
AKIP Process Automation Platform: A Framework for the Development
of Process-Aware Web Applications

Ulisses Telemaco Neto1 a, Toacy Oliveira2 b, Raquel Pillat2 c, Paulo Alencar1,
Don Cowan1 d and Glaucia Melo1 e

1David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
2System Engineering and Computing Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Keywords: Business Process Automation, Code Generation, Process-Aware Information System, BPMN.

Abstract: An increasing number of platforms for Business Process Automation (BPA) have been developed in recent
years, including open-source and proprietary solutions. However, there are still some unsolved problems and
limitations related to the adoption of these solutions, which include: vendor lock-in, limited UI/UX, limited
integration, outdated technology stack, and lack of support for non-process features. The framework presented
in this paper addresses these problems and limitations by providing an open-source platform to facilitate
the development of process-aware information systems (PAISs) based on code generation techniques. The
platform is capable of generating a functional process-aware Web application from a business process model
defined in BPMN. To the best of our knowledge, there is no other software tool that generates fully functional
process-aware Web applications. The presented framework has been evaluated in the academy and industry
and used to develop dozens of non-profit and commercial process-aware applications.

1 INTRODUCTION

Despite the huge amount of capital and effort that
has been invested in IT software solutions, the re-
ality is that, for many organizations, including for-
profit companies, most of their critical business pro-
cesses are still being conducted without the support
of automated, agile, modern, and user-friendly soft-
ware systems. In many cases processes are conducted
through email exchanges, phone calls, and manual in-
tegration between systems. This scenario may lead to
several problems, including: Vendor Lock-in: One of
the main risks of adopting a proprietary platform is
being forced to continue using its product or service,
regardless of quality, cost or any other reason, because
it is not practical to switch away from that product
or service. Limited UI/UX: Despite claiming that the
systems provide features for building dynamic forms,
the forms produced by the BPA platforms are still
quite limited. In this way, the construction of com-

a https://orcid.org/0000-0002-7258-2623
b https://orcid.org/0000-0001-8184-2442
c https://orcid.org/0000-0002-5420-6966
d https://orcid.org/0000-0002-5373-8522
e https://orcid.org/0000-0003-0092-2171

plex components (such as auto-complete input fields
or elements whose validation rule is more sophisti-
cated) becomes challenging and often unfeasible on
some low-code platforms. Limited Integration: Many
solutions for BPA provide extension mechanisms de-
signed to integrate the platform with existing systems
or third-party solutions. However, implementing such
integrations are still costly, not efficient, and some-
times unfeasible. Outdated Technology Stack: Many
of the existing BPA solutions are based on outdated
techniques such as stateful (Dwyer, 2021) and server-
side rendering (Iskandar et al., 2020) applications.
Lack of support for non-process features: Another
limitation of BPA platforms is that they focus only
on process automation and often provide limited sup-
port for other features that are usually necessary for
process execution. For example, customized authenti-
cation mechanisms, CRUD1 for domain entities, and
import/export data are typically features hard to de-
velop in BPA solutions. There is a need of solutions
that can support the automation of both process and
Web-related features.

We have just mentioned a few problems that may
happen in this scenario, but the list can be increased

1Acronym for Create, Read, Update, and Delete

64
Neto, U., Oliveira, T., Pillat, R., Alencar, P., Cowan, D. and Melo, G.
AKIP Process Automation Platform: A Framework for the Development of Process-Aware Web Applications.
DOI: 10.5220/0011550000003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 64-74
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



with many other issues such as process tracking, or-
ganizational agility, team communication and process
redundancy. Because of the critical relevance of each
of the items, it is difficult to identify the one that
affects organizations the most. We see these pain
points in almost every company that engaged with us
and we believe that the solution involves the system-
atic automation of their processes. In this context,
the adoption of Business Process Automation (BPA)
techniques for building Process-Aware Information
Systems (PAISs), i.e., systems whose requirements
are described using process models such as BPMN,
helps to address natively most of the problems just
mentioned (Dumas et al., 2005).

There are several solutions for BPA, including
open-source and proprietary platforms. These solu-
tions will be briefly described in Section 3. The main
problems and limitations of these solutions are:

1. Vendor Lock-in: One of the main risks of adopting
a proprietary platform is being forced to continue
using its product or service, regardless of quality,
cost or any other reason, because it is not practical
to switch away from that product or service.

2. Limited UI/UX: Despite claiming that the systems
provide features for building dynamic forms, the
forms produced by the BPA platforms are still
quite limited. In this way, the construction of
complex components (such as auto-complete in-
put fields or elements whose validation rule is
more sophisticated) becomes challenging and of-
ten not feasible on some low-code platforms.

3. Limited Integration: Many solutions for BPA pro-
vide extension mechanisms designed to integrate
the platform with existing systems or third-party
solutions. However, implementing such integra-
tions are still costly, not efficient, and sometimes
not feasible.

4. Outdated Technology Stack: Many of the existing
BPA solutions are based on outdated techniques
such as stateful (Dwyer, 2021) and server-side
rendering (Iskandar et al., 2020) applications.

5. Lack of support for non-process features: An-
other limitation of current BPA platforms is that
they focus only on process automation and of-
ten provide limited support for other features that
are usually necessary for process execution. For
example, customized authentication mechanisms,
CRUD2 for domain entities, and import/export
data are typically features hard to develop in BPA
solutions. There is a need for solutions that can

2Acronym for Create, Read, Update, and Delete

support the automation of both process and Web-
related features.

To mitigate these problems and limitations, one
approach is to develop a traditional web application
and integrate it with a process engine. This way, the
resulting software does not have the limitations of a
platform focused on BPA and has the benefit of being
controlled by a process engine. The difficult of man-
ually integrating a web application with a process en-
gine is that this integration is not straightforward and
can be very challenging and costly (Samland and Tut-
ing, 2019) (Straube and Horn, 2021) (Shan, 2022).

In this context, our solution fills the gap by pro-
viding an open-source platform to facilitate the devel-
opment of process-aware information systems based
on code generation techniques. The platform is ca-
pable of generating a functional process-aware web
application from a business process model defined
in BPMN. To the best of our knowledge, there is
no other software tool that generates fully functional
process-aware web applications.

The framework was originally derived from an
academic research agenda conducted by the AgileKIP
Group3 that focuses on Knowledge Intensive Pro-
cesses. In 2018, we released the first version of the
platform and in 2019 we conducted the first POC
(Proof of Concept) in industry. In 2020, we launched
the second version of the platform that has been used
to automate dozens of processes. The third version
of the platform was just released and, among the new
features are support for dashboards and modulariza-
tion. The platform has been used in academia and in-
dustry for development of several non-profit and com-
mercial process-aware applications. To support the
demonstration of the proposed platform, we present
in this paper a case study from industry encompass-
ing the automation of three business processes in a
process-oriented application.

The remainder of this paper is organized as fol-
lows: Section 2 presents the background of this re-
search. The related work is briefly described in Sec-
tion 3. The platform overview is presented in Sec-
tion 4. Sections 5 and 6 discuss, respectively, how to
use the platform and how to use a generated process-
aware application. Technical details are discussed in
Section 7 and a case study is presented in Section
8. Section 9 concludes the paper and presents future
work.

3https://agilekip.com/

AKIP Process Automation Platform: A Framework for the Development of Process-Aware Web Applications

65



2 BACKGROUND

2.1 Business Process Model and
Notation (BPMN)

BPMN as an ISO (ISO, 2013) and OMG (OMG,
2013) standard is leading technology for modeling
business processes. Currently, BPMN is the busi-
ness process notation most used in practice (Harmon,
2016) and with the greatest number of available tools.
BPMN models can be interpreted and manipulated
by both technical and non-technical personnel, re-
ducing the likelihood of erroneous knowledge trans-
fer (OMG, 2013). Moreover, BPMN can also ex-
press executable models that can be interpreted by
process engines. In fact, systems such as Camunda,
Flowable, and BonitaSoft deliver an integrated envi-
ronment where users can design and execute BPMN
models.

2.2 Business Process Automation (BPA)

Business Process Automation (BPA) is defined as
the automation of complex business processes and
functions beyond conventional data manipulation and
record-keeping activities, usually through the use of
advanced technologies(Kirchmer and Scheer, 2004).
BPA is based on three pillars: orchestration, integra-
tion, and dynamic automated process execution (Mo-
hapatra, 2009). Based on these pillars, BPA can be
enabled by developing a systematic solution support-
ing a given business process.

2.3 Process-Aware Information System
(PAIS)

A Process-Aware Information System (PAIS) is a
particular type of application that uses information
technology to manage and execute operational pro-
cesses involving people, applications, and informa-
tion sources (Dumas et al., 2005). PAIS require-
ments are described using process models such as
BPMN, where activities, resources, decisions, events,
and their relationships can be used to represent the
flow of work.

2.4 Modern Process-Aware Information
Systems

Modern PAISs have been built as process-aware web
applications based on features that allow authorized
users to manage (e.g., execute, view, query, delegate)
their tasks and interact with the business processes

seamlessly. It is almost imperative that these appli-
cations provide rich user interfaces (light, fast, and
user-friendly) on top of a reliable and scalable soft-
ware architecture based on cutting-edge technologies,
focused on cloud-native distribution, and easy inte-
gration with third-party applications.

3 RELATED WORK

Considerable research has been conducted in the do-
main of Business Process Management (BPM) and
many tools have been proposed for different aspects
related to Business Process Automation (BPA). Be-
cause of the wide range of solutions, it is a challenge
to compare our platform with existing tools. How-
ever, we briefly describe a set of platforms for BPA
that can be either a source of evaluation and/or in-
spiration for our framework. We divided those solu-
tions into two groups: proprietary and open-source
platforms.

The proprietary low-code solutions for BPA in-
clude Aris4 (Scholz and Wagner, 2004), Bizagi5,
Heflo6, Nintex7, Pipefy8, Process Street9, Signavio10,
and SoftExpert BPM11. These solutions support
BPMN or provide modeling tools based on BPMN
that can be integrated with a low-code platform where
users can create processes and business rules, add
functional roles, create interfaces, customize forms,
and manage related content in an integrated way.

Among the open-source platforms, we mention
Camunda12, Bonita13, Flowable14, and jBPM15. The
Camunda Platform is an open-source workflow and
decision automation platform. The solution is com-
posed of tools that include a BPMN 2.0 process en-
gine, a modeler, a cockpit, and a task-list manager.
Together, these tools can be used for creating work-
flow and decision models, operating deployed models
in production, and allowing users to execute workflow
tasks assigned to them. Bonita is an open-source busi-
ness process management and low-code development
platform for BPA. The platform is composed of five

4https://www.softwareag.com/
5https://www.bizagi.com/
6https://www.heflo.com/
7https://www.nintex.com/
8https://www.pipefy.com/
9https://www.process.st/

10https://www.signavio.com/
11https://www.softexpert.com/
12https://www.camunda.org/
13https://www.bonitasoft.com/
14https://www.flowable.com/
15https://www.jbpm.org/

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

66



Figure 1: Platform overview.

main components: Bonita Studio, Bonita BPM En-
gine, Bonita Portal, Bonita UI Designer, and Bonita
Continuous Delivery. Flowable is a light-weight busi-
ness process engine written in Java. The platform sup-
ports the deployment of BPMN 2.0 and can be used
for creating process instances of those process defi-
nitions, running queries, accessing active or histori-
cal process instances and related data. jBPM (Java
Business Process Model) is an open-source work-
flow engine written in Java that can execute business
processes described in BPMN 2.0 (or in jPDL, its
own process definition language, in earlier versions).
jBPM is a toolkit for building business applications to
assist in automating business processes and decisions.
It is maintained by Red Hat Inc., part of the JBoss
community and closely related to the systems Drools
and OptaPlanner projects in the KIE group. It is re-
leased under the ASL (or LGPL in earlier versions)
by the JBoss company.

The limitations of these existing solutions were
described in Section 1, and, as a reminder, are
listed here as well: (1) Vendor Lock-in; (2) Limited
UI/UX; (3) Limited integration; (4) Outdated technol-
ogy stack; and (5) Lack of support for non-process
features.

4 PLATFORM OVERVIEW

AKIP Process Automation Platform is an open-source
project devoted to facilitate process automation initia-
tives based on code generation techniques. The plat-
form was built by developers and researchers aiming
to disseminate the use and development of process-
aware information systems, more specifically mod-
ern web applications that we call KIPApps. Figure
1 presents an overview of the platform. It consists of
two components supporting KIPApp development: an
Application Generator and a Reference Architecture.

4.1 KIPApp

In our solution, we call KIPApp (which stands for
Knowledge Intensive Process Applications) a mod-
ern process-aware web application (such as described
in Section 2.4) that executes on the top of an open-
source process engine. In short, a KIPApp provides
the following main features:

• Web Application Management: This includes
the management of users, configuration proper-
ties, health checks, logs, and application metrics.

• Process Management: It includes the manage-
ment of domain entities, deployed processes, ten-
ants, and process instances.

• Task List: It provides an updated user tasks list
showing tasks completed, assigned, and waiting
to execute.

4.2 Application Generator

The application generator is a tool to generate, de-
velop, and deploy KIPApps quickly. It generates code
for the base reference architecture of the AKIP plat-
form.

The generator is a key tool in our solution because
it accelerates the development process by scaffolding
a huge amount of code that, without the generator,
would have to be coded manually.

4.3 Reference Architecture

The reference architecture represents the backbone
of a KIPApp. It is composed of front and back-end
frameworks, a process engine, native features, exten-
sions, and connectors. Details on technologies used
for front and back-end frameworks and the process
engine are presented in Section 7. The process en-
gine is the tool used in our solution to orchestrate the
process workflow from an executable BPMN model.
Next, we depict the remaining three elements of the
reference architecture:

• Native Features are common features already
provided by the reference architecture, meaning
there is no need to repeat the code of these fea-
tures in each KIPApp. Examples of native fea-
tures include Advanced Tasks List, Start-Process,
Process-Instances Dashboard, Management of
Deployed Processes, and User Management.

• Extensions are components that allow seamless
integration of the KIPApp with the process en-
gine.

AKIP Process Automation Platform: A Framework for the Development of Process-Aware Web Applications

67



Figure 2: Main steps to use the platform.

• Connectors are components that allow the appli-
cation to integrate quickly with the external world.
Examples of connectors include an Email Con-
nector used to send email automatically through-
out the process execution, RestAPI Connector
to integrate with other systems through Rest
APIs, JMS Connector to carry out communica-
tion through messaging, and AWS Connectors that
allow integration with main AWS services. The
main idea behind these elements is to reuse the
most common integration components through a
sophisticated and highly configurable set of con-
nectors.

5 PLATFORM WALK-THROUGH

Using the platform involves three main steps (Figure
2):

1. Generation of a KIPApp based on the Reference
Architecture.

2. Technical implementation of one or more business
processes.

3. Deployment of the business process(es) into the
KIPApp.

We briefly explain below how these general steps
can be performed. Details on how to install and use
the platform can be found in the Github project public
repository.16

5.1 Generating a KIPApp

Our application generator was designed so that the
user only needs to execute a single command and an-
swer some questions related to the application con-
figuration from a wizard to get your web application
running with several features already installed. For
more details, check out the platform’s Github public
documentation.

5.2 Implementing a Business Process

In this section, we will focus on the development of
an illustrative process named Travel Plan Process. In

16https://agilekip.github.io/pap-documentation

Figure 3: Travel Plan Process - a running example.

a nutshell, this process has steps that users execute
when planning a trip. Therefore, our goal is to de-
velop a process-aware web application that aids a user
planning a trip. For illustrative purposes, we will use
a very simple version of this process, composed of
only three user tasks, as shown in Figure 3:

To implement this business process, we should
perform the following steps:

1. Define the business process model;

2. Define the domain model;

3. Generate domain entities;

4. Generate process entities; and

5. Customize the generated code.

5.2.1 Defining the Business Process Model

The business process model should be specified in
BPMN17 and contain only typical tasks (usually User,
Service, or Message Tasks) as illustrated by the pro-
cess model in Figure 3. Moreover, the process should
have an associated identifier (id) and be defined as ex-
ecutable. Optionally, we can also specify a descrip-
tion for the process using markdown notation. This
description will be shown in the application when a
new process instance is initiated.

5.2.2 Defining the Domain Model

A domain model (e.g., in UML notation) should be
created in order to help identify domain entities that
the business process (supported by the KIPApp) needs
to handle. To keep our running example simple, the
domain model is represented by a single entity named
TravelPlan that has a few properties as shown in Fig-
ure 4. This entity represents the data that are handled
by the process.

It will serve as a guide artifact for the next steps
(related to entity generation). However, the domain
model itself is not an input artifact for the AKIP plat-
form. In fact, it uses domain specifications in JSON
(JavaScript Object Notation) format, which is a stan-
dard data interchange format for the Web. JSON files
are lightweight, text-based, human-readable, and can
be edited using a text editor. Figure 5 presents the
metadata of the TravelPlan domain entity in JSON
format. The fields element describes primitive
types of the entity and the relationships element

17For now, only Camunda Modeler is supported.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

68



Figure 4: Simplified domain model.

{ "fields": [
{ "fieldName": "name",
"fieldType": "String" },

{ "fieldName": "startDate",
"fieldType": "LocalDate" },

{ "fieldName": "endDate",
"fieldType": "LocalDate" },

{ "fieldName": "airlineCompanyName",
"fieldType": "String" },

{ "fieldName": "airlineTicketNumber",
"fieldType": "String" },

{ "fieldName": "hotelName",
"fieldType": "String" },

{ "fieldName": "hotelBookingNumber",
"fieldType": "String" },

{ "fieldName": "carCompanyName",
"fieldType": "String" },

{ "fieldName": "carBookingNumber",
"fieldType": "String" }

],
"relationships": [],
"entityType": "domain",
"service": "serviceClass",
"dto": "mapstruct",
"jpaMetamodelFiltering": false,
"readOnly": true,
"pagination": "no",
"name": "TravelPlan",
"skipFakeData": true

}

Figure 5: TravelPlan domain entity metadata.

should describe its relationships (when they exist)
with other domain entities.

"entityType": "process-binding",
"processBpmnId": "TravelPlanProcess",
"domainEntityName": "TravelPlan",
"name": "TravelPlanProcess",

Figure 6: Fragment of the TravelPlanProcess process-
binding entity metadata.

{ "fields": [
{ "fieldName": "name",
"fieldType": "String" },

{ "fieldName": "startDate",
"fieldType": "LocalDate" },

{ "fieldName": "endDate",
"fieldType": "LocalDate" }

],
"relationships": [],
"entityType": "start-form",
"processBpmnId": "TravelPlanProcess",
"processEntityName": "TravelPlanProcess",
"domainEntityName": "TravelPlan",
"service": "serviceClass",
"dto": "mapstruct",
"jpaMetamodelFiltering": false,
"readOnly": false,
"pagination": "no",
"name": "TravelPlanStartForm",
"skipFakeData": true

}

Figure 7: TravelPlanStartForm start-form entity metadata.

Figure 8: KIPApp’s UI form used to start a Travel Plan
process instance.

5.2.3 Generating Domain Entities

Once we have specified the TravelPlan domain entity
in a JSON file (such as illustrated in Figure 5), we
can generate all the files supporting the manipulation
of this entity in the Web application (KIPApp). The
“entity” sub-generator of the AKIP platform will cre-
ate all the necessary application files (including the
database table, the controller of basic CRUD opera-

AKIP Process Automation Platform: A Framework for the Development of Process-Aware Web Applications

69



tions, and services) and provide a CRUD front-end
for each generated entity. The CRUD support, how-
ever, will only be provided if the readOnly property
of the JSON entity specification is set to false. In the
case of our running example, as the TravelPlan do-
main entity is read-only (see Figure 5), it will only be
possible to view its instances (created from the Travel
Plan Process). To view or handle instances of domain
entities, we need to use the Entities application menu.

5.2.4 Generating Process Entities

In this step, we need to generate the KIPApp’s entities
related to the process support. Each process entity
type plays a different role in the application:

• Process-binding Entity: This entity represents
the binding between a business process (BPMN
model) and its corresponding domain entity. In
other words, the aim of this entity is to indicate
the domain entity associated with the process.

• Start-form Entity: This entity is used to generate
the User Interface (UI) form which starts a process
instance.

• User-task Entity This entity is used to generate
the UI form for a specific user task present in the
process.
As in the case of domain entities, process enti-

ties also need to be specified as JSON files. In our
example, the process-binding entity is named Trav-
elPlanProcess. Its JSON specification is very simi-
lar to the TravelPlan domain entity presented in Fig-
ure 5. For this reason, we will not show here its
complete specification, but only some of its details.
TravelPlanProcess differs from the TravelPlan entity
only in relation to the properties presented in Figure
6. Specifically, we highlight the processBpmnId and
domainEntityName properties. The first one should
match the process Id defined in the BPMN process
model (as mentioned in Section 5.2.1). The second
one (domainEntityName) should match the domain
entity previously created (i.e., TravelPlan).

Concerning the start-form entity, Figure 7
presents its JSON specification for our running exam-
ple. The fields element describes the fields from
the domain entity that should be present in the pro-
cess start UI form whereas the relationships el-
ement describes the relationships from the domain
entity that should be included in this form. The
entityType property is start-form; processBpmnId
matches the process id defined in the BPMN model;
processEntityName matches the process-binding
entity previously created; and domainEntityName
matches the domain entity previously created. Fig-
ure 8 shows the KIPApp’s UI form generated from

the TravelPlanStartForm entity (Figure 7) by using
the “entity” sub-generator of the AKIP platform. This
UI form will be used to start a Travel Plan process in-
stance in the Web application.

A user-task entity should be created for each user
task present in the business process model. In the case
of our example, we need to create three user-task enti-
ties (named TaskFlight, TaskHotel, and TaskCar), be-
cause the Travel Plan process contains three user tasks
(see Figure 3). Owing to space limitations, we will
not present here the JSON specifications for these en-
tities, but they can be found in the platform’s online
tutorial. However, they are very similar to the start-
form entity specification previously created (Figure
7), as both entity types (user-task and start-form) are
used to generate UI forms of the resulting KIPApp.
In a user-task entity, the entityType property should
be user-task-form and the fields element should
contain the fields from the domain entity that should
appear in the KIPApp’s UI form used to execute the
process’s user task. Additionally, it should contain
the taskBpmnId property matching the correspond-
ing task id defined in the BPMN model file.

All entities mentioned above (i.e., the domain and
process ones) can be generated at the same time to
build the KIPApp by using the “entity” sub-generator
of the AKIP platform. This generator will create all
the necessary application files to support such entities.

5.2.5 Customizing the Generated Code

In a real scenario, once the application code has been
generated, it usually still needs some customizations
performed by developers. The most common cus-
tomizations we have identified in practice are the ad-
dition of support for business rules and adjustments in
UI form fields.

5.3 Deploying a Business Process into a
KIPApp

Finally, the KIPApp is ready and all entities support-
ing the execution of the Travel Plan business process
were generated and customized. Next, we need to ex-
plicitly deploy this process into the KIPApp.

To do that, it is necessary to log into the applica-
tion using an account with admin privileges, access
the Process Definitions Management feature (Figure
9), click on the Deploy a Process button, and choose
the business process model file (BPMN) correspond-
ing to the Travel Plan Process (detailed in Section
5.2.1). The bottom of Figure 9 shows the Travel Plan
process already deployed.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

70



Figure 9: KIPApp screen showing a deployed business pro-
cess.

6 USING A KIPApp

This section briefly presents how to use a KIPApp to
execute a business process. Owing to space limita-
tions, we will not present other functions provided by
the application.

Enacting a business process involves at least (1)
starting a new process instance, and (2) executing user
tasks from this instance. The following subsections
describe how these activities can be performed within
a KipApp.

6.1 Starting a Process Instance

Once the Travel Plan process has been deployed, we
can start the process by clicking on the Init button
from the app screen shown in Figure 9. The start form
of this process (shown in Figure 8) contains the fields
we defined previously in the TravelPlanStartForm en-
tity metadata (Figure 7). The process description (in
this case, three enumerated steps) came from the doc-
umentation element of the BPMN process model. The
process instance will actually start when we click on
the Start button at the bottom of the form (Figure 8).
To see the instances of the process already created,
we click on the Instances button from the screen in
Figure 9.

6.2 Executing User Tasks from a
Process Instance

A KIPApp user can see the updated process tasks list
from the My Tasks app menu. In the case of the Travel
Plan process, its tasks are available for any authen-
ticated user. Figure 10 shows the user tasks screen
where one can note the Choose flight task has already

Figure 10: User tasks from a process instance.

been completed (owing to its status) and the Book a
hotel task is enabled for execution (the BPMN pro-
cess model in this screen shows in green the current
task waiting to be executed). To execute it, we only
need to click on the Play button on the right side of
the task. A process instance will be concluded after
all its tasks have completed.

7 TECHNICAL NOTES

This section provides some information about the
platform’s implementation concerning its support
technologies. A KIPApp is a single web page appli-
cation generated by the AKIP platform, running on
top of a process engine. Our Application Generator is
an extension of the JHipster18 generator (technically
it is a JHipster blueprint) that overrides many sub-
generators and provides its own templates and func-
tions. Our Reference Architecture is based on one of
the most modern tool stacks in the software indus-
try. Currently, we use VueJS19 as a front-end frame-
work, Spring Boot20 as a back-end framework, and
Camunda Platform as a process engine.

8 CASE STUDY

The AKIP platform is used in practice within a soft-
ware development company as a support tool to build
process-aware web applications (KIPApps). This sec-
tion presents data on a case study conducted in the
context of this enterprise. The following subsections
present the goal of our study (8.1), data about the
company and the automated business processes (8.2),

18https://www.jhipster.tech/
19https://www.vuejs.org/
20https://spring.io/projects/spring-boot

AKIP Process Automation Platform: A Framework for the Development of Process-Aware Web Applications

71



the procedure that was followed (8.3), the results of
the case study (8.4) and, finally, some considerations
about the case study (8.5).

8.1 Goal

Our goal with this study was to assess the feasibility
and usability of the AKIP platform. In other words,
we intended to verify its effectiveness to generate
process-aware web applications in practice in the con-
text of a software development company. Specifi-
cally, the study aimed to answer the following re-
search question (RQ):

RQ: Is the AKIP platform able to generate
process-aware web applications (KIPApps) from real-
world business process models?

8.2 Subject Data

This case study was conducted in the context of a
Brazilian software development company (with ap-
proximately 30 employees), located in the city of Rio
de Janeiro. Its focus is on the development of IT so-
lutions for the logistics and port sectors.

The case study was conducted using one of the
company’s projects, named the Process Automation
project, which is automating and integrating business
processes from a client company by providing a cus-
tomized process-aware web application. The project
has a team composed of a project manager, a prod-
uct owner, a process analyst, a software analyst, and
two developers. The project follows a Scrum-based
agile development process that delivers an automated
business process at each iteration (sprint).

We evaluated three business processes automated
in this project, which are from the logistics and sea-
port domains. However, as these processes are pro-
prietary and confidential, we will only present gen-
eral information about their models, without present-
ing any details of the process model itself.

Table 1 shows the size of the BPMN process mod-
els automatically generated with the AKIP platform
(identified by P1, P2, and P3) in terms of number of
tasks, subprocesses, gateways, events and lanes, and
provides information about the complexity of these
models.

8.3 Procedure

First of all, the software architect generated the
KIPApp for the client company using the AKIP plat-
form. Afterwards, at each project’s development pro-
cess iteration (sprint), the team followed the sequence

Table 1: Data on case study business process models.

of steps presented in Section 5.2 for implementing a
business process:

1. The BPMN business process model was built by
the process analyst, interacting with the product
owner and users of the process.

2. The domain model was created by the software
analyst with the participation of the process ana-
lyst.

3. The domain and process entities metadata were
specified by the developers in JSON and used by
the AKIP platform that generated the code base
for the given process.

4. The generated app’s code was customized by de-
velopers (including support for business rules and
integrations) and UI forms (screens) were cus-
tomized by the software analyst.

5. Finally, the business process was deployed in
the KIPApp and the application was available for
client validation.

8.4 Results

As shown in Table 1, business processes considered
in this case study are composed of gateways, events,
and different types of BPMN tasks (User, Message,
and Service tasks) that allow us to evaluate advanced
code-generation resources of the AKIP platform. We
could not present such advanced resources in this pa-
per owing to space limitations, but they are covered in
the platform’s online tutorial. Moreover, all business
processes considered in this study could be success-
fully automated through the generated KIPApp. Code
customizations are always necessary, but even so, the
platform contributes to the automatic generation of a
large volume of application code, which would have

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

72



to be developed manually without the platform. The
project team where the platform has been used re-
ported to us that it is very useful in streamlining the
work of application development.

Finally, we conclude this section by answering
the research question that motivated this case study:
Is the AKIP platform able to generate process-aware
web applications (KIPApps) from real-world business
process models? The evaluation that was conducted
allowed us to conclude that the AKIP platform was
effective in generating a Web application supporting
the business processes implemented in the context of
the evaluated company’s project. Based on the cases
we evaluated in this practical study, we can claim that
the AKIP platform satisfactorily generates useful and
modern application code supporting business process
execution. However, more case studies should be an-
alyzed to extend the platform’s evaluation and consol-
idate its validation.

8.5 Discussion

The AKIP Process Automation Platform has been
used in several realistic and academic scenarios by
different teams to support developing process-aware
Web applications, and in this paper we present a case
study to demonstrate the feasibility of the platform.
In future work, we intend to conduct a survey with
members of the project’s development team in order
to evaluate specific aspects about the use of the AKIP
Process Automation Platform.

It is important to mention that the business pro-
cesses considered in this evaluation come from a sin-
gle enterprise’s project and may not be representative
of those occurring in other realistic settings. Different
software development processes, domains and orga-
nizations may lead to different results. Thus, our plat-
form should be tested further on business process au-
tomation scenarios from other organizations and do-
mains.

As can be seen in Table 1, the process models
considered in the case study include only one type of
BPMN gateway (exclusive gateway) and one type of
non-essential event (conditional event). Thus, the ef-
fectiveness of the AKIP platform in automating pro-
cesses with different types of BPMN gateways is
not evaluated in this study. Other BPMN process
elements have not yet been tested using the plat-
form, such as transactions, compensation activities,
and business rule tasks. In future work, we intend to
address this limitation.

In addition, we want to point out that the case
study (as well as our experience automating business
processes with the platform) shows the AKIP Process

Automation Platform can be used successfully in con-
junction with an agile software development process
such as Scrum to aim the development of process-
aware information systems. The project team that
participated in the case study reported that the plat-
form helps them to achieve more agility in imple-
menting business processes.

In summary, our results are promising, as demon-
strated by several independent uses, and we are still
working to improve the platform in order to support
more BPMN elements and include features directed
toward the low-code movement.

9 CONCLUSIONS AND FUTURE
WORK

In this paper we have introduced the AKIP Process
Automation Platform, an open-source project devoted
to facilitate business process automation initiatives
based on code generation techniques. The platform
is capable of generating a functional process-aware
Web application, which we call KIPApp, from an ex-
ecutable business process model defined in BPMN.
To the best of our knowledge, there is no other
software tool that generates fully functional process-
aware Web applications. Our solution is different in
that the generated application runs on top of a process
engine responsible for orchestrating the execution of
business processes and the generated Web applica-
tion’s architecture is based on modern technologies
currently used by the software industry.

In addition, we have presented a real-world case
study in which the AKIP platform has been evaluated.
The results of this study showed that it was effective
in generating a Web application supporting the busi-
ness processes implemented in the evaluated study. In
future work, we intend to conduct other case studies,
evaluating the tool in new business domains, in order
to broaden its validation.

We are also working on the development of a new
component for the AKIP platform. This component
consists of a software development process based on
agile practices, which we call SCRUB4PA (SCRUB
for Process Automation), and defines in detail how a
KIPApp should be built. This process will encompass
phases, tasks, roles, artifacts, templates, and tools
used throughout the development of a KIPApp.

REFERENCES

Dumas, M., Van der Aalst, W. M., and Ter Hofstede, A. H.
(2005). Process-aware information systems: bridging

AKIP Process Automation Platform: A Framework for the Development of Process-Aware Web Applications

73



people and software through process technology. John
Wiley & Sons.

Dwyer, G. (2021). Stateful vs state-
less architecture: Why stateless won.
https://www.virtasant.com/blog/stateful-vs-stateless-
architecture-why-stateless-won.

Harmon, P. (2016). The state of business process manage-
ment 2016. Technical report.

Iskandar, T. F., Lubis, M., Kusumasari, T. F., and Lubis,
A. R. (2020). Comparison between client-side and
server-side rendering in the web development. In IOP
Conference Series: Materials Science and Engineer-
ing, volume 801, page 012136. IOP Publishing.

ISO (2013). ISO/IEC 19510:2013: Information technology
– Object Management Group Business Process Model
and Notation. Technical report, Organization for Stan-
dardization.

Kirchmer, M. and Scheer, A.-W. (2004). Business process
automation—combining best and next practices. In
Business Process Automation, pages 1–15. Springer.

Mohapatra, S. (2009). Business process automation. PHI
Learning Pvt. Ltd.

OMG (2013). Business Process Model and Notation
(BPMN), Version 2.0.2. Technical report, Object
Management Group.

Samland, F. and Tuting, W. (2019). Monolith to mi-
croservice, waterfall to agile, success with camunda.
https://camunda.com/customer/deutsche-telekom/.

Scholz, T. and Wagner, K. (2004). Aris process platform tm
and sap netweaver tm: Next generation business pro-
cess management. In Business Process Automation,
pages 29–37. Springer.

Shan, D. (2022). Finance back-office billing engine using
camunda. https://camunda.com/customer/atlassian/.

Straube, C. and Horn, D. (2021). Scaling process
automation with a modular open source platform.
https://camunda.com/customer/city-of-munich/.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

74


