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One of the main tasks of the critical infrastructure process control system is information protection.
Information security is important for the transport system, including the railway one. The paper proposes a
graph approach to the construction of absolutely failure-free data transmission systems by creating ciphers
that do not disclose any information about encrypted texts. A class of minimal perfectly secure Shannon
ciphers is considered, in which for each pair of ciphertexts and ciphervalues, (x,y) respectively, there are at
most two keys on which x is encrypted into y . For ciphers of this class, a graph is defined on a set of keys,
namely: two different keys are connected by an edge if there is such a pair (x,y) that on both of these keys
the ciphertext x is encrypted into a ciphervalue y . Within the framework of this approach, the necessary and
sufficient minimality condition for the inclusion of perfect ciphers is proved. The minimality criterion for the
inclusion of perfect ciphers is formulated. Examples illustrating the concepts used and the theoretical
statements obtained are constructed. The tables of encryption of perfect ciphers are given, which ensure data

protection when they are transmitted over a communication channel on transport.

1 INTRODUCTION

The problem of transmitting short and important
messages that are absolutely resistant to a cipher-text
attack, due to the specifics of data transmission on
transport, is solved by using perfect (according to
Shannon) ciphers. In the continuation of research
(Medvedeva, 2015; Medvedeva, 2016; Medvedeva,
2019; Medvedeva, 2020; Medvedeva, 2021) of the
problem of describing Shannon-perfect ciphers in the
framework of the probabilistic cipher model Xp
(Shannon, 1963), we consider an arbitrary perfect
cipher. According to (Alferov et al., 2001, Zubov,
2003), a cipher on a set of ¢ -grams is given by the
probability distribution of keys at ¢ =1. Similarly
(Medvedeva, 2015; Medvedeva, 2016; Medvedeva,
2019; Medvedeva, 2020; Medvedeva, 2021), let
X ={x1,x0,..x3} =1{,2,...,4} be the set of

ciphertexts; ¥ = {J’laJ/Zw-wJ/,u} ={1,2,...,u} —aset of

ciphervalues with which some substitution cipher
operates; K ={k1,ko,...k;} — a set of keys. By

https://orcid.org/0000-0002-9736-5481
b0 https://orcid.org/0000-0003-0427-9048

Medvedeva, N. and Titov, S.

Construction of Absolutely Failure-free Minimal Data Transmission Systems on Railway Transport.

DOI: 10.5220/0011579100003527

condition [X|=A>1, |Y|=p24,

This means  that open

K|=7>u.
X = x,-l xl-z ...x,-({, .

Xi, € X, j=L12,.,¢0 and encrypted y= Yiy Vi -
Vi, yl-j € Y texts are represented by words ( £ -

grams, ¢ >1) in alphabets X and Y respectively. In
accordance with (Alferov, 2001; Zubov, 2003), a
cipher X p will be understood as a set of sets of

encryption rules and decryption rules with specified
probability distributions on sets of plain texts and
keys. Ciphers for which a posteriori probabilities
p(x|y), xe Xf, ye vt of open texts coincide
with their a priori probabilities p(x), are called

perfect (Alferov, 2001; Zubov, 2003).
In (Medvedeva, 2016) it is shown that the problem
of describing ciphers in a probabilistic model Zpg

leads to the problem of describing a convex
polyhedron (Nosov, 1983) in a 7z -dimensional space

R", where &=y =p-(U=1)...-(u—A+1),
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each point is a probability distribution of the P} keys
k € K ofaparticular cipher. To solve this problem in
the work (Medvedeva, 2020) based on the
equivalence relation on the set of keys, sufficient
conditions are obtained for the absence of non-
endomorphic (4 < u), endomorphic (4 = ) perfect
ciphers of Latin rectangles, squares, respectively, in
the encryption tables.

In this paper, the problem of constructing
(describing) ciphers that do not disclose any
information about open texts is investigated. A graph
approach to solving the problem is proposed. A
minimality criterion for the inclusion of non-
endomorphic (endomorphic) perfect ciphers is
obtained. Examples containing tables of encryption of
perfect ciphers are constructed, ready for use when
organizing a communication channel on transport.

2  MAIN RESULTS

Consider the definitions.

Definition 1 (Medvedeva, 2020). The keys k’
and k” are equivalent in ciphertext x; , if x; the keys
k" and k” are encrypted into the same ciphervalue,
i.e.

k'fk” & e (x;) = e (x;),
in this case, a bijection is used in the notation for the
equivalence of keys: i <> x;.

Definition 2 (Medvedeva, 2020). Pairwise
different keys kq,k5,k3,....,k,,_1,k, form a cycle of
length n, if the conditions are met

ky=ky=k3y=.. = ky_1 =k, =k,
1] I3 ly 1y I, I
where ip #1i3,i3 Zigyniy_] #ip,iy 1.

We distinguish a class of minimal ciphers by
inclusion, in which for each pair (x, y) of ciphertext
x and ciphervalue y there are at most two keys &,
on which the ciphertext x is encrypted into y . Then,

in each column of the encryption tables of such
ciphers, each cipher value y occurs, respectively, no

more than twice. For ciphers of this class, it is natural
to define a graph (Ore, 1980; Harari, 1973) on a set of
keys. According to (Medvedeva, 2021), two different
keys k" and k” (corresponding to different injections
ey and ey~ encryption, whereey : X =Y, ke K)
connect with an edge, if there is such a pair (x, y) of
ciphertexts x and cipher values y that on both of
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these keys the ciphertext is x encrypted in y, i.e.
equality ey’ (x;) =eg”(x;) is fulfilled.

Example 1. Consider an endomorphic cipher, for
which X ={x1,x7,x3,x4,x5} ={1,2,3,4,5} there is
of ciphertexts; Y ={y,,¥,,V3,V4,Vs5} =
={1,2,3,4,5} — a set of cipher values; K = {k;,k,,
k3, ky ks, ke, ky, kg, kgt — a set of keys. Here in the

encryption table (Table 1) of a perfect endomorphic
cipher with 4 = ¢ =5and key probabilities P, =0,2

a set

and Py =Py =..=PFy =0, there are no Latin
squares.

Table 1: Encryption table.

K x] b X3 X4 X5 By
ky 1 2 4 5 0,2
ko 2 3 4 5 1 0,1
k3 2 5 1 3 4 0,1
ky 3 4 5 2 1 0,1
ks 3 1 2 5 4 0,1
ke 4 5 1 3 2 0,1
k7 4 3 5 1 2 0,1
kg S 1 4 2 3 0,1
kg 5 4 2 1 3 0,1

The graph corresponding to the cipher with the
encryption Table 1 is shown in Figure 1. In this graph,
the key k| with probability P; =0,2 is an isolated
vertex of the graph.

Note that in the graph shown in Figure 1, the keys
ky,k3,ks form a cycle of length three:

ky=ky=ks=ky, and the keys ko,kq,ks,kg,kg
1 5 4

form a cycle of length five: ky=kq=ks5=kg =
5 1 3 15
=kg=ky.
LS 3
The incidence matrix corresponds to this graph
(Ore, 1980, Harari, 1973), namely a binary matrix /
of size 9x20:

~
]
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The necessary and sufficient condition for the
minimality of the cipher on inclusion is valid.

Statement. A cipher is minimal in inclusion if and
only if there is an odd-length cycle in some non-
element connected component of the graph
corresponding to it.

Figure 1: Graph.

Proof. Let the key & is not an isolated vertex of
the graph. This means that there is a partition
{X1,X0,...,Xs} of a set X and a set

{k1,ko,....kg,k} of different keys such that

ep(x)= ek, (x)=xe X, (t=12,..,s).

It is clear that s >2 . Since otherwise equality
would be fulfilled ef (x) = ey, (x) for all xe X .

Therefore, the valence s of each non-isolated vertex
is greater than one.

Let's assume that the cipher is not minimal, and
you can zero the probability P, of the key k. Then

the probabilities &t of the keys &k, (t=1,2,...,s) in
the resulting (residual) cipher should be put equal
1/u, since otherwise the transitivity of the cipher
will be violated. However, it follows that it is
necessary to put the probabilities of keys k’#k,
connected by an edge with one of the vertices
ki,ky,....,kg, equal to zero from the condition of

perfection of the cipher with equally probable cipher
values.

Continuing to track the probabilities of vertices
when moving along the edges of a connected
component containing k, we get: if k,k(l),k(z),
kT the path in this graph, then the

probabilities P =0, Pk(z) =0, and generally

Pk(z) =0 for even [, but Pk(1) =1/u , and

generally Pk(’) =1/u for odd 7, since the sum of

Table 2: Encryption table.

K X X7 X3 X4 X5 X6 B,

k1 1 2 3 6 5 4 1/18
ko 1 4 6 3 2 5 1/18
k3 1 6 2 5 4 3 1/18
kg 2 4 1 5 3 6 1/18
ks 2 1 6 4 3 5 1/18
kg 2 5 4 3 1 6 1/18
ky 3 5 4 1 2 6 1/18
kg 3 4 6 2 1 5 1/18
ko 3 2 5 4 6 1 1/18
k1o 4 5 3 1 6 2 1/18
k11 4 1 5 6 3 2 1/18
k12 4 6 1 2 5 3 1/18
k13 5 1 3 6 2 4 1/18
k14 5 6 4 3 1 2 1/18
ks 5 3 2 1 6 4 1/18
ke 6 3 2 5 4 1 1/18
k17 6 3 5 2 4 1 1/18
kig 6 2 1 4 5 3 1/18

75



TLC2M 2022 - INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TLC2M TRANSPORT: LOGISTICS,

CONSTRUCTION, MAINTENANCE, MANAGEMENT

Table 3: Matrix A.
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Table 4: Matrix 4.
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I=

U=,

A>1, |Y|=

a perfect cipher X p with |X |

K]

the probabilities of keys connected by an edge is 1/ .

T2 M.
1. Let's break each of 4 columns xy,x3,...,x; by

And since the probabilities of keys do not depend on
the path in the graph, we get that this component is a

M columns, numbering all the resulting columns with

indexes (i, j), where i =1,2,...,4, j=12,...,4

bipartite graph, all cycles of which are of even length,

and the probabilities of vertices in the fraction

containing k, can be put equal to zero, and in the

2. Let's construct (0,]) matrix 4 with 7z rows

other fraction equal 1/ 4, i.e. we get a contradiction

and Au columns corresponding to this encryption
table as follows: at the intersection of the row k
(k =1,...,7) and the column (i, j), we will put one if

with the fact that £ — an uninsulated vertex of the

graph.

The minimality condition formulated above for
the inclusion of a perfect cipher satisfies the criterion.

Y, Le. if the ciphertext x; on

and only if, ey (x;)

the key k is encrypted into a cipher value y ;.

lity criterion for the inclusion of

inima

M

perfect ciphers. Let be given an encryption table of

Otherwise, we set zero.
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Then the set of cipher keys is minimal if and only
if the rank of the matrix 4 maximal, equal to 7 .

Let us illustrate the application of this criterion to
the determination of minimality by the inclusion of a
given perfect cipher by an example.

Example 2. Consider an endomorphic cipher with
a set of six ciphertexts. Let X = {x;,x,,x3,x4,X5,

x¢} =11,2,3,4,5,6} — a set of ciphertexts; ¥ ={y,,
V2.¥3.V4-Vs. Vet =11,2,3,4,5,6} — a set of cipher
values; K ={k1,ky,k3,...,k1g} — a set of keys.
Encryption table of a given perfect endomorphic
cipher with A=g=6 and key probabilities

P, =1/18 (k=1,2,...,18) —is this Table 2.
For this cipher, we will create a binary (0,1)

matrix 4 of 18 rows and 36 columns (Table 3).
In the matrix 4, for example, the first column

(column (1,1)) in the first three rows contains units
since in the encryption Table 2, the ciphertext is
x1 =1 encrypted on the keys kj,k, and k3 in the

cipher value 1. The remaining elements of the column
(1,1) are zero. The remaining columns of the matrix
A are filled in the same way.

The matrix A is equivalent to the matrix A4
(Table 4) and its rank by rows (Gantmacher, 1967)
equal to 18, i.e. equal to the number of keys specified
in the encryption table. This, according to the
criterion, means that the cipher with the encryption
Table 2 is minimal in inclusion.

Consequences of the minimality criterion for the
inclusion of perfect ciphers:

1. For the minimality of the set of cipher keys, it
is necessary to perform an inequality 7 < Au .

2. For an endomorphic minimal perfect cipher, the
inequality holds 7 < A(1-1).

3 CONCLUSIONS

Thus, the paper considers a graph approach to the
construction of absolutely failure-free data
transmission systems. Within the framework of this
approach, a necessary and sufficient condition for the
minimality of a perfect cipher by inclusion is proved.

A minimality criterion for the inclusion of non-
endomorphic (endomorphic) perfect ciphers is
obtained. Examples illustrating the concepts used,
obtained theoretical statements and constructions of
perfect ciphers are constructed. In addition, the paper
presents tables of encryption of perfect ciphers that

ensure the protection of the communication channel
in transport.

REFERENCES

Medvedeva, N. V., Titov, S. S., 2015. Non-endomorphic
perfect ciphers with two ciphertexts. Applied discrete
mathematics. Appendix. 8. pp. 63-66.

Medvedeva, N. V., 2016. On analogs of the Shannon's
theorem for perfect ciphers. CEUR Workshop
Proceedings. 1825. pp. 232-239.

Medvedeva, N. V., Titov, S. S., 2016. Geometric model of
perfect ciphers with three ciphertexts. Applied discrete
mathematics. Appendix. 12. pp. 113-116.

Medvedeva, N. V., Titov, S. S., 2020. Constructions of non-
endomorphic perfect ciphers. Applied discrete
mathematics. Appendix. 13. pp. 51-54.

Medvedeva, N. V., Titov, S. S., 2021. To the task of
describing the minimum on the inclusion of perfect
ciphers. Applied discrete mathematics. Appendix. 14.
pp. 91-95.

Shannon, K., 1963. Communication theory in secret
systems. Works on information theory and cybernetics.
pp. 333-402.

Alferov, A. P., Zubov, A. Yu., Kuzmin, A. S,
Cheremushkin, A. V., 2001. Fundamentals of
Cryptography. p. 479.

Zubov, A. Yu., 2003. Perfect ciphers. pp. 160.

Nosov, V. A., Sachkov, V. N., Tarakanov, V. E., 1983.
Combinatorial —analysis (Non-negative matrices,
algorithmic problems). Results of science and
technology. Ser. of Theor. of Prob. of Mat. Stat. Theor.
Cybernet. 21. pp. 120-178.

Ore, O., 1980. Graph Theory. pp. 336.

Harari, F., 1973. Graph theory. p. 300.

Gantmacher, F. R., 1967. Matrix Theory. pp. 575.

77



