.3)

 
Problem (1.3) satisfies the conditions of 

Kovalevskaya's theorem. According to this theorem, 
its solution can be represented as: 
 

1 1
0

( ) .
!

k

k
k

tx t x
k

∞

=

=  (1.4) 

Let's find the coefficients of the series (1.4). The 
zero and first coefficients of the series are from (1.3):  
 

10 00 11 00 00, .x x x u gC= = +   

The following coefficients of the series are found 
by successive differentiation of equation (1.3): 

0 0
1 .tt t tx u g C= +   

Then we get  
0 0

12 00 00(0, ) (0, ).t tx u x g C x= +   

According to the obtained formulas, as well as in 
(Bautin, 2009), the law of motion x1(t) is written using 
the analytical function x2(t) Γ1: 

1 00 2( ) ( ).x x t x t x t= = +   

The boundary conditions on Γ1 are given by the 
equations: 

1

0
( ) 1( , ) | ( , ( )),x x tu t x u t x t= =

1

0
( ) 1( , ) | ( , ( )).x x tC t x C t x t= =  

(1.5) 

To construct a disturbed wave in the system (1.2), 
we introduce non-stationary self-similar variables 
according to the following formulas: 

00, .x x
t t y

t
−′ = =   

The stroke sign is not used in the future. 
After the transformations, we get the system: 

1( ) 0,
2t y ytC u y C Cu+ − + =

00( ) 2 ( ),t y y xtu u y u gCC t gh x ty+ − + = +  
(1.6) 

with conditions on the characteristic Γ1: 

2

0
( ) 1( , ) | ( , ( )),y x tu t y u t x t= =

2

0
( ) 1( , ) | ( , ( )).y x tC t y C t x t= =  (1.7) 

2.2 Construction of a Solution in 
Physical Space 

To construct a solution of the problem (1.6), (1.7), we 
write the power series (Bautin, Deryabin, 2005): 
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0
( , ) ( ) , { , }.

!

k

k
k

tt y y u C
k

∞

=

= =f f f  (2.1) 

We will find the zero coefficients of the series 
from the system (1.6) at the value t = 0: 

0 0 0 0

0 0 0 0

1( ) 0,
2

( ) 2 0.

y y

y y

u y C C u

u y u gC C

− + =

− + =
 (2.2) 

For the existence of a non-zero solution of the 
resulting system (2.2), it is necessary that its 
determinant is equal to zero, i.e.  

2 2
0 0 0 0( ) , .u y gC u y gC− = − = ±   

Since at t = 0 on characteristic Γ1 we have 
(Ovsyannikov, 2003):  

00 00.y u gC= +   

Hence, we have:  

0 0.u y gC− = −  (2.3) 
Substituting u0 – y into the second equation of the 

system (2.2.), we get: 

0 0 0 02 , 2 ,y yu gC u gC D= = +   

where D is determined from the conditions (1.7):  

0 0 00 002 2 .u gC u gC= + −   

Substituting u0 into (2.3.), we get: 

0 00 00

0 00 00

1 ( 2 ),
3
2 2 1 .
3 3 3

C y u gC
g

u y gC u

= − +

= − +
 (2.4) 

The following relations are also valid 

0 0
1 2, .

33y yC u y
g

= =  (2.5) 

After differentiating (2.2) at t = 0, considering (2.4), 
(2.5), we obtain: 

0 1 0 1 1 1

0 1 0 1 1 1 10

2 82 0,
33

5 22 ,
33

y y

y y

C u gC C u C
g

C u gC C u C D
g

− + + =

− + + + =
 (2.6) 

where 

10 00( ).xD g h x=   

When adding the equations of the system (2.6), we 
obtain: 

1 1 00
7 10 ( )

33 xu C gh x
g

+ =  

or 

1 1 00
10 3 ( ),
7 7 xu gC gh x= − +  

1 1
10 .
7y yu gC= −  

Substituting u1 and u1y into the second equation (2.6), 
after the transformations we have  

0 1 1 00
1 1 ( ).
2 12y xgC C C gh x− =  

Substituting C0 in this equation, after the 
transformations we get: 

00 00 1 1 00
3 1( 2 ) ( ).
2 4y xy u gC C C gh x− + − =  

Integrating the equation, we have: 

( )

( )

3
102

1 10 00 00

3
102

1 10 00 00

2 ,
6

10 2 .
7 6

D
C C y u gC

D
u gC y u gC

= − + −

= − − + −

 (2.7) 

The integration constant C10 is determined from the 
conditions (1.7). The following coefficients of the 
series (2.1) are found from (1.6) by differentiating k 
times. After that, we assume t = 0 (Bautin, Deryabin, 
2005). So, given (2.3), (2.4), we get: 

1
2

0 0 1

1
2

0 0 2

2 6 22 ,
33

3 2 22 ,
33

k
ky ky k k

ky ky k k k

u kC u g C C C F
g

kC u g C C u C F
g

+− + + =

+− + + + =
 (2.8) 

where the functions F1k = F1k(y), F2k = F2k(y) are 
determined recursively based on the previously found 
coefficients of the series. Adding the first and second 
equations of the system (2.8), we get: 

1 4 42 ( ),
3 3k k kk u k C F y

g
+   + + + =   

   
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6 4 3 ( ),
3 4 3 4k k k

ku gC g F y
k k

++= − +
+ +

  

6 4 3 ( ),
3 4 3 4ky ky ky

ku gC g F y
k k

++= − +
+ +

  

where 

1 2( ) ( ) ( ).k k kF y F y F y++ =  

Substituting uk and uky into the second equation (2.8), 
after the transformations we have: 

2

0
12 12 2 (3 2)1 .
3 4 3 3 4ky k k

k kg C C C F
k k

 + ++ − = + + 
 

Here the function Fk = Fk(y) has the form: 

2 0
3 3 2 .

3 4 3 4k k ky k
g kF F C F F

k k
+ ++= + −

+ +
 

Substituting C0 into the equation, after the 
transformations we get: 

( )00 00 1
3 3 42 ( ).
2 4 4k y k k

ky u gC C kC F y
k

+− + − =
+

 

Integrating this equation, we have: 

( )

( )
1 0 2

1 0 2 3

,
6 4 ,
3 4

k k k k

k k k k k

C G C G
ku gG C G G
k

= +
+= − + +
+

 (2.9) 

where 

( )
3 1
2

2 00 00
3 4 ( ) 2 ,
4 4

k

k k
kG F y y u gC dy
k

− −+= − +
+   

( )
3
2

1 00 00 3
3 ( )

2 , .
3 4

k
k

k k
gF y

G y u gC G
k

+

= − + =
+

 

The integration constants Ck0 are found from 
(1.7). Substitute C = C0(t, x1(t)), y = x2(t) in series 
(2.1). As a result, we have  

0
2 1( , ( )) ( , ( )).C t x t C t x t=  

Differentiating this relation and substituting t = 0, 
we get the equations for finding the coefficients: 

( )
3
2

0 00 0: 3 .
k

k k kC gC C Q=  

Here the function Qk is a known constant. Since 
C00 ≠ 0, then Ck0 are uniquely determined. Thus, the 

uniqueness of the formal solution of the problem 
(1.6), (1.7) constructed in the form of a series (2.1) is 
proved. 

Theorem 1. Problem (1.6), (1.7) has a unique 
analytical solution, which is the convergent series 
(2.1). 

The proof of the theorem is carried out by the 
majorant method, the application of which to the 
characteristic Cauchy problem is described in detail 
in (Bautin, 2009) and is not given in this paper. Using 
the simplest transformations, the solution (2.1) is 
written in the physical space of variables t, x: 

2 00 00, , , .x x x x
H C t u u t

t t
− −   = =   

   
 

3 RESULTS AND DISCUSSION 

Previously, the problem of the breakup of a special 
discontinuity were solved (Bautin, Deryabin, 2005; 
Bautin et al., 2011) in the space of specially 
introduced new independent variables. At the same 
time, in the space of the initial physical variables, the 
laws of motion of the surfaces Γ0, Γ1 were determined 
explicitly. But in order to determine the values of gas-
dynamic parameters in the space of physical variables 
at some point in time t = t0, it was necessary to reverse 
the implicitly specified functions. This procedure is 
rather cumbersome and difficult for setting the initial 
data at time t = t0 > 0 between the surfaces Γ0 and Γ1 
for the subsequent construction of the gas flow by 
numerical methods. To overcome the difficulty of 
inverting implicitly given functions this article solves 
the problem of wave overturning by introducing non-
stationary self-similar variables. In this case, the gas 
parameters at time t = t0 > 0 are determined explicitly 
in the space of the initial physical independent 
variables using the initial segments of the converging 
series (2.1). 

Note that the constructed solution (2.1) allows us 
to obtain an approximation of the initial conditions at 
time t = t0 in the form of the initial segments of the 
series. Also, the formulas (1.4), (1.5) give an 
approximation of the boundary conditions on the line 
Γ1. 

4 CONCLUSIONS 

In this paper, the locally analytical solution of the 
problem of wave overturning in the space of physical 
variables is constructed. In the form of a convergent 
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series, the initial conditions at time t = t0 are obtained. 
In the form of a converging series, the boundary 
conditions are obtained on the boundary of an 
undisturbed and disturbed wave. 

Thus, the analytical study was carried out for 
numerical simulation of the flow that arose after the 
collapse of the wave for a long period of time 
(Khakimzyanov et al., 2001; Bautin et al., 2011). 
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