
Adaptive and Collaborative Inference: Towards a No-compromise
Framework for Distributed Intelligent Systems

Alireza Furutanpey a and Schahram Dustdar b

Distributed Systems Group, TU Wien, Argentinierstrasse 8, Vienna, Austria

Keywords: Edge Computing, Edge Intelligence, Dynamic Neural Networks, Split Computing.

Abstract: Deep Neural Networks (DNNs) are the backbone of virtually all complex, intelligent systems. However,
networks which achieve state-of-the-art accuracy cannot execute inference tasks within a reasonable time on
commodity hardware. Consequently, latency-sensitive mobile and Internet of Things (IoT) applications must
compromise by executing a heavily compressed model locally or offloading their inference task to a remote
server. Sacrificing accuracy is unacceptable for critical applications, such as anomaly detection. Offloading
inference tasks requires ideal network conditions and harbours privacy risks. In this position paper, we in-
troduce a series of planned research work with the overarching aim to provide a (close to) no compromise
framework for accurate and fast inference. Specifically, we envision a composition of solutions that leverage
the upsides of different computing paradigms while overcoming their downsides through collaboration and
adaptive methods that maximise resource efficiency.

1 INTRODUCTION

From computer vision (CV) to natural language
processing (NLP), Deep Learning (DL) methods
achieved unprecedented improvement in a wide range
of areas. The consistent improvements gave rise to
intelligent systems capable of performing complex
tasks, such as understanding voice commands and de-
tecting anomalies from a visual feed. However, Deep
Neural Network (DNN) models which can reliably
execute inference tasks incur high resource consump-
tion on most available hardware. Accordingly, both
academia and industry dedicate much attention to
conceiving solutions to accommodate local inference
tasks in constrained environments. They range from
devising novel compact architectures (Sandler et al.,
2018) to altering existing architectures via quantisa-
tion, pruning, or Knowledge Distillation (Deng et al.,
2020). An inherent shared trait of all such approaches
is their performance and model capacity trade-offs.
Alternatively, mobile applications can offload the in-
ference tasks to a cloud server where we assume un-
limited resources capable of fast inference regardless
of load. Here, the bottleneck is transferring the input
data to a remote server. Especially for CV tasks, there

a https://orcid.org/0000-0001-5621-7899
b https://orcid.org/0000-0001-6872-8821

remain three caveats. First, sensitive private data is
exposed to application operators and third-party cloud
providers. Second, continuous visual data streams
must compete for limited bandwidth. Third, trans-
ferring the input data results in unacceptable end-to-
end latency for time-critical DL-enabled applications.
Another alternative is to bring resources to an edge
server near the clients. Ideally, such edge servers
are equipped with specialised hardware capable of
accommodating large models. Nevertheless, simply
moving models from the cloud to the edge introduces
other limitations. Unlike with cloud servers, we can-
not effortlessly horizontally scale edge resources, im-
posing a hard cap on throughput. Moreover, most
approaches disregard fluctuating network conditions
in dense urban areas, i.e. even with servers in close
proximity, it is difficult to ensure smooth operations
regardless of the current load. Lastly, privacy-related
concerns are not entirely resolved. Table 1 sum-

Table 1: Strength and Limitations of each compute
paradigm. (X: Acceptable for critical applications,∼: Lim-
ited, ×: Unsuitable for critical applications).

LC EC CC
Latency X ∼ ×

Accuracy × X X
Privacy X ∼ ×

Throughput × ∼ X

144
Furutanpey, A. and Dustdar, S.
Adaptive and Collaborative Inference: Towards a No-compromise Framework for Distributed Intelligent Systems.
DOI: 10.5220/0011547800003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 144-151
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

marises the strengths and limitations of local comput-
ing (LC), edge computing (EC) and cloud computing
(CC).

Conclusively, neither standalone local, edge, nor
cloud computing is a viable solution to satisfy com-
mon performance requirements simultaneously. In-
stead, we advocate for methods that facilitate col-
laboration between the computing paradigms. More
broadly, edge intelligence (EI) has emerged as a re-
search area that situates EC as the central component
of a hierarchical network spanning the cloud, the edge
and end devices (Zhou et al., 2019). We believe that
the edge-centric view of EI is the correct way forward
for solving the challenges of intelligent distributed
systems.

This position paper presents a series of planned re-
search work based on Split Computing (SC) and dy-
namic neural networks for collaborative and adaptive
inference. SC refers to distributing a DNN over a hi-
erarchical network. Dynamic neural networks have
dynamic computational graphs that can adapt to dif-
ferent inputs and conditions during inference. The
role of SC is to break the narrow view of solutions
which view each paradigm in isolation. Dynamic
neural networks complement SC approaches by max-
imising the usage of the available resources to ensure
consistent performance in fluctuating conditions. The
paradigms intersect in enabling powerful networks to
execute their tasks efficiently without over-applying
crippling compression techniques.

Section 2 introduces the relevant concepts and
summarises existing literature to provide context.
Then, Section 3 discusses open problems, which we
aim to address with a series of planned research work.
Lastly, Section 4 concludes our work by summarising
our main insights.

2 LITERATURE REVIEW

2.1 Split Computing

Consider a DNN D(.) as a stack of functions y =

f (n) . . . f (2)(f (1)(x)) . . .). Each function is either a
fine-grained layer or a more coarse-grained block
which consists of multiple layers. The input x is
some data, such as a 3-dimensional image tensor
C×H×W , and y is the result of some task, such as
the one-hot-encoded vector for image classification.
SC divides D(.) into a head DH and tail DT portion
s.t. y = DT (DH(x)) where the head is deployed on an
end device and the tail on a remote server. Then, in-
stead of either computing y locally or sending x over
some network, the end device computes the interme-

diate features z=DH(x)) locally before sending it to a
remote server to compute y = DT (z). The idea stems
from the observation that the input data tends to re-
duce as it progresses through the layers. Applying
this observation to SC was first thoroughly explored
by Kang et al. Their method Neurosurgeon is a sched-
uler that profiles each layer by computational cost and
output data size and ideally splits the network to opti-
mise latency or energy efficiency (Kang et al., 2017).

For an overview on SC, see the recent survey by
Matsubara et al (Matsubara et al., 2021). In the fol-
lowing, we focus on work relevant to our discussion
in Section 3.

2.1.1 Head Distillation and Neural Compression
of Intermediate Features

Early work on SC focused on seeking ideal splitting
points of existing DNN models without any consider-
able modifications to their architecture (Jeong et al.,
2018). However, as pointed out by Kang et al., naive
SC is only sensible for networks with a natural bot-
tleneck at earlier layers, excluding many recent DNN
architectures. For example, ResNet-50 does not de-
crease the input until its third last residual block (He
et al., 2016). Since such models shift most work to the
end device, it is pointless to split them. Consequently,
more recent work focuses on modifying existing ar-
chitectures with artificial bottlenecks. The objective
is to introduce and train learnable autoencoder-based
neural compression models (Mentzer et al., 2018) at
the desired split point of the DNN.

Autoencoders consist of an encoder and a de-
coder. The encoder compresses the input to a low-
dimensional representation while the decoder recon-
structs it. The advantage of autoencoders is twofold.
First, autoencoders can learn to extract useful features
for downstream tasks without labels (i.e. unsuper-
vised). Second, they introduce a bottleneck provid-
ing an ideal partition point. Typically, the architec-
ture of autoencoders is symmetric, i.e. the layers in
the decoder are inverse to the layers in the encoder.
To mirror the unbalanced computational resources be-
tween the client and the server, it is possible to achieve
comparable results with an asymmetric architecture
where more of the computational burden is shifted to-
wards the decoder (Yao et al., 2020). Additionally,
we can fine-tune autoencoder modules embedded in a
larger DNN to achieve the best inference result rather
than reconstructing an input for human perception.
Clearly, compression techniques with learnable pa-
rameters will outperform conventional compression
techniques.

Eshratifar et al. were some of the first to intro-
duce artificial bottlenecks by injecting an autoencoder

Adaptive and Collaborative Inference: Towards a No-compromise Framework for Distributed Intelligent Systems

145

into an existing model (Eshratifar et al., 2019). Shao
and Zang continued their work and conducted experi-
ments with over-compressed features in channels with
varying conditions (Shao and Zhang, 2020). More re-
cently, Yao et al. introduced a general framework for
such approaches (Yao et al., 2020).

Matsubara et al. were the first to propose Head
network Distillation (HDN), which only modifies the
head portion of the model by replacing it with a dis-
tilled version (Matsubara et al., 2019). They further
build on their initial work, such as introducing a gen-
eralised HDN method for object detection tasks and
novel training methods for compressing intermediate
features (Matsubara et al., 2022b).

Note the distinction between methods that embed
autoencoders within a model and methods that in-
troduce artificial bottlenecks by modifying existing
model parts. Both objectives are to minimise the
head’s computational load and compress transferred
data with an encoder-decoder structure, but there is a
crucial distinction. The former injects an asymmet-
ric autoencoder into the model to compress and re-
construct an input. The advantage of this approach is
its generic application, but it trades a non-negligible
amount of accuracy for compression strength. Con-
trastingly, the latter remodels the existing architecture
of the head and the first blocks of the tail to function
akin to an encoder-decoder structure. This approach
can virtually retain the accuracy of the original model
even for a substantial amount of compression but re-
quires careful consideration for each model (Matsub-
ara et al., 2022a).

2.1.2 Privacy Preserving Properties of Split
Computing

The importance of protecting sensitive data is increas-
ingly seeping into public consciousness, and various
regions incrementally put it into law. Therefore, ap-
plications which require processing sensitive data are
often constrained to local computing. Since SC pro-
cesses the original input before sending it over a net-
work, it possesses some privacy-preserving proper-
ties. Hence, privacy is a common justification for
SC, but almost all work neglects to evaluate privacy-
related claims. Presumably, this is due to the diffi-
culty of quantifying the privacy-preserving properties
of intermediate features.

Privacy-preserving claims were not entirely unjus-
tified. Most literature on privacy exploits of DNNs
focuses on the training data. In contrast, the recon-
struction of inference data is more challenging since
they do not contribute to the trained model parame-
ters. Additionally, inference samples do not follow
the same distribution, i.e. it is difficult to retrieve sta-

tistical information from them (He et al., 2019).
Oh & Lee performed an image reconstruction at-

tack, targeting the reconstruction of the intermediate
features back to the original input (Oh and Lee, 2019).
Their attack requires access to the original model, and
their results show that their attack only fails on models
split at the deeper layers or complex models. Neither
solution is satisfactory in practical scenarios. Split-
ting at a deeper layer shifts more computational bur-
den on the end device, defeating the purpose of SC al-
together. Furthermore, the current state-of-the-art fo-
cuses on simplifying the head model as aggressively
as possible without sacrificing accuracy.

He et al. have shown that with no access to the
model structure, it is still possible to accurately and
reliably perform an image inversion attack. They
suggest protective measures such as differential pri-
vacy by adding noise to the original input or inter-
mediate features (He et al., 2019). However, they
conducted their experiments on a small model with
simple datasets and did not evaluate the suggested
defence mechanisms. Wu et al. conceived a simi-
lar attack and have shown promising results on sim-
ple models by introducing noise to model parame-
ters instead of to the input or intermediate represen-
tation (Wu et al., 2021).

2.2 Dynamic Neural Networks

The main advantage of Dynamic Neural Networks is
their capability to allocate computational resources on
demand by activating a subset of the model compo-
nents depending on the input complexity and other
constraints. The core assumption of this paradigm is
that some tasks are easier to process than others. For
example, a cluttered image where the object is barely
visible is intuitively more difficult to classify than
one where the object is well-centred and easily dis-
tinguishable from the background. Dynamic Neural
Networks encompass a broad class of different meth-
ods and architectures. For a complete overview, we
recommend the work by Han et al. (Han et al., 2021)
Here, we focus on specific classes of Dynamic Neu-
ral Networks we believe are most compatible with EC
and SC.

2.2.1 Early Exiting

Most work on early exiting (EE) is based on the work
by Teerapittayanon et al. They extend existing archi-
tectures with intermediate classifiers to process easy
samples without passing them through the entire net-
work (Teerapittayanon et al., 2016). Superficially, this
method appears to tie well with SC since we can sim-
ply place an early exit at an end device. However,

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

146

in practice, it is a challenging problem with diverg-
ing objectives. For instance, the ideal splitting and
branching locations do not necessarily coincide (Chi-
ang et al., 2021). Teerapittayanon et al. extend their
work on BranchyNet to conceive a framework for
a distributed DNN deployed over a hierarchical net-
work where a device can perform early inference with
an intermediate classifier at each network layer (Teer-
apittayanon et al., 2017). Li et al. introduced Ed-
gent and proposed combining SC with EE but only
in a limited capacity, which does not distinguish be-
tween the complexity of the tasks (Li et al., 2019).
Moreover, their experiments only considered a sim-
ple model with a small data set, which does not nec-
essarily generalise to real-life scenarios. Laskaridis
et al. introduced SPINN, which improves on Edgent
by classifying simple tasks early and incorporates
learned compression methods and have shown that
this approach works on more recent models trained
on larger datasets (Laskaridis et al., 2020).

2.2.2 Dynamic Depth and Width

While EE approaches are based on the assumption
that some tasks are easier to classify than others, static
pruning approaches assume that neural networks are
overparameterised and that not all parts of the model
attribute equally to the final classification task. EE
increases inference speed by only executing parts of
the DNN sequence but requires tuning the threshold
value, the placement of the branches and training of
the intermediate classifiers. The correct implementa-
tion of intermediate classifiers is non-trivial and will
lead to a drop in accuracy without careful calibra-
tion (Pacheco et al., 2021). Pruning increases in-
ference speed by permanently removing parts of the
model but permanently reducing its capacity.

In a sense, DNNs with dynamic depth and width
combine the assumptions of approaches to selectively
skip redundant layers and channels based on the prop-
erties of the current input. In principle, such networks
should achieve comparable speed-ups as pruning and
EE without their downsides. For instance, a pruning
algorithm removes parts of a model which were only
necessary for edge cases and will subsequently per-
manently fail to classify such cases. Conversely, a dy-
namic neural network could skip the same parts and
only activate them for the edge case it would other-
wise misclassify.

Layer skipping approaches are especially promis-
ing on residual networks since they behave similarly
to an ensemble of shallow networks (Veit et al., 2016).
That is, individual blocks are removable without af-
fecting other layers and learn features which are pos-
sibly relevant only for a subset of samples. How-

ever, layer skipping requires a discrete decision func-
tion which is not differentiable, i.e. we cannot com-
pute the gradients needed for backpropagation during
the training phase. Veit and Belongie (Veit and Be-
longie, 2018) propose a solution where they apply the
Gumbel softmax trick (Jang et al., 2016) to a gating
mechanism. Hermann et al. show that the same idea
is transferable to dynamic width, where they use the
same trick to learn a function skipping filters instead
of blocks (Herrmann et al., 2020). Note that network
depth and width are not orthogonal parameters and
correlate. Hence, we additionally consider methods
which combine multiple approaches, such as the work
by Xia et al (Xia et al., 2021).

Lastly, we observe that combining SC with dy-
namic parameters is less obvious, which is presum-
ably why there is no substantial work on it yet. Later,
we discuss how we intend to bridge the concepts.

3 DISCUSSION

3.1 Deployment Abstractions for Split
Computing

Although end-to-end systems to partition, deploy and
monitor DNNs over a hierarchical network already
exist, they still lack a layer of abstraction to decou-
ple the runtime system and the intricacies of SC to
application developers. Ideally, we could provide a
framework that allows developers to implement their
DNNs in a manner that is agnostic towards its deploy-
ment.

To this end, we propose combining SC with the
Function-as-a-Service (FaaS) paradigm by introduc-
ing serverless abstractions (Aslanpour et al., 2021).
The idea is for application developers to organise
DNNs into blocks such that a scheduler can deploy
the functions with all or only a subset of the blocks.
Then, the input is processed by a series of recur-
sive function calls, i.e. each call executes one block
taking the result of the previous block as its input.
This approach has two advantages: First, the server-
less abstraction seamlessly combines LC, EC and CC,
i.e. developers can implement their DNNs agnostic
towards where each block ends up being deployed
or executed. Second, splitting DNNs becomes com-
pletely dynamic. For each input, at each step, the run-
time can decide whether it executes the next step of
the recursion at the current machine or passes it to an-
other. Figure 1 shows a concept sketch of our planned
work. A DNN with n blocks is deployed as a function,
and each function call executes the next unprocessed
block, starting at block 1 up on the client-side. Then,

Adaptive and Collaborative Inference: Towards a No-compromise Framework for Distributed Intelligent Systems

147

Figure 1: Concept sketch of SC with recursive function calls, where the runtime decides to offload at block Bn−k.

the runtime determines that block k is the right place
to offload the features, and the execution continues at
block k+ 1 on the server-side. In the following, we
describe two planned research directions based on the
serverless abstraction.

3.1.1 Dynamic Width and Depth for Split
Neural Networks

As stated in Section 2.2.2, no substantial work com-
bines SC approaches with dynamic neural networks
other than intermediate classifiers for early exiting.
Since skipping particular layers and channels can shift
the ideal moment to offload, there is a polarisation
between most methods which decide the correct split-
ting point during an offline profiling step. However,
with our proposed abstraction, the system can choose
to offload intermediate features depending on the cur-
rent task and not just based on static parameters, nat-
urally bridging SC to DNNs with dynamic width and
depth.

To emphasise this advantage, consider two DNNs
with identical architectures, except where one is static
and the other is dynamic. For the former, the decision
to transfer intermediate features is statically parame-
terised by the network conditions, i.e. the task must
be processed by a fixed number of blocks. The latter
is further parameterised by the intrinsic properties of
the input, where the gating module variably reduces
its size, such that the intermediate features are trans-
ferable considerably earlier.

3.1.2 Split Dynamic Neural Networks with
Intermediate Classifiers

The proposed abstraction is trivially compatible with
EE approaches described in Section 2.2.1. At each
step of the recursion, the results of an intermedi-
ate classifier can trigger a decision for the function

to terminate or continue processing. However, we
are also interested in investigating their compatibil-
ity with layer and channel skipping approaches. Our
interest stems from the findings of Veit et al., who
have shown that residual networks exhibit ensemble-
like behaviour, i.e. we can view networks with resid-
ual connections as a collection of paths rather than a
single deep network. The implication is that the paths
do not depend on each other despite being jointly
trained (Veit et al., 2016).

Each block is responsible for extracting different
features with varying relevance to the inputs, which
does not necessarily coincide with block depth. Such
findings suggest that the underpinning assumption of
EE is flawed. Most work considers strictly sequential
dependency of blocks rather than how each input de-
pends on different activation of non-sequential paths.
Therefore, intermediate classifiers will needlessly ex-
ecute some earlier blocks but miss out on potentially
necessary features they could have gotten from a later
block. Specifically, we hypothesise that a network
capable of executing only the necessary blocks for
inputs should be able to integrate intermediate clas-
sifiers more efficiently than conventional sequential
networks.

Most EE methods discard the computed features
from a branch if the intermediate classifier’s con-
fidence is below a statically configured threshold
value, incurring needless overheads for samples that
branches cannot classify. If our hypothesis is correct,
then a network which can dynamically select the most
relevant paths of each input should achieve higher ac-
curacy at the intermediate classifier. Additionally, it
should minimise redundant execution by only con-
sidering branches for paths which involve a specific
number or combination of blocks. For instance, con-
sider a branchy network with L blocks and N (inter-
mediate) classifiers. Figure 2a shows a regular view

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

148

of a network with residual connections, which only
considers sequential processing of the blocks. Cur-
rent methods will always execute C1 and toss away
the results if the confidence is below a set threshold.
Contrarily, Figure 2b shows an unravelled view of the
same network, with 2n implicit paths, i.e. each block
doubles the number of possible paths. For brevity, the
figure only shows the 23 paths of the first three blocks,
with one intermediate classifier placed at block 3.
With this view, it is possible to configure the network
only to execute C1 if the bolded path processes the
input.

(a) Regular view on a branchy network.

(b) Unraveled view on the same network.

Figure 2: Modified figure from (Veit et al., 2016) to include
branches.

3.2 Computational Reuse with
Intermediate Features

The idea of computational reuse is to exploit the
spatio-temporal locality of inputs, i.e. nearby during
the same time interval are highly likely to send similar
requests. For instance, consider a cognitive assistance
application that provides descriptions of observed ob-
jects where multiple clients perform similar observa-
tions, such as viewing the same animal from a differ-
ent angle. Then, we can eliminate redundant compu-
tation by executing the tasks once by storing them in
a cache for reuse. It is out of the scope of this work
to give a more detailed explanation of edge caching
for computational reuse. We recommend the recent
work by Al Azad & Mastorakis, where they provide
a brief overview of existing methods (Al Azad and

Mastorakis, 2022). Here, we focus on reusing the
computation of inference-related tasks and their chal-
lenges. Traditional computation elimination meth-
ods rely on trivial exact matching methods, such as
URIs for cached web content or hash keys for content-
addressable storage. Conversely, input images are vir-
tually never identical. Instead, we leverage that se-
mantically correlating images map to the same out-
put (Guo et al., 2018). Therefore, we require approx-
imate methods which are non-trivial for several rea-
sons. For one, the methods must find the similarity
among high-dimensional input that matches them ac-
cording to their correct classification result. Addition-
ally, the method must be fast enough for a cache miss
to not noticeably increase the perceived latency and
scale for sufficiently large cache size. Moreover, due
to the approximate nature of the method, we need to
consider that cache misses can happen even if a suit-
able object is present. Lastly, for similar reasons, we
must deal with false cache hits, i.e. when the input has
a different label than the objects found in the cache. In
other words, when we conceive a solution, we need to
leverage trade-offs between cache size, latency, sensi-
tivity and precision.

Current methods only consider non-learned fea-
ture extractors combined with simple classifiers or de-
couple computing of the matching key and the actual
task.

We identify two problems with such approaches.
First, tossing away intermediate features is computa-
tional waste, leading to performance degradation un-
der conditions that lead to increased cache misses.
Second, hand-crafted feature extractors cannot be
fine-tuned towards the distribution of the expected in-
put.

To solve the abovementioned problems, we pro-
pose a method that utilises the intermediate features
of a split DNN as the cache key to eliminating com-
putational waste. The work by Venugopal et al. shows
promising results with a semantic cache based on neu-
ral feature extractors but decouples it from the actual
classification model (Venugopal et al., 2018). More-
over, we hypothesise that by utilising current state-
of-the-art HDN approaches (Section 2.1.1), it is pos-
sible to create significantly more space-efficient and
reliable query keys. Specifically, we can exploit the
properties of the head model to reduce the dimension-
ality of input data while maximising the retention of
relevant information for the current task. In short, by
leveraging the properties of DNNs with bottleneck in-
jection, we can produce keys with minimal noise and
negligible overhead. Figure 3 describes the architec-
ture of the planned system.

Adaptive and Collaborative Inference: Towards a No-compromise Framework for Distributed Intelligent Systems

149

Figure 3: Conceptual system architecture of an inference
execution engine with a cache for computational reuse. Step
4 b) and 4 c) are only performed on a cache miss.

3.3 Defensive Mechanisms for Split
Computing

There is an inherent risk with exposing sensitive
data to third parties. Even trustworthy providers are
susceptible to malicious attacks or accidental leak-
age through negligence. Section 2.3 presented work
demonstrating how reducing exposure of sensitive
data by allowing the server only to store and pro-
cess intermediate input representations is not a sat-
isfactory solution. However, all of the introduced at-
tacks were targeted toward unmodified models, which
do not represent the current state-of-the-art methods
in SC. Since most SC approaches focus on simpli-
fying the head model and compressing the interme-
diate features by minimising redundant information,
we suspect the success of most inversion attacks.
Nevertheless, to evaluate the efficacy of counter-
measurements, it is essential to create a proper threat
assessment by first carrying out input inversion at-
tacks on SC models introduced in recent work. Once
we have assessed the threat level of inversion attacks,
we can start conceiving solutions tailored toward SC
models. The most promising defensive mechanisms
suggest that stochastic methods introduce noise on ei-
ther the model parameters or intermediate features.
Therefore, we propose introducing a stochastic layer
at the artificial bottleneck. Specifically, we aim to
conceive a method which injects the artificial bottle-
neck based on variational autoencoders (Kingma and
Welling, 2013) instead of conventional ones.

We base our method on the observation that most
inversion attacks use a loss function that minimises
the distance between the features produced by the tar-
get model and the inverse model. With a stochastic
layer, the decoder reconstructs the input by sampling
from a distribution, i.e. adversaries cannot rely on
creating models that aim to learn weights for invers-
ing deterministic functions. Moreover, we predict that
introducing a stochastic layer in existing SC mod-
els should only incur a negligible accuracy penalty.

However, we cannot apply the same training methods
since training variational bottlenecks is less straight-
forward.

4 CONCLUSION

Traditional methods of compressing models or task
offloading are bound to unacceptable trade-offs. To
satisfy the requirements of critical AI applications, we
have summarised existing work on promising meth-
ods to bridge the gap between isolated computing
paradigms, and maximise network efficiency. Ad-
ditionally, we have introduced a series of planned
research that leverage the presented literature. We
do not claim that completing our proposed methods
is sufficient to overcome all the challenges we have
identified in this work. However, we believe that
successfully implementing the planned system, is a
considerable step toward conceiving an end-to-end
framework for demanding applications which cannot
afford compromises.

REFERENCES

Al Azad, M. W. and Mastorakis, S. (2022). Reservoir:
Named data for pervasive computation reuse at the
network edge. In 2022 IEEE International Conference
on Pervasive Computing and Communications (Per-
Com), pages 141–151. IEEE.

Aslanpour, M. S., Toosi, A. N., Cicconetti, C., Javadi, B.,
Sbarski, P., Taibi, D., Assuncao, M., Gill, S. S., Gaire,
R., and Dustdar, S. (2021). Serverless edge com-
puting: Vision and challenges. In 2021 Australasian
Computer Science Week Multiconference, ACSW ’21,
New York, NY, USA. Association for Computing Ma-
chinery.

Chiang, C.-H., Liu, P., Wang, D.-W., Hong, D.-Y., and
Wu, J.-J. (2021). Optimal branch location for cost-
effective inference on branchynet. In 2021 IEEE In-
ternational Conference on Big Data (Big Data), pages
5071–5080. IEEE.

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. (2020). Model
compression and hardware acceleration for neural net-
works: A comprehensive survey. Proceedings of the
IEEE, 108(4):485–532.

Eshratifar, A. E., Esmaili, A., and Pedram, M. (2019). Bot-
tlenet: A deep learning architecture for intelligent mo-
bile cloud computing services. In 2019 IEEE/ACM In-
ternational Symposium on Low Power Electronics and
Design (ISLPED), pages 1–6. IEEE.

Guo, P., Hu, B., Li, R., and Hu, W. (2018). Foggycache:
Cross-device approximate computation reuse. In Pro-
ceedings of the 24th annual international conference
on mobile computing and networking, pages 19–34.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and
Wang, Y. (2021). Dynamic neural networks: A survey.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

150

IEEE Transactions on Pattern Analysis and Machine
Intelligence.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.

He, Z., Zhang, T., and Lee, R. B. (2019). Model inversion
attacks against collaborative inference. In Proceed-
ings of the 35th Annual Computer Security Applica-
tions Conference, pages 148–162.

Herrmann, C., Bowen, R. S., and Zabih, R. (2020). Channel
selection using gumbel softmax. In European Confer-
ence on Computer Vision, pages 241–257. Springer.

Jang, E., Gu, S., and Poole, B. (2016). Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144.

Jeong, H.-J., Lee, H.-J., Shin, C. H., and Moon, S.-
M. (2018). Ionn: Incremental offloading of neural
network computations from mobile devices to edge
servers. In Proceedings of the ACM Symposium on
Cloud Computing, pages 401–411.

Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T.,
Mars, J., and Tang, L. (2017). Neurosurgeon: Col-
laborative intelligence between the cloud and mobile
edge. ACM SIGARCH Computer Architecture News,
45(1):615–629.

Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.

Laskaridis, S., Venieris, S. I., Almeida, M., Leontiadis,
I., and Lane, N. D. (2020). Spinn: synergistic pro-
gressive inference of neural networks over device and
cloud. In Proceedings of the 26th annual interna-
tional conference on mobile computing and network-
ing, pages 1–15.

Li, E., Zeng, L., Zhou, Z., and Chen, X. (2019). Edge
ai: On-demand accelerating deep neural network in-
ference via edge computing. IEEE Transactions on
Wireless Communications, 19(1):447–457.

Matsubara, Y., Baidya, S., Callegaro, D., Levorato, M., and
Singh, S. (2019). Distilled split deep neural networks
for edge-assisted real-time systems. In Proceedings of
the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges, pages 21–26.

Matsubara, Y., Callegaro, D., Singh, S., Levorato, M.,
and Restuccia, F. (2022a). Bottlefit: Learning com-
pressed representations in deep neural networks for
effective and efficient split computing. arXiv preprint
arXiv:2201.02693.

Matsubara, Y., Levorato, M., and Restuccia, F. (2021). Split
computing and early exiting for deep learning applica-
tions: Survey and research challenges. ACM Comput-
ing Surveys (CSUR).

Matsubara, Y., Yang, R., Levorato, M., and Mandt,
S. (2022b). Supervised compression for resource-
constrained edge computing systems. In Proceedings
of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 2685–2695.

Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., and
Van Gool, L. (2018). Conditional probability mod-
els for deep image compression. In Proceedings of

the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4394–4402.

Oh, H. and Lee, Y. (2019). Exploring image reconstruc-
tion attack in deep learning computation offloading.
The 3rd International Workshop on Deep Learning for
Mobile Systems and Applications - EMDL ’19.

Pacheco, R. G., Couto, R. S., and Simeone, O. (2021).
Calibration-aided edge inference offloading via adap-
tive model partitioning of deep neural networks. In
ICC 2021-IEEE International Conference on Commu-
nications, pages 1–6. IEEE.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4510–4520.

Shao, J. and Zhang, J. (2020). Bottlenet++: An end-to-end
approach for feature compression in device-edge co-
inference systems. In 2020 IEEE International Con-
ference on Communications Workshops (ICC Work-
shops), pages 1–6. IEEE.

Teerapittayanon, S., McDanel, B., and Kung, H.-T. (2016).
Branchynet: Fast inference via early exiting from
deep neural networks. In 2016 23rd International
Conference on Pattern Recognition (ICPR), pages
2464–2469. IEEE.

Teerapittayanon, S., McDanel, B., and Kung, H.-T. (2017).
Distributed deep neural networks over the cloud, the
edge and end devices. In 2017 IEEE 37th interna-
tional conference on distributed computing systems
(ICDCS), pages 328–339. IEEE.

Veit, A. and Belongie, S. (2018). Convolutional networks
with adaptive inference graphs. In Proceedings of the
European Conference on Computer Vision (ECCV),
pages 3–18.

Veit, A., Wilber, M. J., and Belongie, S. (2016). Residual
networks behave like ensembles of relatively shallow
networks. Advances in neural information processing
systems, 29.

Venugopal, S., Gazzetti, M., Gkoufas, Y., and Katrinis,
K. (2018). Shadow puppets: Cloud-level accurate
{AI} inference at the speed and economy of edge. In
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18).

Wu, M., Ye, D., Zhang, C., and Yu, R. (2021). Spears
and shields: attacking and defending deep model
co-inference in vehicular crowdsensing networks.
EURASIP Journal on Advances in Signal Processing,
2021(1):1–21.

Xia, W., Yin, H., Dai, X., and Jha, N. K. (2021). Fully
dynamic inference with deep neural networks. IEEE
Transactions on Emerging Topics in Computing.

Yao, S., Li, J., Liu, D., Wang, T., Liu, S., Shao, H., and
Abdelzaher, T. (2020). Deep compressive offloading:
Speeding up neural network inference by trading edge
computation for network latency. In Proceedings of
the 18th Conference on Embedded Networked Sensor
Systems, pages 476–488.

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., and Zhang, J.
(2019). Edge intelligence: Paving the last mile of arti-
ficial intelligence with edge computing. Proceedings
of the IEEE, 107(8):1738–1762.

Adaptive and Collaborative Inference: Towards a No-compromise Framework for Distributed Intelligent Systems

151

