
The Ginger: Another Spice to Hinder Attacks on Password Files

Francesco Buccafurri a, Vincenzo De Angelis b and Sara Lazzaro c

Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES),
Università Mediterranea di Reggio Calabria, Via dell’Università 25, 89122 Reggio Calabria, Italy

Keywords: Passwords, Authentication, Salt, Dictionary Attacks.

Abstract: One of the threats to password-based authentication is that the attacker is able to steal the password file from the
server. Despite the fact that, thanks to the currently adopted security mechanisms such as salt, pepper, and key
derivation functions, it is very hard for the attacker to reverse the password file, dedicated hardware is available
that can make this attack feasible. Therefore, there is still a need to better counter password-file reversing. In
this paper, we propose a new mechanism, called ginger, which can be combined with the above mechanisms,
to increase the robustness of password-based authentication against password-file reversing. Unlike pepper
and salt, ginger is stored client-side, and enables a stateful authentication process. A careful security analysis
shows the benefits of the proposed innovation.

1 INTRODUCTION

Password-based authentication is the most widely
used authentication method for web applications.
However, over the years, several studies in the liter-
ature have shown that it suffers from many security
problems (Bonneau et al., 2012). The main issue lies
in how users choose their passwords. Ideally, pass-
words should be long random strings so that they can-
not be easily guessed. However, since humans have
poor memory capacity, they tend to choose short and
mnemonic passwords (NordPass, 2022). Among oth-
ers, an important factor threatening password-based
authentication is represented by the compromises of
password files stored server-side. As a matter of fact,
over the past decades, several compromises have oc-
curred thus leading to the leakage of billions of lo-
gin credentials (Shadow, 2022). Unfortunately, these
attacks do not concern compromised websites alone
but might increase the risk of account takeover at
other websites. This is due to password reuse, in-
duced by the proliferation of accounts per user (25
accounts on average (Das et al., 2014)). Obviously,
password files cannot trivially store passwords in the
clear, since a simple server-side compromise would
immediately reveal all the users’ passwords. There-
fore, best-known security practices suggest storing

a https://orcid.org/0000-0003-0448-8464
b https://orcid.org/0000-0001-9731-3641
c https://orcid.org/0000-0002-0846-4980

the hashes of each password combined with a ran-
dom string called salt. This way, the precomputa-
tion of possible password files (to build the so-called
rainbow tables (Kumar et al., 2013)) is not possi-
ble, and the only possibility for the attacker is to
perform a dictionary-based attack once both pass-
word file and salt have been stolen from the server.
To further hinder dictionary attacks additional secu-
rity mechanisms, such as pepper (Manber, 1996) and
key derivation functions (Yao and Yin, 2005), can be
adopted with the aim of increasing the time needed
for a dictionary attack. Nevertheless, dictionary at-
tacks are still feasible, since attackers can leverage
dedicated hardware platforms, ranging from tradi-
tional application-specific integrated circuits (ASICs)
and field-programmable gate arrays (FPGAs) to mod-
ern graphic process units (GPUs) and hybrid CPU-
FPGA chips (Zhang et al., 2020). Moreover, dic-
tionary attacks have also become more sophisticated
across the years. Attackers typically build their dic-
tionaries aggregating passwords leaked from past data
breaches and plain-word dictionaries. Then such dic-
tionaries can be virtually extended through mangling
rules (Pasquini et al., 2021) that consist of a series of
transformations that can be applied to a basic dictio-
nary to produce multiple candidate passwords from
each word of the dictionary. Mangling rules are in-
cluded in many popular password-cracking software
such as Hashcat (Jens ’atom’ Steube, Gabriele ’ma-
trix’ Gristina, 2015) and John the Ripper (OpenWall,

166
Buccafurri, F., De Angelis, V. and Lazzaro, S.
The Ginger: Another Spice to Hinder Attacks on Password Files.
DOI: 10.5220/0011576200003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 166-173
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

1996). The problem is therefore still open.
In this paper, we propose a new mechanism, called

ginger, which can be combined with existing tech-
niques, to make dictionary attacks even more imprac-
tical. The core of our proposal consists in moving
from a stateless authentication mechanism to a state-
ful process. In fact, we require the client to maintain
the state of each authentication. As we will show in
the rest of the paper, there are no technical issues lim-
iting the implementation of our approach. Moreover,
our approach does not require extensive server-side
changes. On the contrary, it can be used in conjunc-
tion with the commonly used approaches for server-
side password storage (salt, pepper, and key deriva-
tion functions), hence strengthening the protection
they offer against dictionary attacks.

Commonly, to minimize the impact of such at-
tacks, it is suggested that users should adopt pass-
word managers or enable multi-factor authentication
(Shadow, 2022). Hence, we also perform a security
comparison between our solution and password man-
ager and OTP-based authentication. As for password
managers, their main vulnerability is that they are a
single-point-of-failure. Indeed, they base their secu-
rity on a mnemonic password (the so-called master
password) which, in principle, might be weak. Hence
the security of the random-generated passwords de-
pends on the security of the master password. On the
other hand, concerning OTP-based mechanisms, they
act as a second factor for the authentication but do
not offer any protection of the password. All these
aspects are carefully analyzed in this paper. In partic-
ular, our analysis shows that our solution outperforms
both the two above-mentioned approaches in terms of
protection offered against a dictionary attack.

This paper is organized as follows. In Section
3, we provide some background notions about the
best security practice to protect password files stored
server-side. Then, in Section 4, we describe in detail
our proposal. Practical aspects concerning our pro-
posal are discussed in Section 5. In Section 6 we
evaluate the security of our approach. In Section 2,
we investigate the related literature. Finally, in Sec-
tion 7, we draw our conclusions.

2 RELATED WORK

In the last 30 years, several web authentication
schemes have been proposed in the literature. For a
comprehensive overview, the reader can refer to (Bon-
neau et al., 2012). In the paper, the authors also
provide a comparative framework for web authenti-
cation scheme taking into account usability, deploya-

bility, and security aspects. Even with alternative pro-
posals, password-based authentication represents the
predominant approach in real life (Mohammed et al.,
2017; Andrews et al., 2020). As a matter of fact, alter-
native proposals (e.g., biometrics and OTP) are used
as a second factor to passwords. An attempt to replace
textual passwords is represented by graphical pass-
words (Chiasson et al., 2011; Tao, 2006), in which the
users have to remember images in place of text. How-
ever, they lack in usability (Bonneau et al., 2012) and
are not largely adopted.

In the following, we report the main approach to
strengthen password-based authentication.

We start from password managers (Li et al., 2014),
whose description is also provided in Section 6.2.
They store users’ passwords in encrypted form, that
are decrypted locally through a single master pass-
word. The problem with password managers is that
they are vulnerable to data leaks (Last Pass, 2022)
leading to dictionary attacks on the master password.
Recent approaches to solving this problem are pre-
sented in (Shirvanian et al., 2021; Shirvanian et al.,
2017), in which the password manager does not store
the passwords of the user (even in encrypted form),
but they are computed using an oblivious pseudo-
random function password hardening approach that
receives the master password from the user and a se-
cret key from the password manager server.

Another approach allowing the user to authenti-
cate with several web services by remembering just a
password is federated authentication (Boehm et al.,
2008; Lenz and Zwattendorfer, 2015). Therein, a
trusted identity provider attests the identity of the user
and allows them to authenticate with a web service.
From the point of view of the security of the pass-
words, federated authentication suffers from the same
drawback as password manager since the effort of the
attacker moves from compromising the web service
in which the user authenticates to compromising the
identity provider.

In many real-life applications, password-based au-
thentication is often strengthened by introducing an
OTP as a second factor (Buccafurri et al., 2020; Elde-
frawy et al., 2011). However, as highlighted in Sec-
tion 6.3, this second factor is not included in the hash
stored server-side, so it protects the authentication of
the user but does not prevent password discovery.

We conclude this section, by discussing FIDO2
(Chakraborty and Bugiel, 2019), a new password-less
authentication framework. It is based on a challenge-
response mechanism and public-key cryptography.
However, to achieve strong security features, dedi-
cated hardware (e.g., the Yubikey) is needed.

The Ginger: Another Spice to Hinder Attacks on Password Files

167

3 EVOLUTION OF
PASSWORD-BASED
AUTHENTICATION SCHEMES

The basic idea underlying a password-based scheme
is the following. Suppose a user U is registered at
the server S with a password pwU . S locally stores a
function of the password pwU , say F(pwU). When
U wants to authenticate at the server S, they send
S the string pw′U (hopefully, coinciding with pwU).
Then, S simply checks if F(pw′U) = F(pwU) to de-
cide whether or not the user is who claims to be.

A naive way for S to handle passwords is to mem-
orize, for each user U , F(pwU) = pwU . Clearly, if the
attacker is able to steal the password file, then all the
passwords stored at S are exposed in the clear.

This is clearly unacceptable. A step ahead to im-
prove the protocol, is to implement F as a crypto-
graphic hash H. Indeed, H being a one-way function,
the password file cannot be trivially reversed.

An attacker can still mount an offline brute force
attack to find all possible passwords matching the
hashes stored by S. Such an attack tries all possi-
ble passwords in a systematic way, thus it might re-
quire a significant amount of time. However, taking
into account how users choose passwords, a more ef-
ficient attack can be performed. Indeed users tend
to build their passwords by using common words,
possibly combining them in a predictable way. The
list resulting from this combination, including all the
commonly adopted passwords, is named dictionary.
Many tools allowing password cracking based on dic-
tionaries are available (John the Ripper is the most
famous (OpenWall, 1996)) and many dictionaries can
be found on the Internet. Consider that, the above at-
tack, can be also performed by pre-computing all pos-
sible hashes (by obtaining the rainbow tables (Kumar
et al., 2013)), so that passwords can be later found
once the password file is stolen.

To prevent rainbow-table-based attacks, the server
S, for each user U , should store a string sU (called
salt), chosen at random, along with the hash of the
user’s password computed as H(pwU ||sU). This also
makes unlikable password files stolen from different
servers even in case of password reuse. Observe that,
despite the use of salted hashes, an attacker, able to
steal the password file and the salts stored in S, is still
able to perform a dictionary attack.

Another mechanism to further increase the at-
tacker’s workload is to include in the hash computa-
tion a short string, say pU , chosen at random for each
user U , called pepper. Thus, the server S, for each
user U , stores the hash computed as H(pwU ||sU ||pU).
However, differently from salts, peppers are not lo-

cally saved, but they must be guessed every time users
need to authenticate. Hence, a pepper should be short
enough (a typical choice is 12 bits (Boneh and Shoup,
2020)), so that it can be easily brute-forced by the
server when a user needs to authenticate, without in-
troducing relevant delays. However, a 12-bit string
used as pepper slows down an offline dictionary attack
by a factor of 4096, thus increasing the time needed
to perform such an attack.

We have also to point out that hash algorithms
are designed to be quickly computed, thus making
the dictionary attack less computationally expensive.
To increase the computational effort of an attacker,
servers might replace hash functions with key deriva-
tion functions, such as PBKDF2 or BCrypt, which are
cryptographic one-way functions whose computation
is much slower than standard hash functions. The ba-
sic idea is the following. Suppose a hash function
takes x milliseconds to be computed on a single in-
put. The adoption of slower functions requiring, for
instance, 10,000 times the time x, would not signifi-
cantly impact the user experience during the authen-
tication process. However, it would increase the time
to perform a dictionary attack by a factor of 10,000,
thus increasing the attacker’s workload.

Observe that the effect of key derivation functions
is the same as the pepper. The only difference is that
the delay introduced by the former is deterministic.

To conclude, we want to highlight that there exists
another definition of pepper that is a string stored in
a more secure and different location with respect to
the password file. However, this secure location is
not always available and if it is available we might
store directly the password file on it. Then, we do not
consider this definition.

4 THE PROPOSED APPROACH

Consider a password-based authentication scheme
adopting both salt and pepper (see Section 3). The
idea of our approach is to strengthen the robustness
of the scheme against off-line dictionary attacks by
adding a new value, called ginger, which is concate-
nated with the password along with the salt and the
pepper, when applying the key derivation function.
However, the idea of the ginger is not a trivial exten-
sion of salt/pepper, because it incorporates a number
of relevant differences, which make the scheme defi-
nitely more robust against off-line dictionary attacks,
as we extensively prove in Section 6.

The main difference is that, while the salt is kept
server-side, the ginger is stored client-side and sent,
on the fly, during the authentication process. This

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

168

way, the sole data exfiltration from the server is not
enough for the attacker to gain success. Moreover, a
refresh mechanism (described in more detail below),
results in an expected considerable reduction of the
time window in which the attacker should success-
fully complete the dictionary attack. A nice feature
of our scheme is that, unlike the pepper, the ginger
does not introduce additional workload server-side,
thus scalability is preserved. Moreover, the adoption
of the ginger does not conflict with salt and pepper.
Therefore, all these mechanisms can be combined to
obtain a net increase of security.

From a formal point of view, the ginger introduces
a significant change of authentication. Indeed, au-
thentication becomes stateful, while password-based
authentication even with salt and pepper is stateless.
Specifically, the ginger represents a sort of safe state
from which the client moves towards another safe
state at the next authentication. This involves the fact
that the client must store state information and, thus,
a number of practical implications, which we will dis-
cuss in Section 5. However, as shown in that section,
these implications do not represent actual limitations
or technological obstacles.

Now, we focus on the detailed description of the
proposed protocol. Our protocol involves two actors,
a client C and a server S, and is composed of two
phases, the registration phase and the authentication
phase.

4.1 Registration Phase

This phase starts with the generation by C of a random
value gC, called ginger. Then, C sends it along with
the password pwC to the server S. The value gC is
stored locally by the client, while the password is not
(as usual, password is required to be mnemonic, even
if robust).

When S receives pwC and gC, it generates a ran-
dom salt sC and a random (in a small domain) pepper
pC. At this point, it stores hC = F(pwC||sC||pC||gC)
in the password file, where F is the chosen key deriva-
tion function. The salt sC is stored along with hC,
while the pepper pC and the ginger gC are not stored
by S.

4.2 Authentication Phase

To authenticate with S, C selects the current ginger gC
to use for the current authentication. In addition, it
generates a new ginger ḡC to use for the next authen-
tication. Both the gingers gC and ḡC are provided,
along with the password pwC, to server S. Finally, the
client removes the old ginger gC from the local mem-

ory and maintains the new ginger ḡC.
At this point, S uses the ginger gC and the pass-

word pwC to compute hC = F(pwC||sC||pC||gC) and
checks that this value is equal to the value of hC cur-
rently stored. To do this, as explained in Section 3,
the server computes hC for all the possible values of
pC. If the check passes, the authentication performs
successfully. Then, the value of hC is updated with
h̄C = F(pwC||sC||p̄C||ḡC) where p̄C is a new random
pepper. The gingers gC and ḡC, and the pepper p̄C are
discarded by S.

5 PRACTICAL ASPECTS

The protocol presented in Section 4 is discussed at
an abstract level and does not include technological
aspects. As usual for abstract definitions of authen-
tication schemes, it considers a single client. In this
section, we deal with some practical aspects of the
authentication process, starting by considering that,
nowadays, the user owns multiple devices (e.g., a
smartphone, a tablet, a laptop, a PC).

As our solution is stateful, we have to face the
problem of storing the safe state (i.e., the ginger use-
ful for the next authentication) in all the devices of the
user.

From a conceptual point of view, this is obviously
not an issue, as the devices belong to the same entity
(i.e., the user). However, from a practical point of
view, we have to design a feasible and secure solution
for the device state synchronization.

This can be done by simply considering the fact
that, nowadays, the smartphone can be considered
as an extension of our identity over the digital do-
main. The practical counterpart of this fact is that we
are forced to keep the smartphone always close to us
and/or under control.

Therefore, it is quite natural to consider the smart-
phone as the master storing point of the ginger. This
means that, when the user wants to authenticate with
another device, they must keep the smartphone in
proximity, so that the ginger value can be synchro-
nized manually or by any machine-to-machine pro-
tocol, such as Bluetooth (or other options, discussed
below).

Clearly, possible apps or browser extensions could
be installed in every device to implement the features
of our protocol.

In more detail, we show how the two phases of
Section 4 are instantiated to deal with this scenario.

The Ginger: Another Spice to Hinder Attacks on Password Files

169

5.1 Registration Phase

When U wants to register with S, preliminary, they
register the domain of S on the smartphone app. Then,
the app generates the ginger gU and associates it with
the domain of S.

At this point, gU is transferred from the smart-
phone to the laptop. We consider three options ac-
cording to the capabilities of the smartphone and the
laptop.

Option 1: Typed Ginger. This is the basic and less
usable option but compatible also with legacy devices.
In this case, the ginger is generated on the smartphone
as a string and typed by the user in a registration form.

Option 2: Camera-based Ginger. In this case, the
ginger is encoded on the smartphone app through a
QR code. This QR code is then scanned by the camera
of the laptop and automatically provided to the server.

Option 3: Bluetooth-based Ginger. The last option
is to use a compatible browser on the laptop that re-
ceives the ginger by the app through Bluetooth.

The ginger gU along with the password pwU typed
by the user on the laptop are provided to the server.

At this point, the protocol performs exactly as
in Section 4.1, i.e., S generates a random salt sU
and a random pepper pU . Then, it stores hU =
F(pwU ||sU ||pU ||gU) and the salt sU , and discards the
pepper pU and the ginger gU .

5.2 Authentication Phase

The authentication phase follows the trace of the reg-
istration phase. First, U selects on the smartphone
app the domain of S to obtain the current ginger gU to
use for this authentication. In addition, the app gen-
erates a new ginger ḡU to use for the next authentica-
tion. Both the gingers gU and ḡU are sent to the laptop
through one of the three options described in Section
5.1. Finally, the app removes the ginger gU from the
smartphone and maintains the new ginger ḡU .

At this point, both the gingers are provided along
with the password pwU by the laptop to the server S
through the login form. S uses the ginger gU to com-
pute F(pwU ||sU ||pU ||gU) and checks that this value
is equal to the value of hU currently stored.

If the check passes, the authentication performs
successfully. Then, the value of hU is updated with
h̄U = F(pwU ||sU ||p̄U ||ḡU).

Due to the statefulness of our protocol, the other
practical aspect we have to face is what happens if
the user loses the current state. This may happen for
example in case of crash of the smartphone. The so-
lution to this problem is trivial. Indeed, in this case,

the user is required to perform the registration phase
again.

6 SECURITY ANALYSIS

Through this section, we evaluate the security of the
proposed approach by comparing it with three state-
of-the-art password-based authentication schemes.
The three approaches we analyze represent the most
widely adopted for authentication in web applications
(Shadow, 2022). The results of our analysis are sum-
marized in Table 1.

6.1 Standard Password-based
Authentication

In the following, we compare our solution with a stan-
dard password-based authentication scheme.

For the latter, we assume that, for each user U ,
the server stores F(pwU ||sU ||pU), along with the salt
sU in the clear (as described in Section 3). On the
other hand, in our solution, for each user U , the server
stores F(pwU ||sU ||pU ||gU) (along with the salt sU).

Concerning the password pwU , being it a memo-
rized secret, it is common to assume that it is not a
random string (with high entropy (Taha et al., 2013)).
Therefore, we assume that there is a non-negligible
probability that pwU can be found within the at-
tacker’s dictionary. As for the salt sU , additional
assumptions are not needed for our purposes. As
for the pepper pU and the ginger gU , we consider
pU ∈ {0,1}dp and gU ∈ {0,1}dg , denoting with dp and
dg the length of their bit-strings.

As highlighted in the previous sections, the pepper
is neither stored server-side nor client-side, while the
ginger is stored only client-side. Indeed, the pepper
must be brute-forced by the server at each authentica-
tion, while the ginger is provided by the user to the
server at each authentication. Therefore, for usabil-
ity reasons, the pepper search space should be suffi-
ciently small, while, in principle, no such constraints
are needed for the ginger. Hence, it is fair to assume
that dg� dp.

Given the above assumptions, we analyze the se-
curity of the two considered protocols in two cases:
(i) against an attacker able to compromise the server
and thus able to steal the list of the hashed passwords
of all the users, (ii) against an attacker as powerful
as the previous one, with the additional capability to
compromise the personal device belonging to a user,
whose password is in the stolen list.

Consider now case (i). Once an attacker has ob-
tained a list of hashed passwords, they can mount a

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

170

Table 1: Search space dimension to guess the password.

Approach Server-side Server and Client-side
(single client)

Our proposal n ·dD ·dp ·dg
Worst timeline attack: dD ·dp

Best timeline attack: dD ·dp ·dg
Standard password-based authentication n ·dD ·dp dD ·dp
Authentication with password manager

(attack on master password) n ·dD ·dp dD ·dp

OTP-based authentication n ·dD ·dp dD ·dp

dictionary attack to attemp to obtain the memorized
passwords. We denote by n the length of the above
list, and by dD the length of the dictionary used by
the attacker. In case the server implements a stan-
dard password-based authentication scheme, the di-
mension of the search space is given by n ·dD ·dp. In-
stead, with our approach, the dimension of the search
space is given by n · dD · dp · dg. Thus the computa-
tional effort made by the attacker is increased by a
multiplicative factor dg. Moreover, the ginger dimen-
sion dg can be chosen in such a way that a dictionary
attack is not feasible.

To be fair, we have to point out that, even adopting
a standard password-based authentication scheme, a
dictionary attack may be made unfeasible by forcing
each user to change their password periodically. This,
in principle, limits the time available to the attacker
to carry out the attack. However, in practice, this
is never the case. In fact, when users are forced to
change their passwords, they tend not to change them
radically but to keep the old ones, changing at most a
few characters in a predictable manner (Zhang et al.,
2010). Hence an attacker can easily find out the new
password from the old one, just by doing a few online
attempts.

Consider now case (ii). As argued in the previ-
ous case, if our approach is adopted, for an attacker
to be able to succeed in a dictionary attack, it is nec-
essary to brute-force gU for each of the n users in the
list. Alternatively, an attacker could compromise the
personal devices belonging to n users in order to steal
their gingers. However, this is still an unfeasible at-
tack. Hence the probability for an attacker to succeed
in a massive dictionary attack is negligible.

Nevertheless, it is interesting to analyze the secu-
rity of our solution compared to a standard password-
based approach against an attacker at least as pow-
erful as the attacker in case (i), but with the addi-
tional capability of compromising a user’s personal
device. Different from the previous case, here we as-
sume the attacker is interested in discovering a single
user’s password. Hence the search space dimension
for both the approaches is the same as in the previous
case, except for a multiplicative factor n.

Considering the standard password-based ap-
proach, an attacker cannot gain any additional infor-
mation compromising the client and thus the search
space dimension remains unchanged (i.e. dD ·dp). On
the contrary, considering our approach, two cases may
occur. Suppose the attacker is able to compromise the
server in the instant T 1 and subsequently, the attacker
is able to compromise the user’s personal device at
the instant T 2, where T 1 < T 2. We denote by gs

U ,
the ginger used server-side at the instant T 1, and by
gc

U the ginger stored client-side at the instant T 2. Sup-
pose the first user authentication, after T 1, takes place
at the instant T 3. As explained in Section 4, a new
authentication implies that the user’s personal device
stores a new ginger in place of the old one.

If T 1 < T 3 < T 2, then the ginger gc
U stolen by the

attacker at the instant T 2 differs from the ginger gs
U ,

since the victim has authenticated in between T 1 and
T 2. Hence, the search space dimension for a dictio-
nary attack remains equal to dD ·dp ·dg.

If T 1 < T 2 < T 3, then the ginger gc
U stolen by the

attacker at the instant T 2 coincides with the ginger
gs

U , since the victim did not authenticate in between
T 1 and T 2. Therefore, the search space dimension
for a dictionary attack is narrowed down to dD · dp.
Observe that, in this case, we obtain the same search
space dimension the attacker would have by attacking
a standard password-based approach.

The above reasoning holds for T 2> T 1. However,
it is easy to realize that it applies also when T 1 > T 2
with the same results.

6.2 Authentication with Password
Manager

The second approach we consider to be compared
with our solution is based on password managers.
A password manager is a repository in which users
store, in encrypted form, the passwords of their ac-
counts of different websites. All these passwords
are encrypted and decrypted locally through a master
password. In this way, users have to remember just a
single password to authenticate with all the websites.
Furthermore, modern password managers auto-fill the

The Ginger: Another Spice to Hinder Attacks on Password Files

171

login form. Then, since users do not need to manually
type their passwords, they can be chosen randomly
with high entropy. This makes dictionary attacks in-
effective even if the servers of the websites are com-
promised. However, this is not enough since the effort
of the attacker moves from compromising the website
servers to compromising the password manager. In-
deed, in case the encrypted passwords (stored in the
password manager) are stolen by the attacker, a dic-
tionary attack can be performed on the master pass-
word. We observe that several data breaches on com-
mercial password managers occurred in recent years
(Last Pass, 2022).

Observe that, since the encryptions/decryptions
are performed client-side, typically, in real-life appli-
cations, no salt or pepper mechanism is introduced
to avoid an excessive burden. However, in favor of
security, we assume that they are enabled. Then, by
considering a server-side attack (case (i) of Section
6.1), the size of the search space is the size of the dic-
tionary n · dD · dP. No further advantage is obtained
by compromising also the client (case (ii) of Section
6.1), so that the size of the search space is dD · dP
(by considering the compromise of a single client).
Therefore, our approach outperforms the authentica-
tion with password manager in both cases (i) and (ii).

6.3 OTP-based Authentication

Finally, we compare our solution with the OTP-based
authentication. An OTP (One-Time password) is a
secret value used as a second factor during the au-
thentication phase. We consider two versions of OTP,
which are the main ones adopted in real life: SMS-
based or app-based. In the first version, the user per-
forms a first authentication with the server through a
standard password. The server generates a random
code and sends it to the user through an SMS. The
user provides this code to the server and the authenti-
cation concludes. This second factor proves the own-
ership of a given phone number provided by the user
to the server during a registration phase. In the sec-
ond version, during the registration phase, the server
provides a seed (secret) to the user (typically, through
a QR code that is scanned by the smartphone) to be
stored in a dedicated app. Then, through this seed, the
user generates pseudo-random codes to be provided,
along with the password, during the authentication.
Since the server owns the same seed, the codes can be
verified.

To be fair, in our comparison, we assume that
along with the OTP, the server applies the standard
salt and pepper approaches as in Section 6.1.

The problem with the OTP, in both versions, is that
it does not protect the password. Indeed, by consid-
ering the case (i) of Section 6.1, if the attacker com-
promises the server, the size of the search space is
again n · dD · dp and does not depend on the OTP it-
self. Even though the attacker is not able to authen-
ticate without the OTP, this represents a critical vul-
nerability since, commonly, passwords are re-used for
different services (Das et al., 2014).

Considering the case (ii) of Section 6.1 (i.e., a
compromise both client and server side), the attacker
is also able to authenticate with the server with the
same effort of case (i) by stealing the OTP. By consid-
ering a compromise of a single client (as in Sections
6.1 and 6.2), the size of the search space is dD ·dp.

To enrich the discussion, we report some attacks
that can be performed client-side to steal the OTP.

Concerning the app-based version, the attacks can
be performed through malware installed on the smart-
phone (as with our solution). On the other hand, re-
garding the SMS-version, several SIM-swapping at-
tacks (Jover, 2020), in which the adversary is able to
obtain the control of the phone number of a victim,
are shown to be effective.

7 CONCLUSIONS

Despite new promising attempts (Chakraborty and
Bugiel, 2019) to introduce password-less authentica-
tion, password-based authentication schemes remain
the most widely used authentication method. How-
ever, the growth of data breaches combined with the
fact that users do not follow the best security practices
when selecting their passwords, makes password-
based authentication vulnerable to dictionary attacks.
To mitigate the problem, traditional solutions con-
sist in the introduction of salts and peppers possibly
combined with key derivation functions. However,
this is not conclusive since by employing dedicated
hardware, it is still possible to discover users’ pass-
words. Then, in this paper we propose a new authen-
tication approach (i.e., the introduction of a ginger)
to strengthen password-based authentication schemes
that can be used in combination with salts and pep-
pers. An important point is that our solution does not
introduce a relevant overhead neither client-side nor
server-side. From the security point of view, we ob-
served, in Section 6, that we outperform state-of-the-
art authentication schemes in case of server-side com-
promise. Furthermore, if the client, along with the
server, is compromised, we obtain an improvement
with respect to traditional schemes in the best case
and we have the same robustness as other schemes

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

172

in the worst case. Currently, we are implementing a
prototype of our solution by relying on the Web Blue-
tooth API supported by Google Chrome.

REFERENCES

Andrews, R., Hahn, D. A., and Bardas, A. G. (2020). Mea-
suring the prevalence of the password authentication
vulnerability in ssh. In ICC 2020 - 2020 IEEE Inter-
national Conf. on Communications (ICC), pages 1–7.

Boehm, O., Caumanns, J., Franke, M., and Pfaff, O.
(2008). Federated authentication and authorization:
A case study. In 2008 12th International IEEE En-
terprise Distributed Object Computing Conference,
pages 356–362. IEEE.

Boneh, D. and Shoup, V. (2020). A graduate course in ap-
plied cryptography. Draft 0.5.

Bonneau, J., Herley, C., Oorschot, P. C. v., and Stajano, F.
(2012). The quest to replace passwords: A frame-
work for comparative evaluation of web authentica-
tion schemes. In 2012 IEEE Symposium on Security
and Privacy, pages 553–567.

Buccafurri, F., De Angelis, V., and Nardone, R. (2020). Se-
curing mqtt by blockchain-based otp authentication.
Sensors, 20(7):2002.

Chakraborty, D. and Bugiel, S. (2019). Simfido: Fido2
user authentication with simtpm. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2569–2571.

Chiasson, S., Stobert, E., Forget, A., Biddle, R., and
Van Oorschot, P. C. (2011). Persuasive cued click-
points: Design, implementation, and evaluation of a
knowledge-based authentication mechanism. IEEE
Transactions on Dependable and Secure Computing,
9(2):222–235.

Das, A., Bonneau, J., Caesar, M., Borisov, N., and Wang, X.
(2014). The tangled web of password reuse. In NDSS,
volume 14, pages 23–26.

Eldefrawy, M. H., Alghathbar, K., and Khan, M. K.
(2011). Otp-based two-factor authentication using
mobile phones. In 2011 eighth international con-
ference on information technology: new generations,
pages 327–331. IEEE.

Jens ’atom’ Steube, Gabriele ’matrix’ Gristina (2015).
Hashcat advanced password recovery. https://hashcat.
net/hashcat/. Last checked on Aug 01, 2022.

Jover, R. P. (2020). Security analysis of sms as a second
factor of authentication. Communications of the ACM,
63(12):46–52.

Kumar, H., Kumar, S., Joseph, R., Kumar, D., Singh, S.
K. S., Kumar, A., and Kumar, P. (2013). Rainbow ta-
ble to crack password using md5 hashing algorithm.
In 2013 IEEE Conference on Information & Commu-
nication Technologies, pages 433–439. IEEE.

Last Pass (2022). Lastpass security his-
tory. https://www.lastpass.com/it/security/
what-if-lastpass-gets-hacked/. Last checked on
Aug 01, 2022.

Lenz, T. and Zwattendorfer, B. (2015). Enhancing the mod-
ularity and flexibility of identity management archi-
tectures for national and cross-border eid applications.
In 11th International Conference on Web Information
Systems and Technologies, pages 123–143. Springer.

Li, Z., He, W., Akhawe, D., and Song, D. (2014). The
{Emperor’s} new password manager: Security anal-
ysis of web-based password managers. In 23rd
USENIX Security Symposium (USENIX Security 14),
pages 465–479.

Manber, U. (1996). A simple scheme to make passwords
based on one-way functions much harder to crack.
Computers & Security, 15(2):171–176.

Mohammed, S., Ramkumar, L., and Rajasekar, V. (2017).
Password-based authentication in computer security:
Why is it still there. SIJ Trans. Comput. Sci. Eng. Its
Appl, 5:33–36.

NordPass (2022). Top 200 most common passwords. https:
//nordpass.com/it/most-common-passwords-list/.
Last checked on Aug 01, 2022.

OpenWall (1996). John the ripper. https://www.openwall.
com/john/. Last checked on Aug 01, 2022.

Pasquini, D., Cianfriglia, M., Ateniese, G., and Bernaschi,
M. (2021). Reducing bias in modeling real-world
password strength via deep learning and dynamic
dictionaries. In 30th USENIX Security Symposium
(USENIX Security 21), pages 821–838.

Shadow, D. (2022). Account Takeover in 2022. Technical
report.

Shirvanian, M., Jareckiy, S., Krawczykz, H., and Saxena, N.
(2017). Sphinx: A password store that perfectly hides
passwords from itself. In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 1094–1104. IEEE.

Shirvanian, M., Price, C. R., Jubur, M., Saxena, N., Jarecki,
S., and Krawczyk, H. (2021). A hidden-password on-
line password manager. In Proceedings of the 36th An-
nual ACM Symposium on Applied Computing, pages
1683–1686.

Taha, M. M., Alhaj, T. A., Moktar, A. E., Salim, A. H., and
Abdullah, S. M. (2013). On password strength mea-
surements: Password entropy and password quality. In
2013 International Conference on Computing, Elec-
trical and Electronic Engineering (ICCEEE), pages
497–501. IEEE.

Tao, H. (2006). Pass-Go, a new graphical password
scheme. PhD thesis, University of Ottawa (Canada).

Yao, F. F. and Yin, Y. L. (2005). Design and analysis of
password-based key derivation functions. In Cryp-
tographers’ Track at the RSA Conference, pages 245–
261. Springer.

Zhang, Y., Monrose, F., and Reiter, M. K. (2010). The se-
curity of modern password expiration: An algorithmic
framework and empirical analysis. In Proceedings of
the 17th ACM conference on Computer and communi-
cations security, pages 176–186.

Zhang, Z., Liu, P., Wang, W., Li, S., Wang, P., and Jiang, Y.
(2020). High-performance password recovery hard-
ware going from gpu to hybrid cpu-fpga platform.
IEEE Consumer Electronics Magazine, 11(1):80–87.

The Ginger: Another Spice to Hinder Attacks on Password Files

173

