
Towards Soft Web Intelligence by Collecting and Processing JSON Data
Sets from Web Sources

Paolo Fosci a and Giuseppe Psaila b

University of Bergamo, DIGIP, Viale Marconi 5, 24044 Dalmine (BG), Italy

Keywords: Web Intelligence, Continuous Acquisition of JSON Data Sets from Web Sources, Soft Querying on JSON
Data Sets.

Abstract: Since the last two decades, Web Intelligence has denoted a plethora of approaches to discover useful knowl-
edge from the vast World-Wide Web; however, dealing with the immense variety of the Web is not easy and
the challenge is still open. In this paper, we moved from the previous functionalities provided by the J-CO
Framework (a research project under development at University of Bergamo Italy), to identify a vision of Web
Intelligence scopes in which capabilities of soft computing and soft querying provided by a stand-alone tool
can actually create novel possibilities of making useful analysis of JSON data sets directly coming from Web
sources. The paper identifies some extensions to the J-CO Framework, which we implemented; then it shows
an example of soft querying enabled by these extensions.

1 INTRODUCTION

Web Intelligence (Yao et al., 2001) is now an estab-
lished sub-discipline of computer science. Although
it is quite difficult to exactly characterize it, we can
report the original definition proposed in (Yao et al.,
2001): “Web Intelligence (WI) exploits Artificial In-
telligence (AI) and advanced Information Technology
(IT) on the Web and Internet”: in other words, we
could say that the aim of Web Intelligence is “discov-
ering knowledge from the vast World-Wide Web”.

Two decades later, Web Intelligence is still an
open research area: the Web is not suited to easily
support Web Intelligence tasks yet. So, building a
Web Intelligence environment is not easy and novel
tools (even those that were not explicitly designed for
that) can contribute, if suitably adapted.

A novel trend of Web technology is the exploita-
tion of JSON (JavaScript Object Notation1) as the
standard format for representing data sets: Web Ser-
vices, social-media APIs (Application Programming
Interfaces) and Open-Data portals adopt JSON. Look-
ing at NoSQL databases, JSON document stores rep-
resent probably the most successful category: these
are DBMSs (Database Management Systems) that

a https://orcid.org/0000-0001-9050-7873
b https://orcid.org/0000-0002-9228-560X
1https://www.rfc-editor.org/rfc/rfc7159

natively store “collections of JSON documents in a
schema-less way. These DBMSs, in particular Mon-
goDB, are now widely exploited.

In our previous works, we realized that analysts
wishing to gather, integrate and analyze JSON data
sets (possibly in JSON document stores) missed the
right tools. For this reason, we started the devel-
opment of the J-CO Framework: it is a platform-
independent suite that does not rely on any specific
JSON document store; the framework is built around
a high-level language designed to manage heteroge-
neous JSON data sets. Furthermore, since (Fosci and
Psaila, 2021a), we have added soft-querying capabil-
ities: it is possible to define fuzzy operators and ex-
ploit them to evaluate the membership of documents
to fuzzy sets and query documents accordingly (so as
to consider vagueness, imprecision and uncertainty).

So, the following question arose: is it possible to
exploit the J-CO Framework to build a practical sys-
tem that provides analysts with the capability of soft
querying JSON data sets directly acquired from Web
sources, in a Web-Intelligence scope (i.e., a context in
which Web-Intelligence tasks must be performed)?

The paper presents our vision of Web Intelligence
and identifies the missing functionalities to let the J-
CO Framework suitable for a Web-Intelligence scope.
The ultimate goal is to show that a stand-alone tool
like the J-CO Framework can actually provide many
useful functionalities, in particular soft querying on

302
Fosci, P. and Psaila, G.
Towards Soft Web Intelligence by Collecting and Processing JSON Data Sets from Web Sources.
DOI: 10.5220/0011547400003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 302-313
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

JSON data sets, to widen the set of tools available
to analysts for performing Web-Intelligence tasks.
We could call this achievement as “Soft Web Intel-
ligence”.

In the remainder, Section 2 introduces relevant re-
lated works. Section 3 provides a short presentation
of the J-CO Framework and shows a case study. Sec-
tion 4 presents our vision, while Section 5 identifies
limitations and presents novel developments to make
the J-CO Framework suitable for Web-Intelligence
scopes. Section 6 shows an example of soft querying
JSON data sets in a Web-Intelligence scope. Section 7
draws conclusions and future work.

2 RELATED WORK

The concept of Web Intelligence was introduced in
(Yao et al., 2001). It originates from the concept
of Business Intelligence, which encompasses tools
for reporting, making multi-dimensional analysis and,
more in general, discovering knowledge from data
possibly gathered in data warehouses (Negash and
Gray, 2008). In some sense, we can figure out that
Web Intelligence is the evolution of Business Intelli-
gence towards the World-Wide Web, which is intrin-
sically semi-structured and incredibly vast.

Although (Yao et al., 2001) talks about Artificial
Intelligence as the key tool for performing Web In-
telligence, Artificial Intelligence itself is not clearly
defined. Data Mining techniques have been success-
ful (when applied to relational data) and they are
accepted as Artificial-Intelligence techniques. Thus,
they have been immediately adopted for Web Intel-
ligence (Han and Chang, 2002), with the conscious-
ness that peculiarities of the Web were (and still are)
a hard challenge. Web Intelligence has been applied
to the education field too, as reported in (Devedžić,
2004). Moreover, (Molnár et al., 2014) exploits Web
Intelligence for Customer Relationship Management.

Fuzzy Logic and Soft Computing constitute a side
part of Artificial Intelligence. Thus, Zadeh, the cre-
ator of Fuzzy-Set Theory (Zadeh, 1965), provided his
interpretation of the concept of Web Intelligence in
(Zadeh, 2004a; Zadeh, 2004b), in which soft comput-
ing could play an important role. Specifically, Zadeh
thought about the concept of WebIQ (or WIQ), as the
evolution of the idea of “Machine IQ”: machines are
increasing their capability to answer vague or impre-
cise questions; fuzzy-set theory provides the formal
tools towards WebIQ. This is not the only attempt to
give a wide interpretation of the concept of Web Intel-
ligence. We can also cite Computational Web Intelli-
gence (Zhang and Lin, 2002; Zhang and Lin, 2002) as

the adoption of “Computational Intelligence in Web-
Intelligence” scopes, as well as “Brain Informatics”
(Zhong et al., 2006), whose goal is to foster Web In-
telligence through techniques that come out from the
study of the human brain.

However, focusing on fuzzy logic and soft com-
puting in Web-Intelligence scopes, we are aware of
very few works. The paper (Kacprzyk and Zadrożny,
2010) exploits soft computing in a group decision-
making system to express preferences, while Web In-
telligence is used to gather knowledge to be exploited
to make decisions. The paper (Poli, 2015) uses
FUZZYALGOL, a fuzzy procedural programming lan-
guage (Reddy, 2010), for soft querying Web sources.

Consequently, we can say that, at the best of our
knowledge, the contribution of the paper (i.e., adopt-
ing a stand-alone tool for soft querying JSON data
sets continuously acquired and integrated from Web
sources) is novel and not explored yet. We rely
on our previous works on soft querying in relational
databases (Bordogna and Psaila, 2009), on fuzzy clus-
tering of data coming from moving users of social me-
dia (Bordogna et al., 2017b) and on blind querying of
Open-Data portals (Pelucchi et al., 2017a; Pelucchi
et al., 2017b; Pelucchi et al., 2018).

3 THE J-CO FRAMEWORK

In this section, we provide a synthetic presentation of
the J-CO Framework and a short script for soft query-
ing meteorological data coming from a Web source.

3.1 Organization of the Framework

The J-CO Framework is a pool of software tools
whose goal is to provide analysts with a powerful sup-
port for gathering, integrating and querying possibly-
large collections of JSON data sets. The core of the
framework is its query language, named J-CO-QL+.
We will show a sample script for soft querying Web
sources in Section 3.2, where the language will be
synthetically introduced in action.

The organization of the framework before the evo-
lution presented in this work is depicted in Figure 1.
- J-CO-QL+ Engine. This component actually exe-
cutes J-CO-QL+ scripts. It is able to retrieve data
from external document databases (for example, man-
aged by MongoDB) and save results into them; it also
can send HTTP requests to Web Services and portals,
to get JSON data sets directly from Web sources.
- J-CO-DS. This component is a novel document store
specifically designed to store large single documents

Towards Soft Web Intelligence by Collecting and Processing JSON Data Sets from Web Sources

303

Figure 1: Former organization of the J-CO Framework.

(Psaila and Fosci, 2018), so as to overcome limita-
tions of other JSON stores (such as MongoDB, which
does not allow to store documents larger than 16Mb).
J-CO-DS does not provide computational capabilities
such as a query language, because it is an integral part
of the J-CO Framework, so queries can be performed
by means of J-CO-QL+ and its engine.
- J-CO-UI. This is the user interface, by means of
which analysts can write J-CO-QL+ scripts, submit
them to the J-CO-QL+ Engine and inspect results.

3.2 Soft Querying Meteorological Data

J-CO-QL+ was originally designed to natively deal
with heterogeneous collections of JSON documents,
which can be “geo-tagged” (i.e., describing spatial
properties or entities through their geometries). Orig-
inally, its name was J-CO-QL (the reader can see var-
ious descriptions in (Bordogna et al., 2018; Bordogna
et al., 2017a; Psaila and Fosci, 2021)); we decided to
rename it as J-CO-QL+ when we decided to redesign
various statements and systematically introduce capa-
bilities of “soft querying” (Fosci and Psaila, 2021b).
Indeed, changes were necessary, so as to improve us-
ability and clarity of semantics.

Listing 1 reports a script whose goal is to retrieve
data about meteorological measurements provided by
the Open-Data portal of Regione Lombardia (Regione
Lombardia is the region which the cities of Milan and
Bergamo are located in), so as to find days in which,
in the province of Bergamo, the temperature at mid-
day was high. Notice that the concept of “high tem-
perature” is imprecise: for this reason, we exploit soft
computing and fuzzy sets.

Hereafter, we explain the script in Listing 1.

Step 1. Defining a Fuzzy Operator
Line 1 of Listing 1 creates a “fuzzy operator”, i.e., an
operator that can evaluate the degree of membership
of a document to a fuzzy set (Zadeh, 1965).

Very shortly, a “fuzzy set” A in U (where U is a
universe) is a mapping A : U → [0,1]: given an item

Listing 1: J-CO-QL+: retrieval and soft querying.
1. CREATE FUZZY OPERATOR HighTemperatureFO

PARAMETERS temperature TYPE Float

PRECONDITION temperature >= -273

EVALUATE temperature

POLYLINE [(0, 0.00), (20, 0.2), (25, 0.3),

(30, 0.5), (35, 0.8), (37, 0.9), (40, 1.0)];

2. GET COLLECTION FROM WEB
 "https://www.dati.lombardia.it/resource/nf78-nj6b.json?

$limit=100000";

3. EXPAND UNPACK WITH .data
ARRAY .data TO .sensor;

4. SAVE AS sensorCollection;

5. GET COLLECTION FROM WEB
"https://www.dati.lombardia.it/resource/647i-nhxk.json?

$limit=100000000&$where= (stato='VV' OR stato='VA') AND

data >= '2022-07-04' AND data < '2022-07-05'";

6. EXPAND UNPACK WITH .data
 ARRAY .data TO .value;

7. JOIN OF COLLECTIONS sensorCollection AS S, temporary AS V
CASE WHERE .S.sensor.item.idsensore = .V.value.item.idsensore

 AND .S.sensor.item.tipologia = "Temperatura"

 AND .S.sensor.item.provincia = "BG"

 GENERATE

 CHECK FOR FUZZY SET HighTemperature

USING HighTemperatureFO (TO_FLOAT(.V.value.item.valore))

 ALPHACUT 0.75 ON HighTemperature

 BUILD {

.province : "Bergamo",

 .stationName : .S.sensor.item.nomestazione,

 .sensorType : "temperature",

 .sensorId : .S.sensor.item.idsensore,

.date : .V.value.item.data,

 .temperature : TO_FLOAT(.V.value.item.valore),

 .latitude : TO_FLOAT (.S.sensor.item.lat),

 .longitude : TO_FLOAT (.S.sensor.item.lng),

 .rank : MEMBERSHIP_OF (HighTemperature)

 }

 DEFUZZIFY;

8. USE DB Webist2022 ON SERVER jcods 'http://127.0.0.1:17017';

9. SAVE AS HighTemperaturePlaces@Webist2022;

x ∈U , A(x) ∈ [0,1] is the membership degree of x to
A; in other words, if A(x) = 1, then x fully belongs to
A; if A(x) = 0, then x does not belong at all to A; if
0<A(x)< 1, then x partially belongs to A (the greater
the value, the greater the way x belongs to A).
For example, given an a apartment, we could see that
it is in the set of Expensive Flats if its price is greater
than 600,000 Euro, i.e., Expensive Flats(a) = 1. But
what happens if the price is 360,000 Euro? The mem-
bership degree could be Expensive Flats(a) = 0.6,
meaning that the apartment is not too expensive.

The instruction on line 1 of the script in Listing 1
creates a fuzzy operator named HighTemperatureFO.
It receives a formal parameter named temperature
(as a floating-point number), whose value must be
greater than −273◦C (as stated by the PRECONDITION
clause). If the precondition is true, the EVALUATE
clause says that the temperature parameter is used
as x-axis value against the membership function de-
fined by the POLYLINE clause; the function is depicted
in Figure 2: if the x-axis value is less than 0 degrees,
the corresponding 0 value is returned as membership
degree; if the temperature is greater than 40, the cor-
responding 1 value is returned as membership degree.

Step 2. Getting Data about Sensors
In Listing 1, lines from 2 to 4 are devoted to acquire

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

304

Figure 2: Membership function for the
HighTemperatureFO fuzzy operator.

data from the Open-Data portal and prepare them for
further processing.

Before going on, it is worth introducing the Exe-
cution Model of J-CO-QL+ scripts.
A J-CO-QL+ query (or script) is a sequence of in-
structions q = (i1, . . . , in). Implicitly, instructions re-
ceive an input query-process state and generates a
new one. A query-process state is defined as a tuple:

s = 〈tc, IR,DBS,FO〉.
The tc member is called “temporary collection”: its
goal is to store the collection of JSON documents pro-
cessed by instructions. The IR member is called the
“database of Intermediate Results”: it is a database
that is local to the execution process, to temporar-
ily save collections, for further processing during the
same query. The DBS member contains database de-
scriptors, so as to enable connecting to databases. Fi-
nally, the FO member contains all fuzzy operators
(see Step 1) defined throughout the query. Provided
that the initial state is s0 = 〈 /0, /0, /0, /0〉 (i.e., all mem-
bers are empty), the i j instruction takes the s(j−1)
query-process state and generates a new s j query-
process state.

Coming back to the script, the GET COLLECTION
FROM WEB instruction on line 2 sends an HTTP call
to the end point that returns a data set about meteo-
rological sensors. It generates a new temporary col-
lection s2.tc, with one single JSON document d; this
document contains the data field, which is either an
array of documents (if the Web source returns an ar-
ray) or a single document (if the Web source returns
one single document); in the example, an array of
JSON documents is returned by the Open-Data por-
tal. Other fields, in this lonely document, are url
and timestamp, which denote the URL that provided
the data and the time of the request. Figure 3 reports
an example of document produced by the instruction.
Notice that sub-documents in the data array, pro-

{

"timestamp" : "2022-07-07T03:22:29.138",

"url" : "https://www.dati.lombardia.it/resource/

nf78-nj6b.json?$limit=100000"

"data" : [

{

"idsensore" : "2433",

 "idstazione" : "132",

 "lat" : "45.66051928748766",

 "lng" : "9.658768470289832",

 "nomestazione" : "Bergamo v.Stezzano",

 "provincia" : "BG",

 "tipologia" : "Temperatura",

 … uninteresting other fields …

},

 … { other sensor documents }, …

 {

 "idsensore" : "11654",

 "idstazione" : "132",

 "lat" : "45.66051928748766",

 "lng" : "9.658768470289832",

 "nomestazione" : "Bergamo v.Stezzano",

 "provincia" : "BG",

 "tipologia" : "Velocita Vento",

 … uninteresting other fields …

}

]

}

Figure 3: Example of document after Line 2 in Listing 1.

{

"timestamp" : "2022-07-07T03:22:29.138",

"url" : "https://www.dati.lombardia.it/resource/

nf78-nj6b.json?$limit=100000"

"sensor" : {

 "position" : 662

"item" : {

"idsensore" : "2433",

 "idstazione" : "132",

 "lat" : "45.66051928748766",

 "lng" : "9.658768470289832",

 "nomestazione" : "Bergamo v.Stezzano",

 "provincia" : "BG",

 "tipologia" : "Temperatura",

 … uninteresting other fields …

}

}

}

Figure 4: Example of document after Line 3 in Listing 1.

vided by the portal, have the field names in Italian,
and all their values are reported as string values.

Line 3 has to extract JSON documents contained
in the data field of the single document in the tempo-
rary collection. The EXPAND instruction does that: it
generates a new collection with as many documents as
the items in the data array. Each document contains
all the root-level fields (i.e., url and timestamp) and
the sensor field; in turn, this field has the item field,
with the document unnested from within the array,
and the position field, which denotes the position
occupied by the item in the original array. Figure 4
reports a document produced by the instruction.

Now, one document for each sensor is in the out-
put temporary collection. Line 4 saves it into the IR
database (named sensorCollection) for later use.

Step 3. Getting Meteorological Data
Lines 5 and 6 are responsible to get meteorological
data from the Open-Data portal.

The GET COLLECTION FROM WEB instruction on
line 5 calls the dedicated end point of the Open-Data
portal and generates a new temporary collection. Re-
member that only one single document is generated,
with the data array field containing all the returned
documents. Figure 5 reports an example of document
produced by the instruction.

Consequently, this single document is expanded

Towards Soft Web Intelligence by Collecting and Processing JSON Data Sets from Web Sources

305

{

"timestamp" : "2022-07-07T03:22:32.136",

"url" : "https://www.dati.lombardia.it/resource/

647i-nhxk.json?$limit=100000000&

$where=data%20%3E=%20'2022-07-04'%20

AND%20data%20%3C%20'2022-07-05'%20

AND%20(stato='VV'%20OR%20stato='VA')%20

AND%20idoperatore%3C%3E'4'",

"data" : [

 {

"data" : "2022-07-04T00:00:00.000",

 "idoperatore" : "1",

 "idsensore" : "11827",

 "stato" : "VA",

 "valore" : "323"

 },

 … { other measurements documents } …

 {

 "data" : "2022-07-04T00:00:00.000",

 "idoperatore" : "3",

 "idsensore" : "14213",

 "stato" : "VA",

 "valore" : "4.8"

 }

]

}

Figure 5: Example of document after Line 5 in Listing 1.

{

"timestamp" : "2022-07-07T03:22:32.136",

"url" : "https://www.dati.lombardia.it/resource/

647i-nhxk.json?$limit=100000000&

$where=data%20%3E=%20'2022-07-04'%20

AND%20data%20%3C%20'2022-07-05'%20

AND%20(stato='VV'%20OR%20stato='VA')%20

AND%20idoperatore%3C%3E'4'""data",

"value" : {

 "position" : 62263

"item" : {

"data" : "2022-07-04T00:00:00.000",

 "idoperatore" : "1",

 "idsensore" : "11827",

 "stato" : "VA",

 "valore" : "323"

 }

}

}

Figure 6: Example of document after Line 6 in Listing 1.

by the EXPAND instruction on line 6, to have one sin-
gle document for each single measurement. Figure 6
reports an example of resulting document.

Step 4. Soft Querying Temperatures
Line 7 of the script has a twofold goal: (i) associ-
ating meteorological measurements with the sensors
that performed them, so as to consider only sensors
in the wished province, focusing only on tempera-
ture measurements; (ii) soft querying measurements
to look for high temperatures. Both these tasks are
performed by the JOIN instruction.
(i) The sensorCollection, previously saved by
line 4 into the database of Intermediate Results (here
aliased as S, since it describes sensors) is joined with
the temporary collection (aliased as V, since it de-
scribes measured values).
(ii) For each pair of documents s (from the S collec-
tion) and v (from the V collection), a new d document
is generated, with two fields: d.S contains the source
s document; d.V contains the source v document.
(iii) The WHERE condition selects only d documents of

{

 "date" : "2022-07-04T14:30:00.000",

 "latitude" : 45.6605192874877,

 "longitude" : 9.65876847028983,

 "province" : "BG",

 "rank" : 0.830000001192093,

 "sensorId" : "2433",

 "stationName" : "Bergamo v.Stezzano",

 "temperature" : 35.6

}

Figure 7: Example of document after Line 7 in Listing 1.

interest. Specifically, a d document is selected if it
associates a v measure with the s sensor that actually
performed it; furthermore, only measurements made
by temperature sensors are selected, which were made
by sensors in the province of Bergamo (strangely, the
Open-Data portal provides the province in which sen-
sors are located in but not the city/municipality). No-
tice that field names and values are in Italian.
(iv) The GENERATE block further processes the se-
lected documents. In particular, the CHECK FOR
FUZZY SET clause performs the soft query on the
selected documents. Specifically, it evaluates the
membership degree of the document to the fuzzy
set named HighTemperature. The evaluation is
done by the USING soft condition, by calling the
HighTemperatureFO fuzzy operator.
The membership degree is described by a special field
(here added to the d document), called ˜fuzzysets.
In it, field names denote fuzzy-set names, and their
value is a membership degree (thus, the membership
degrees to many fuzzy sets can be represented).
The ALPHACUT option discards documents with mem-
bership degree to the HighTemperature fuzzy set
less than 0.7 (so as to deal with imprecise definition
of the concept of “high temperature”).
(v) The final BUILD block restructures output doc-
uments. Specifically, field names are converted to
English, numerical values reported as string values
are converted to floating-point numbers and the novel
rank field is added, with the membership degree to
the HighTemperature fuzzy set. This latter field
could denote the relevance of the output document
with respect to the desired search. The DEFUZZIFY
keyword removes the special ˜fuzzysets field (doc-
uments leave the domain of fuzzy sets).

Figure 7 reports an example of document pro-
duced by the JOIN instruction.

The script ends by saving the temporary collec-
tion into a database. We created a database called
Webist2022 managed by J-CO-DS (see Section 3.1).
Line 8 connects to the database, while line 9 saves
the temporary collection into the database with name
HighTemperaturePlaces.

4 VISION

As stated in Section 2, a uniform vision of Web In-
telligence is missing: different problems ask for dif-
ferent solutions. This paper focuses on scopes where
JSON data sets are collected from Web sources and
queried to possibly discover knowledge. We iden-
tified a general vision for this scope (in Figure 8),
which is the basis for achieving Soft Web Intelligence.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

306

Figure 8: Vision of Web Intelligence.

Data Storage. To perform complex integration and
analysis of data coming from the Web, a support for
data storage is essential, so as to collect data and re-
sults of analysis. In Figure 8, the circle is the Data-
Storage Area, which encompasses all the data-storage
systems involved in the process.
Web Sources. In an environment for Web Intelli-
gence, many Web sources could provide data. We
identified four distinct categories.

• Authoritative Data. Public Administrations and
Authorities often publish data that can be consid-
ered “immutable” or slowly mutable, such as city
borders. Usually, these data sets are downloaded
only once, due to their immutability.

• Open-Data Portals. Open-Data portals distribute
data produced by public administrations that con-
cern the administered territory. Often, these data
sets change continuously (as in the case of meteo-
rological measurements); to cope with this volatil-
ity, it is necessary to perform a “continued acqui-
sition” of these data sets, to accumulate all ver-
sions that change in time.

• Web Services. To perform analyses, often data
must be acquired from Web Services, through
HTTP calls on the basis of previously-acquired
single data items. For example, having a pool
of “locations”, denoted by latitude and longitude,
a “geo-coding” service could provide the corre-
sponding address. One call for each single item is
necessary (thus, we used bi-directional arrows and
the “interactive acquisition” label in Figure 8).

• Scraping. Web pages (formatted as HTML
pages) can provide valuable information; in
this case, “scraping tools” could extract semi-
structured descriptions of Web pages.

External Data. Any kind of data not directly coming
from Web sources can give valuable information.

Processing Tasks. Many tasks could be guessed.
Figure 8 reports the ones we consider most relevant
(without excluding any other processing task).

• Pre-processing. Once downloaded, a data set
usually needs to be pre-processed, so as to clean
it and to make it suitable for further processing.

• Integration. Once data sets are collected, they
could be integrated, so as to put together all rele-
vant information into one single data set.

• Knowledge Discovery. Once data sets to analyze
have been built, it is possible to perform complex
tasks of “knowledge discovery”. Here, a plethora
of techniques can be used; anyway, we do not use
the terms “data mining” and “machine learning”,
because we consider a general approach to knowl-
edge discovery, not only the ones coming from the
area of Machine Learning.

5 PROPOSED EXTENSIONS

In (Fosci and Psaila, 2021a), we presented how the in-
troduction of constructs able to support the evaluation
of fuzzy sets on JSON documents could allow J-CO
users to perform complex knowledge-discovery tasks,
by directly accessing an Open-Data portal to get data
sets describing levels of pollutants and related sen-
sors networks. In practice, (Fosci and Psaila, 2021a)
shows how soft querying JSON data sets could help
analysts in discovering unexpected situations.

On the basis of the vision (Figure 8) explained in
Section 4, we studied how far the J-CO Framework
was to be able to fully support our vision of Web In-
telligence. We identified the following limitations.
No Continued Acquisition. J-CO-QL+ can connect
to Web Services and portals via the HTTP protocol,
to get data. However, this can be done only when the
script is executed. A continued acquisition of JSON
documents from Web sources (i.e., repeated over time
to capture changing data sets) is not possible.
Only One-shot Acquisition in J-CO-QL+. Even
though J-CO-QL+ can get collections from Web
sources, this can be done only in a one-shot way. In
contrast, J-CO-QL+ is not suitable if it is necessary to
contact a Web Service on the basis of data contained
in previously collected collections, so as to collect a
pool of JSON documents provided by a Web Service
through many HTTP calls.
No Script Library. Although the J-CO-QL+ Engine
provides the “batch mode”, i.e., it is possible to launch
the execution of an entire script, there is no way to
manage libraries of scripts in a structured way, mak-
ing them parametric, so as to reuse scripts.

Towards Soft Web Intelligence by Collecting and Processing JSON Data Sets from Web Sources

307

Figure 9: New organization of the J-CO Framework.

Based on the previous analysis of limitations, we
identified novel features to add, so as to make the
framework suitable for Web-Intelligence scopes.
Dynamic and Virtual Collections. For J-CO-DS, we
conceived three different types of collections within a
database. Static Collections are the classical collec-
tions. The novel Dynamic Collections are collections
whose content is dynamically and periodically filled
in by J-CO-DS by calling a pool of Web sources (so,
continued gathering of JSON documents from Web
sources can be realized). The novel Virtual Collec-
tions are collections whose content is not materialized
within the database but it is obtained on the fly by call-
ing Web sources when the collection is accessed.
Parametric Script Templates. In order to create
script libraries, we defined a meta-language (with re-
spect to J-CO-QL+) that allows for defining param-
eters within J-CO-QL+ scripts; we took inspiration
from the classical idea of “macro-substitution”.
Batch Execution of Parametric Scripts. A meta-
engine able to collect script templates can support the
creation of script-template libraries and support the
repeated execution of them. Furthermore, this meta-
engine could be invoked by external services to exe-
cute a template, as well as it could execute scheduled
batches that launch script templates.
Repeated HTTP Calls. The final novelty we envi-
sioned is a novel statement to add to J-CO-QL+, so as
to allow multiple calls of a Web Service on the basis
of field values in JSON documents contained within a
collection (so as to compose URLs). The novel state-
ment has been called LOOKUP FROM WEB.

Hereafter, we will show the extensions we made
to the J-CO Framework.

5.1 Collection Types in J-CO-DS

In order to allow for “continued gathering” of JSON
documents from Web sources, we conceived two

novel types of collections to be managed by J-CO-
DS. After this extension, three different types of col-
lections are available.
Static collections are the classical collections man-
aged by J-CO-DS, i.e., created and possibly updated
by the user, as well as created by a J-CO-QL+ script.
Dynamic collections are thought for continued ac-
quisition; they are created specifying a pool of Web
sources; the content of the collection is periodically
updated with novel documents.

Let us define a dynamic collection in more details.
- A “dynamic-source descriptor” is a tuple

dsd = 〈name,URL,startTime, f requency,mode〉
in which name is the name provided by the user to
characterize the source. The URL member is the URL
to contact to get documents. The startTime mem-
ber is the time when to start the acquisition. The
f requency member is the frequency with which gath-
ering must be repeated; admitted values can be ex-
pressed in hours (e.g., 2h), days (e.g., 4d) or weeks
(e.g., 5w). Finally, the mode member is the update
mode of content; its value can be either "replace",
i.e., the full content of the collection is replaced from
scratch, or "append", i.e., new documents are ap-
pended to those already present in the collection.
- A dynamic collection dc is described by the tuple

dc = 〈name,sources〉
where name identifies the collection, while sources is
a non-empty array of source descriptors.

Different sources could be accessed, with different
frequency and update mode, as clarified hereafter.
- Data collected from each source are managed in a
dedicated storage area, so as to be managed indepen-
dently of data coming from the other sources.
- A Web source usually provides either a single JSON
document, or a JSON array (usually an array of doc-
uments, but not necessarily).
For each single request sent to the Web source that
returns data (either a single document or an array), a
JSON document is created, with the following fields:
source is the name of the source (the name field in
the dsd source descriptor); url is the contacted URL;
timestamp is the acquisition time; data actually con-
tains the returned data (either a single JSON docu-
ment or an array). This new document is inserted into
the data space of the web source.
- In the case the "replace" update mode is selected,
the previous content of the data space is cleaned and
the new document is added. Thus, only one document
at a time is present in the data space.
In the case the "append" update mode is selected, the
new document is added to the previous ones possibly
present in the data space of the Web source.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

308

The rationale behind the two update modes is the
following. For continued acquisition, clearly the best
solution is the "append" mode, because it allows
for recording the history of data sets returned by the
source; in case the different versions of data sets have
overlapping content, a pre-processing activity must be
performed, through dedicated J-CO-QL+ batches, to
remove duplicates, if necessary.
The usefulness of the "replace" mode is to decouple
J-CO-QL+ batches and scripts from the Web source
and the intermediate network connection that provide
the data to process: this way, data can be easily pro-
cessed, independently of the availability of the Inter-
net connection or of the Web source.
Virtual collections provide a unified abstraction to
many Web sources. They are defined by specifying
a pool of URLs, which provide collections of JSON
documents. When a user or a J-CO-QL+ script reads
the virtual collection, the actual content is obtained by
calling all associated sources on the fly.
In virtual collections, a source descriptor is a tuple

vsd = 〈name,URL〉
which has the name and URL members only.
A virtual collection is, in turn, defined by the tuple

vc = 〈name,sources〉
where name identifies the collection, while sources is
a non-empty array of virtual-source descriptors vsd.

As a general constraint, a J-CO-QL+ SAVE AS in-
struction issued either to a dynamic or a virtual col-
lection is not allowed, because it would destroy col-
lection descriptors in the database, loosing the pre-
cious information about Web sources and URLs. Fur-
thermore, in the case of dynamic collections with
"append" update mode, the history of collected data
would be lost as well.

5.2 J-CO-Batch

J-CO-BATCH is a completely-new component intro-
duced in the J-CO Framework. Its goal is to pro-
vide a “batch execution” of J-CO-QL+ scripts. Fig-
ure 9 shows how the organization of the framework
has changed with the new component. These are its
functionalities.
Macro-Substitution. J-CO-QL+ scripts can be pa-
rameterized. A “macro-parameter” has the lexical
structure ##name##, since no lexical element in J-
CO-QL+ has the same structure.
A J-CO-QL+ script that contains macro-parameters is
called “J-CO-QL+ script template”.
The Template pre-processor is the internal compo-
nent that, provided a context C as a key/value map,
and a t template, performs a macro-substitution of

all macro-parameters mp ∈ t with the corresponding
value C(mp); if all macro-parameters in t have a cor-
responding value in C, the t template is actually trans-
formed into an executable script.
Only constant values (either numbers or strings),
identifiers and path-expressions are valid values for
macro-parameters in C.
Batch Execution. Users can launch the execution
of templates in batch mode, by providing the context
(currently provided as a “property file”). We plan to
define a high-level language to specify contexts, pos-
sibly through a dedicate user interface.
Scheduled Batch Execution. Another functionality
is scheduling batch execution. We considered two
types: “one shot”, in which the template is executed
at a predefined instant; “repeated”, when a template is
executed multiple times.

5.3 LOOKUP FROM WEB

The novel LOOKUP FROM WEB statement extends J-
CO-QL+, so as to give scripts the capability to per-
form multiple HTTP calls to Web Services. The idea
is the following: suppose that a Web Service WS pro-
vides one single JSON document as reply to a request,
in such a way the content of the returned JSON docu-
ment depends on some parametric data. Given a col-
lection C of JSON documents, such that documents
d ∈C provide the data to send to WS, we might want
to collect all documents returned by WS by calling
it for each document d ∈ C. This is the goal of the
LOOKUP FROM WEB statement.

Syntax and Semantics. The syntax of the statement
is as follows.

LOOKUP FROM WEB
(FOR EACH Condition CALL stringExpression)+

After the LOOKUP FROM WEB keywords, a non-empty
list of FOR EACH clauses constitutes the statement.
The FOR EACH keywords are followed by a condition;
after that, the CALL sub-clause is followed by a string
expression representing a URL.

The semantics of the statement is as follows.
(i) The statement works on the tc temporary collection
provided by the query-process state.
(ii) For each document d ∈ tc, the condition in the first
FOR EACH branch is evaluated; if it is true, d is pro-
cessed accordingly to the CALL sub-clause; otherwise,
the condition in the next FOR EACH branch is evalu-
ated, and so on.
(iii) If the d document meets a condition in a FOR
EACH branch, an HTTP call is performed to the URL

Towards Soft Web Intelligence by Collecting and Processing JSON Data Sets from Web Sources

309

specified by the associated CALL sub-clause. This is
followed by an expression that provides the URL to
contact, which can refer to fields in the d document,
so as to use data in d to compose the URL.
(iv) The JSON documents (in principle, more than
one document could be returned by the contacted Web
Service) are assembled with the source d document.
Specifically, if the HTTP call succeeds, a new d doc-
ument is built. Its fields are: source contains the
source d document; data contains the array of doc-
uments returned by the Web Service; url specifies
the URL contacted to obtain the returned documents;
timestamp contains the time-stamp of the call.
(v) The final output temporary collection tc contains
all the output d documents. If no condition in the FOR
EACH branches is true for d, the d document is gener-
ated without the data field.

6 AN EXAMPLE

In section 3.2 we showed how the J-CO-QL+ script
reported in Listing 1 is able to soft query meteorolog-
ical data to discover high-temperature events in a pre-
defined province. This could be considered a first ex-
ample of Soft-Web-Intelligence task based on JSON
data sets. However, the script also shows the limita-
tions of the J-CO Framework that inspired the pro-
posed extensions. We discuss these limitations.
(i) The data set that describes sensors reports the
name of the province where sensors are located in,
but not the city/municipality. Since the data set pro-
vides coordinates (latitude and longitude) of sensors,
one could think to exploit Web Services, such as the
one provided by GeoNames2 that, provided the coor-
dinates, gives the names of the administrative entities
that contain a given location. The need to exploit such
a kind of service inspired the definition of the LOOKUP
FROM WEB statement (Section 5.3).
(ii) The end point of the Open-Data portal that pro-
vides meteorological data continuously updates (ev-
ery 6 hours) the data set; but when the current month
changes, data about the previous month are removed.
This observation inspired the need for continued ac-
quisition, which gave us the idea of introducing “dy-
namic collectons” in J-CO-DS (Section 5.1).
Nevertheless, since dynamic collections save images
of data sets returned by the end point, we argued that it
was necessary to periodically schedule pre-processing
activities on the data sets. This consideration gave us
the idea of developing J-CO-BATCH (Section 5.2).

2GeoNames URL: https://www.geonames.org/export/
web-services.html

Listing 2: Script pre-processing meteorological data.
1. USE DB Webist2022 ON SERVER jcods 'http://127.0.0.1:17017';

2. GET COLLECTION LastMeteoValue@Webist2022;

3. EXPAND
 UNPACK WITH .data

 ARRAY .data TO .value;

4. FILTER
 CASE WHERE WITH .value.item

 GENERATE

 BUILD {

 .timestamp : .value.item.data,

 .idSensor : .value.item.idsensore,

 .sensorState : .value.item.stato,

 .sensorValue : TO_FLOAT (.value.item.valore)

 };

5. MERGE COLLECTIONS temporary, valueCollection@Webist2022
 REMOVE DUPLICATES;

6. SAVE AS AllMeteoValues@Webist2022;

(iii) Which is the city of interest? What is the time
window of interest? Clearly, the code of the script
is the same, apart from the specific city name and
time window. We understood that there was a prob-
lem concerning “reusability” of J-CO-QL+ scripts.
This consideration inspired “script templates”, that
are supported by J-CO-BATCH (Section 5.2).

We can now present the Soft-Web-Intelligence
task, to illustrate the approach.

Step 1. Defining a Dynamic Collection Gathering
Meteorological Data
In order to continuously track the latest version of
the data set with meteorological data, we created a
dynamic collection called LastMeteoValues in the
Webist2022 database managed by J-CO-DS. We se-
lected the "replace" update mode, because we are
not interested in tracking the history of versions (the
update frequency of 4 updates a day is too high). The
Web source has been configured in such a way the
acquisition is performed at 1am, 7am, 1pm and 7pm
(Italian time), so as to be sure that the novel version
of the data set is available on the portal.
Clearly, it is necessary to pre-process this collection,
so as to have a consolidated version with all measure-
ments, including those performed before the current
month (see Step 2).

In the Webist2022 database managed by J-CO-
DS, we created a “virtual collection” named Sensors.
It is associated with the same Web source exploited in
Listing 1 to get data about meteorological sensors.
We defined this virtual collection to keep knowledge
about all possible Web sources that provide data about
meteorological sensors. The idea is to consider sev-
eral Open-Data portals (for example, of different re-
gions). The final effect is that, this way, the Web is
seen as a kind of “giant dispersed collection of data”,
in which all data sets that are reasonably homoge-
neous (i.e., describe meteorological sensors) can be
accessed all together by a J-CO-QL+ script.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

310

{

 "idSensor" : "12759",

"state" : "VA",

"timestamp" : "2022-07-04T00:00:00.000",

"value" : 26.2

}

Figure 10: Example of document after Line 4 in Listing 2.

Step 2. Repeated Scheduled Pre-processing
The script reported in Listing 2 actually pre-
processes the last image of the meteorological mea-
surements acquired by J-CO-DS and saved into the
LastMeteoValues dynamic collection. The script
merges measurements in the LastMeteoValues col-
lection with those in the AllMeteoValues collection.
This latter one is a static collection, which is both the
input and the output of the script. In details:
- Line 1 connects the script to the Webist2022
database managed by J-CO-DS.
- Line 2 gets the LastMeteoValues dynamic collec-
tion, which gathers the last image of meteorological
data. It becomes the current temporary collection.
- The EXPAND instruction on line 3 unnests documents
from within the data array field of the single docu-
ment contained in the temporary collection (coming
from the LastMeteoValues dynamic collection).
- The FILTER instruction restructures documents in
the temporary collection (one for each measurement),
so as to convert field names to English, strings con-
taining numbers into numeric values, as well as to
flatten the structure. Figure 10 reports an example of
document produced by the instruction.
- The MERGE instruction on line 5 actually merges
the temporary collection with the old version of
the AllMeteoValues static collection, stored within
the Webist2022 database. Notice the REMOVE
DUPLICATES option, so as to obtain a new temporary
collection without duplicates (every single measure-
ment must appear only once in the collection).
- Finally, the last temporary collection becomes the
new version of the AllMeteoValues static collection
(it is actually saved into the database).

This script is scheduled to be executed every day
at 3am, 9am, 3pm and 9pm (so as to be sure that the
last version of the LastMeteoValues dynamic col-
lection has been acquired and saved).

Step 3. Template for Soft Querying Data
Users (analysts) who wish to find out high-
temperature events in a given city and in a given time
window can launch a batch that executes the J-CO-
QL+ script template reported in Listing 3. This tem-
plate directly derives from the script in Listing 1;
however, now it has been adapted to the new general
context: it is able to acquire and select cities/munici-
palities whose name has been parameterized (Listing

Listing 3: J-CO-QL+ template.
1. CREATE FUZZY OPERATOR HighTemperatureFO

PARAMETERS temperature TYPE Float

PRECONDITION temperature >= -273

EVALUATE temperature

POLYLINE [(0, 0.00), (20, 0.2), (25, 0.3),

(30, 0.5), (35, 0.8), (37, 0.9), (40, 1.0)];

2. USE DB Webist2022 ON SERVER jcods 'http://127.0.0.1:17017';

3. GET COLLECTION Sensors@Webist2022;

4. EXPAND UNPACK WITH .data
 ARRAY .data TO .sensor;

5. FILTER
 CASE WHERE .sensor.item.tipologia = "Temperatura"

 AND .sensor.item.provincia = "BG";

6. LOOKUP FROM WEB
 FOR EACH WITH .sensor.item.lat, .sensor.item.lat

 CALL "http://api.geonames.org/findNearbyPlaceNameJSON?"

+ "formatted=false&lat=" + .sensor.item.lat

+ "&lng=" + .sensor.item.lng + "&fclass=P&fcode=PPLA"

+ "&fcode=PPL&fcode=PPLC&username=paolofosci&style=full";

7. EXPAND UNPACK WITH .data.geonames
 ARRAY .data.geonames TO .geoname;

8. JOIN OF COLLECTIONS temporary AS S, AllMeteoValues@Webist2022 AS V
 CASE

 WHERE .S.source.sensor.item.idsensore = .V.idSensor

 AND WITH .S.geoname.item.adminName3

 AND .V.timestamp > ##dateMin##

 AND .V.timestamp < ##dateMax##

 AND .S.geoname.item.adminName3 = ##city##

 GENERATE

 CHECK FOR FUZZY SET HighTemperature

USING HighTemperatureFO (.V.value)

 ALPHACUT ##threshold## ON HighTemperature

 BUILD {

 .sensorId : .S.source.sensor.item.idsensore,

 .stationName : .S.source.sensor.item.nomestazione,

 .temperature : .V.value,

 .latitude : TO_FLOAT (.S.source.sensor.item.lat),

 .longitude : TO_FLOAT (.S.source.sensor.item.lng),

 .province : .S.source.sensor.item.provincia,

 .city : .S.geoname.item.adminName3,

 .date : .V.timestamp,

 .rank : MEMBERSHIP_OF (HighTemperature)

 }

 DEFUZZIFY;

9. SAVE AS HighTemperaturePlaces@webist2022;

Listing 4: Property file for parameters in Listing 3.
dateMin = "2022-07-03"

dateMax = "2022-07-05"

threshold = 0.75

city = "Stezzano"

4 reports parameter values). We present it in more
details.
- Line 1 is identical to the same line in Listing 1: it
creates the HighTemperatureFO fuzzy operator.
- Line 2 connects to the Webist2022 database man-
aged by J-CO-DS.
- Line 3 retrieves the Sensors virtual collection from
the database. Remember that this collection returns
one single document, because currently only one Web
source is configured.
- Line 4 unnests the documents nested within the data
array field.
- Line 5 selects documents describing temperature
sensors in the province of Bergamo.
- Line 6 exploits the novel LOOKUP FROM WEB state-
ment: the goal is to associate each sensor with the
name of the city/municipality where it is located in.
For this reason, a specific Web Service provided by

Towards Soft Web Intelligence by Collecting and Processing JSON Data Sets from Web Sources

311

{

"timestamp" : "2022-07-07T18:19:25.713",

"url" : "http://api.geonames.org/findNearbyPlaceNameJSON?

formatted=false&lat=45.66051928748766

&lng=9.658768470289832&fclass=P&fcode=PPLA

&fcode=PPL&fcode=PPLC&username=paolofosci&style=full",

"source" : {

 "sensor" : {

"timestamp" : "2022-07-07T18:19:23.617",

"url" : "https://www.dati.lombardia.it/resource/

nf78-nj6b.json?$limit=100000",

 "item" : {

 "idsensore" : "2433",

"idstazione" : "132",

 "lat" : "45.66051928748766",

 "lng" : "9.658768470289832",

 "nomestazione" : "Bergamo v.Stezzano",

 "provincia" : "BG",

 "tipologia" : "Temperatura",

 … uninteresting other fields …

},

 "position" : NumberLong(662)

}

},

 "data" : {

"geonames" : [

 {

"adminId1" : "3174618",

"adminId2" : "3182163",

"adminId3" : "6541671",

"adminName1" : "Lombardy",

"adminName2" : "Provincia di Bergamo",

"adminName3" : "Stezzano",

 … uninteresting other fields …

}

]

}

}

Figure 11: Example of document after Line 6 in Listing 3.

{

"timestamp" : "2022-07-07T18:19:25.713",

"url" : "http://api.geonames.org/findNearbyPlaceNameJSON?

formatted=false&lat=45.66051928748766

&lng=9.658768470289832&fclass=P&fcode=PPLA

&fcode=PPL&fcode=PPLC&username=paolofosci&style=full",

"source" : {

 "sensor" : {

"timestamp" : "2022-07-07T18:19:23.617",

"url" : "https://www.dati.lombardia.it/resource/

nf78-nj6b.json?$limit=100000",

 "item" : {

 "idsensore" : "2433",

"idstazione" : "132",

 "lat" : "45.66051928748766",

 "lng" : "9.658768470289832",

 "nomestazione" : "Bergamo v.Stezzano",

 "provincia" : "BG",

 "tipologia" : "Temperatura",

 … uninteresting other fields …

},

 "position" : NumberLong(662)

}

},

 "data" : {},

 "geoname" : {

 "position" : 1,

"item" : {

"adminId1" : "3174618",

 "adminId2" : "3182163",

 "adminId3" : "6541671",

 "adminName1" : "Lombardy",

 "adminName2" : "Provincia di Bergamo",

 "adminName3" : "Stezzano",

 … uninteresting other fields …

}

 }

}

Figure 12: Example of document after Line 7 in Listing 3.

GeoNames is contacted, by sending an HTTP call.
Notice how the URL is composed by exploiting fields
in the documents contained in the input temporary
collection. Figure 11 reports an example of document
produced by the LOOKUP FROM WEB instruction.
Unfortunately, GeoNames returns an array of docu-
ments with several names: they are the municipality
name, the province and the region. Thus, it is neces-
sary to expand this array, so as to be able to refer to the
desired name. This unnesting is done by the EXPAND
instruction on line 7. Figure 12 reports an example of
document produced by line 7.
- The JOIN OF COLLECTIONS instruction is similar,

{

 "city" : "Stezzano",

 "date" : "2022-07-04T14:30:00.000",

 "latitude" : 45.6605192874877,

 "longitude" : 9.65876847028983,

 "province" : "BG",

 "rank" : 0.830000001192093,

 "sensorId" : "2433",

 "stationName" : "Bergamo v.Stezzano",

 "temperature" : 35.6

}

Figure 13: Example of document after Line 8 in Script 3.

but not identical, to the same instruction in Listing 1:
it pairs documents describing sensors and documents
describing measurements; the former are in the input
temporary collection (aliased as S), the latter are
in the AllMeteoValues static collection, which is
generated by the scheduled script in Listing 2.
Compared with Listing 1, now docu-
ments that describe sensors have the
.S.geoname.item.adminName3 field, which
denotes the name of the municipality; consequently,
it is possible to select only temperature measurements
performed in the city of interest.
Notice the three macro-parameters used in the WHERE
selection condition (depicted in bold face for clarity):
this way, the template is independent of the city name
and of the time window of interest.
The GENERATE block behaves almost as in Listing 1:
a macro-parameter for the ALPHACUT threshold is
used; the output documents now have the city field.
Figure 13 reports an example of output document.

7 CONCLUSIONS

The paper proposes our vision towards Soft Web
Intelligence, i.e., an application scope of Web In-
telligence in which it is necessary to acquire, inte-
grate and analyze JSON data sets from Web sources,
by exploiting soft querying capabilities provided by
a stand-alone tool. The tool is the J-CO Frame-
work, a research project of University of Bergamo
(Italy), whose goal is to provide analysts with a high-
level and platform-independent suite for manipulat-
ing JSON data sets. The paper shows the capabilities
provided by the J-CO Framework before this work;
then, our vision of Web-Intelligence scopes is pre-
sented and extensions necessary to achieve the vision
are presented through an example (enabled by the pre-
sented extensions). Now the J-CO Framework can be
actually exploited for Soft Web Intelligence.

As future work, we will pursuit two main evolu-
tion lines. First, we identified the problem of uni-
formly defining soft aggregations and managing mul-
tiple types of fuzzy sets (for example, Intuitionistic
Fuzzy Sets and Type-2 Fuzzy Sets). Second, we will
develop novel software tools, in particular user inter-

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

312

faces, to foster usability of the framework.

REFERENCES

Bordogna, G., Capelli, S., Ciriello, D. E., and Psaila, G.
(2018). A cross-analysis framework for multi-source
volunteered, crowdsourced, and authoritative geo-
graphic information: The case study of volunteered
personal traces analysis against transport network
data. Geo-spatial Information Science, 21(3):257–
271.

Bordogna, G., Ciriello, D. E., and Psaila, G. (2017a).
A flexible framework to cross-analyze heterogeneous
multi-source geo-referenced information: the j-co-
ql proposal and its implementation. In Proceedings
of the International Conference on Web Intelligence,
pages 499–508. ACM.

Bordogna, G., Cuzzocrea, A., Frigerio, L., Psaila, G., and
Toccu, M. (2017b). An interoperable open data frame-
work for discovering popular tours based on geo-
tagged tweets. International Journal of Intelligent In-
formation and Database Systems, 10(3-4):246–268.

Bordogna, G. and Psaila, G. (2009). Soft aggregation in
flexible databases querying based on the vector p-
norm. I. J. of Uncertainty, Fuzziness and Knowledge-
Based Systems, 17(supp01):25–40.

Devedžić, V. (2004). Web intelligence and artificial intelli-
gence in education. Journal of Educational Technol-
ogy & Society, 7(4):29–39.

Fosci, P. and Psaila, G. (2021a). Powering soft query-
ing in j-co-ql with javascript functions. In Interna-
tional Workshop on Soft Computing Models in Indus-
trial and Environmental Applications, pages 207–221.
Springer, Cham.

Fosci, P. and Psaila, G. (2021b). Towards flexible retrieval,
integration and analysis of json data sets through
fuzzy sets: a case study. Information, 12(7):258.

Han, J. and Chang, K.-C. (2002). Data mining for web in-
telligence. Computer, 35(11):64–70.

Kacprzyk, J. and Zadrożny, S. (2010). Soft computing and
web intelligence for supporting consensus reaching.
Soft Computing, 14(8):833–846.

Molnár, E., Molnár, R., Kryvinska, N., and Greguš, M.
(2014). Web intelligence in practice. Journal of Ser-
vice Science Research, 6(1):149–172.

Negash, S. and Gray, P. (2008). Business intelligence. In
Handbook on decision support systems 2, pages 175–
193. Springer.

Pelucchi, M., Psaila, G., and Toccu, M. (2017a). Building
a query engine for a corpus of open data. In WEBIST-
2022, pages 126–136.

Pelucchi, M., Psaila, G., and Toccu, M. (2017b). Enhanced
querying of open data portals. In Int. Conf. on Web In-
formation Systems and Technologies, pages 179–201.
Springer, Cham.

Pelucchi, M., Psaila, G., and Toccu, M. (2018). Hadoop vs.
spark: Impact on performance of the hammer query
engine for open data corpora. Algorithms, 11(12):209.

Poli, V. S. R. (2015). Fuzzy data mining and web intelli-
gence. In I. Conf. on Fuzzy Theory and Its Applica-
tions (iFUZZY), pages 74–79. IEEE.

Psaila, G. and Fosci, P. (2018). Toward an anayist-
oriented polystore framework for processing json geo-
data. In Int. Conf. on Applied Computing 2018, Bu-
dapest; Hungary, 21-23 October 2018, pages 213–
222. IADIS.

Psaila, G. and Fosci, P. (2021). J-co: A platform-
independent framework for managing geo-referenced
json data sets. Electronics, 10(5):621.

Reddy, P. V. S. (2010). Fuzzyalgol: Fuzzy algorithmic lan-
guage for designing fuzzy algorithms. J. of Computer
Science and Engineering, 2(2):21–24.

Yao, Y., Zhong, N., Liu, J., and Ohsuga, S. (2001). Web
intelligence (wi) research challenges and trends in the
new information age. In Asia-Pacific Conference on
Web Intelligence, pages 1–17. Springer.

Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.

Zadeh, L. A. (2004a). A note on web intelligence, world
knowledge and fuzzy logic. Data & Knowledge Engi-
neering, 50(3):291–304.

Zadeh, L. A. (2004b). Web intelligence, world knowledge
and fuzzy logic–the concept of web iq (wiq). In In-
ternational Conference on Knowledge-Based and In-
telligent Information and Engineering Systems, pages
1–5. Springer.

Zhang, Y.-Q. and Lin, T. Y. (2002). Computational web
intelligence (cwi): synergy of computational intelli-
gence and web technology. In Wolrd Congress on
Computational Intelligence., volume 2, pages 1104–
1107. IEEE.

Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Qin, Y., Li, K.,
and Wah, B. (2006). Web intelligence meets brain in-
formatics. In I. Ws. on Web Intelligence Meets Brain
Informatics, pages 1–31. Springer.

Towards Soft Web Intelligence by Collecting and Processing JSON Data Sets from Web Sources

313

