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Abstract: One of the main tasks of the critical infrastructure process control system is information protection. 
Information security is important for the transport system, including the railway one. The paper proposes a 
graph approach to the construction of absolutely failure-free data transmission systems by creating ciphers 
that do not disclose any information about encrypted texts. A class of minimal perfectly secure Shannon 
ciphers is considered, in which for each pair of ciphertexts and ciphervalues, ),( yx  respectively, there are at 
most two keys on which x  is encrypted into y . For ciphers of this class, a graph is defined on a set of keys, 
namely: two different keys are connected by an edge if there is such a pair ),( yx  that on both of these keys 
the ciphertext x  is encrypted into a ciphervalue y . Within the framework of this approach, the necessary and 
sufficient minimality condition for the inclusion of perfect ciphers is proved. The minimality criterion for the 
inclusion of perfect ciphers is formulated. Examples illustrating the concepts used and the theoretical 
statements obtained are constructed. The tables of encryption of perfect ciphers are given, which ensure data 
protection when they are transmitted over a communication channel on transport. 

1 INTRODUCTION 

The problem of transmitting short and important 
messages that are absolutely resistant to a cipher-text 
attack, due to the specifics of data transmission on 
transport, is solved by using perfect (according to 
Shannon) ciphers. In the continuation of research 
(Medvedeva, 2015; Medvedeva, 2016; Medvedeva, 
2019; Medvedeva, 2020; Medvedeva, 2021) of the 
problem of describing Shannon-perfect ciphers in the 
framework of the probabilistic cipher model BΣ  
(Shannon, 1963), we consider an arbitrary perfect 
cipher. According to (Alferov et al., 2001, Zubov, 
2003), a cipher on a set of  -grams is given by the 
probability distribution of keys at .1=  Similarly 
(Medvedeva, 2015; Medvedeva, 2016; Medvedeva, 
2019; Medvedeva, 2020; Medvedeva, 2021), let 

},...,2,1{},...,,{ 21 λλ == xxxX be the set of 
ciphertexts; == },...,,{ 21 μyyyY },...,2,1{ μ – a set of 
ciphervalues with which some substitution cipher 
operates; },...,,{ 21 πkkkK = – a set of keys. By 
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condition ,1>= λX  ,λμ ≥=Y  .μπ ≥=K  
This means that open ,...

21 iii xxxx =  

,...,2,1, =∈ jXx
ji  and encrypted ...

21 ii yyy =  

,
iy Yy

ji ∈  texts are represented by words (  -

grams, 1≥ ) in alphabets X and Y respectively. In 
accordance with (Alferov, 2001; Zubov, 2003), a 
cipher BΣ will be understood as a set of sets of 
encryption rules and decryption rules with specified 
probability distributions on sets of plain texts and 
keys. Ciphers for which a posteriori probabilities

),|( yxp  ,Xx ∈  Yy ∈  of open texts coincide 
with their a priori probabilities ),(xp  are called 
perfect (Alferov, 2001; Zubov, 2003). 

In (Medvedeva, 2016) it is shown that the problem 
of describing ciphers in a probabilistic model BΣ  
leads to the problem of describing a convex 
polyhedron (Nosov, 1983) in a π -dimensional space 

,πR where ),1(...)1(max +−⋅⋅−⋅== λμμμππ
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each point is a probability distribution of the kP  keys 
Kk ∈  of a particular cipher. To solve this problem in 

the work (Medvedeva, 2020) based on the 
equivalence relation on the set of keys, sufficient 
conditions are obtained for the absence of non-
endomorphic ),( μλ < endomorphic )( μλ =  perfect 
ciphers of Latin rectangles, squares, respectively, in 
the encryption tables. 

In this paper, the problem of constructing 
(describing) ciphers that do not disclose any 
information about open texts is investigated. A graph 
approach to solving the problem is proposed. A 
minimality criterion for the inclusion of non-
endomorphic (endomorphic) perfect ciphers is 
obtained. Examples containing tables of encryption of 
perfect ciphers are constructed, ready for use when 
organizing a communication channel on transport. 

2 MAIN RESULTS 

Consider the definitions. 
Definition 1 (Medvedeva, 2020). The keys k ′  

and k ′′  are equivalent in ciphertext ix , if ix the keys 
k ′ and k ′′  are encrypted into the same ciphervalue, 
i.e. 

),()( ikik
i

xexekk ′′′ =⇔′′≡′  

in this case, a bijection is used in the notation for the 
equivalence of keys: .ixi ↔  

Definition 2 (Medvedeva, 2020). Pairwise 
different keys nn kkkkk ,,...,,, 1321 −  form a cycle of 
length ,n  if the conditions are met 

,... 11321
11432

kkkkkk
i

n
i

n
iiii nn

≡≡≡≡≡≡ −
−

 

where .,,...,, 114332 iiiiiiii nnn ≠≠≠≠ −  
We distinguish a class of minimal ciphers by 

inclusion, in which for each pair ),( yx  of ciphertext 
x  and ciphervalue y  there are at most two keys ,k
on which the ciphertext x  is encrypted into y . Then, 
in each column of the encryption tables of such 
ciphers, each cipher value y  occurs, respectively, no 
more than twice. For ciphers of this class, it is natural 
to define a graph (Ore, 1980; Harari, 1973) on a set of 
keys. According to (Medvedeva, 2021), two different 
keys k ′ and k ′′  (corresponding to different injections 

ke ′  and ke ′′ encryption, where ,: YXek →  Kk ∈ ) 
connect with an edge, if there is such a pair ),( yx of 
ciphertexts x  and cipher values y  that on both of 

these keys the ciphertext is x  encrypted in ,y i.e. 
equality )()( ikik xexe ′′′ =  is fulfilled. 

Example 1. Consider an endomorphic cipher, for 
which }5,4,3,2,1{},,,,{ 54321 == xxxxxX  there is 
a set of ciphertexts; == },,,,{ 54321 yyyyyY  

}5,4,3,2,1{=  – a set of cipher values; ,,{ 21 kkK =  
},,,,,, 9876543 kkkkkkk  – a set of keys. Here in the 

encryption table (Table 1) of a perfect endomorphic 
cipher with 5== μλ and key probabilities 2,01 =P  
and 1,0... 932 ==== PPP  there are no Latin 
squares. 

Table 1: Encryption table. 

K  1x  2x  3x  4x  5x  kP  

1k  1 2 3 4 5 0,2 

2k  2 3 4 5 1 0,1 

3k  2 5 1 3 4 0,1 

4k  3 4 5 2 1 0,1 

5k  3 1 2 5 4 0,1 

6k  4 5 1 3 2 0,1 

7k  4 3 5 1 2 0,1 

8k  5 1 4 2 3 0,1 

9k  5 4 2 1 3 0,1 

 
The graph corresponding to the cipher with the 

encryption Table 1 is shown in Figure 1. In this graph, 
the key 1k  with probability 2,01 =Р  is an isolated 
vertex of the graph. 

Note that in the graph shown in Figure 1, the keys
532 ,, kkk  form a cycle of length three: 

,2
4

5
5

3
1

2 kkkk ≡≡≡ and the keys 89542 ,,,, kkkkk

form a cycle of length five: 
5,1

9
3

5
1

4
5

2 ≡≡≡≡ kkkk  

.2
3

8
5,1

kk ≡≡  

The incidence matrix corresponds to this graph 
(Ore, 1980, Harari, 1973), namely a binary matrix I  
of size 209× : 

.

11100010001000000000
11000100010000000001
00111000100000000010
00011000000011100000
00000111000100000100
00000001111000001000
00000000000111110000
00000000000000011111
00000000000000000000
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The necessary and sufficient condition for the 
minimality of the cipher on inclusion is valid. 

Statement. A cipher is minimal in inclusion if and 
only if there is an odd-length cycle in some non-
element connected component of the graph 
corresponding to it. 

 

Figure 1: Graph. 

Proof. Let the key k  is not an isolated vertex of 
the graph. This means that there is a partition 

},...,,{ 21 sXXX of a set X and a set 
},,...,,{ 21 kkkk s  of different keys such that 

).,...,2,1()()( stXxxexe tkk t
=∈⇔=  

It is clear that 2≥s . Since otherwise equality 
would be fulfilled )()(

1
xexe kk = for all Xx ∈ . 

Therefore, the valence s  of each non-isolated vertex 
is greater than one. 

Let's assume that the cipher is not minimal, and 
you can zero the probability kP  of the key .k  Then 
the probabilities tkP  of the keys ),...,2,1( stkt = in 
the resulting (residual) cipher should be put equal

,/1 μ  since otherwise the transitivity of the cipher 
will be violated. However, it follows that it is 
necessary to put the probabilities of keys ,kk ≠′
connected by an edge with one of the vertices 

,,...,, 21 skkk equal to zero from the condition of 
perfection of the cipher with equally probable cipher 
values. 

Continuing to track the probabilities of vertices 
when moving along the edges of a connected 
component containing ,k we get: if ,,, )2()1( kkk

,......, )(rk  – the path in this graph, then the 
probabilities ,0=kP  ,0)2( =kP and generally 

0)( =lkP  for even ,l  but μ/1)1( =kP , and 

generally μ/1)( =rkP  for odd ,r  since the sum of  

 

Table 2: Encryption table.

K  1x  2x  3x 4x 5x 6x kP  
1k  1 2 3 6 5 4 1/18 

2k  1 4 6 3 2 5 1/18 

3k  1 6 2 5 4 3 1/18 

4k  2 4 1 5 3 6 1/18 

5k  2 1 6 4 3 5 1/18 
6k  2 5 4 3 1 6 1/18 

7k  3 5 4 1 2 6 1/18 

8k  3 4 6 2 1 5 1/18 

9k  3 2 5 4 6 1 1/18 

10k  4 5 3 1 6 2 1/18 
11k  4 1 5 6 3 2 1/18 

12k  4 6 1 2 5 3 1/18 

13k  5 1 3 6 2 4 1/18 

14k  5 6 4 3 1 2 1/18 

15k  5 3 2 1 6 4 1/18 
16k  6 3 2 5 4 1 1/18 

17k  6 3 5 2 4 1 1/18 

18k  6 2 1 4 5 3 1/18 
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the probabilities of keys connected by an edge is ./1 μ  
And since the probabilities of keys do not depend on 
the path in the graph, we get that this component is a 
bipartite graph, all cycles of which are of even length, 
and the probabilities of vertices in the fraction 
containing ,k can be put equal to zero, and in the 
other fraction equal μ/1 , i.e. we get a contradiction 
with the fact that k  – an uninsulated vertex of the 
graph. 

The minimality condition formulated above for 
the inclusion of a perfect cipher satisfies the criterion. 

Minimality criterion for the inclusion of 
perfect ciphers. Let be given an encryption table of 

a perfect cipher BΣ  with ,1>= λX  ,λμ ≥=Y  

.μπ ≥=K  
1. Let's break each of λ  columns λxxx ,...,, 21  by 

μ columns, numbering all the resulting columns with 
indexes ),,( ji where ,,...,2,1 λ=i  .,...,2,1 μ=j  

2. Let's construct )1,0(  matrix A  with π rows 
and λμ  columns corresponding to this encryption 
table as follows: at the intersection of the row k  

),...,1( π=k  and the column ),,( ji  we will put one if 
and only if, ,)( jik yxe =  i.e. if the ciphertext ix  on 

the key k is encrypted into a cipher value .jy  
Otherwise, we set zero. 

Table 3: Matrix .A  

.

000100010000001000000001000010100000
000001001000000010010000000100100000
000001001000010000000010000100100000
001000100000000001000010000100010000
000010000001000100001000100000010000
001000000010100000000100000001010000
000100010000000010000001100000001000
000010000100100000010000000001001000
000010100000000001000100010000001000
000001100000001000010000000010000100
010000000001000010100000001000000100
100000000010000001001000010000000100
100000000001000100001000010000000010
010000000100001000100000000001000010
100000000100010000000001001000000010
000100001000010000000010100000000001
010000000010000100100000001000000001
001000010000100000000100000010000001
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Table 4: Matrix .A  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

000000000000010000000000000000000000
000000000000000001000000000000000000
000000000000000000010000000000000000
000000000000000000001000000000000000
000000000000000000000100000000000000
000000000000000000000010000000000000
000000000000000000000001000000000000
000000000000000000000000010000000000
000000000000000000000000001000000000
000000000000000000000000000100000000
000000000000000000000000000010000000
000000000000000000000000000001000000
000000000000000000000000000000100000
000000000000000000000000000000010000
000000000000000000000000000000001000
000000000000000000000000000000000100
000000000000000000000000000000000010
000000000000000000000000000000000001
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Then the set of cipher keys is minimal if and only 
if the rank of the matrix A  maximal, equal to π . 

Let us illustrate the application of this criterion to 
the determination of minimality by the inclusion of a 
given perfect cipher by an example. 

Example 2. Consider an endomorphic cipher with 
a set of six ciphertexts. Let ,,,,,{ 54321 xxxxxX =  

}6,5,4,3,2,1{}6 =x – a set of ciphertexts; ,{ 1yY =  
}6,5,4,3,2,1{},,,, 65432 =yyyyy  – a set of cipher 

values; },...,,,{ 18321 kkkkK =  – a set of keys. 
Encryption table of a given perfect endomorphic 
cipher with 6== μλ  and key probabilities

18/1=kP  )18,...,2,1( =k  – is this Table 2. 
For this cipher, we will create a binary )1,0(

matrix A  of 18 rows and 36 columns (Table 3). 
In the matrix ,A  for example, the first column 

(column (1,1)) in the first three rows contains units 
since in the encryption Table 2, the ciphertext is 

11 =x  encrypted on the keys 21, kk  and 3k  in the 
cipher value 1. The remaining elements of the column 
(1,1) are zero. The remaining columns of the matrix 
A  are filled in the same way. 

The matrix A is equivalent to the matrix A
(Table 4) and its rank by rows (Gantmacher, 1967) 
equal to 18, i.e. equal to the number of keys specified 
in the encryption table. This, according to the 
criterion, means that the cipher with the encryption 
Table 2 is minimal in inclusion. 

Consequences of the minimality criterion for the 
inclusion of perfect ciphers: 

1. For the minimality of the set of cipher keys, it 
is necessary to perform an inequality λμπ ≤ . 

2. For an endomorphic minimal perfect cipher, the 
inequality holds )1( −≤ λλπ . 

3 CONCLUSIONS 

Thus, the paper considers a graph approach to the 
construction of absolutely failure-free data 
transmission systems. Within the framework of this 
approach, a necessary and sufficient condition for the 
minimality of a perfect cipher by inclusion is proved. 

A minimality criterion for the inclusion of non-
endomorphic (endomorphic) perfect ciphers is 
obtained. Examples illustrating the concepts used, 
obtained theoretical statements and constructions of 
perfect ciphers are constructed. In addition, the paper 
presents tables of encryption of perfect ciphers that 

ensure the protection of the communication channel 
in transport. 
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