
Transfer, Measure and Extend Maintainability Metrics for Web
Component based Applications to Achieve Higher Quality

Tobias Münch a and Rainer Roosmann b

University of Applied Sciences Osnabrück, Albrechtstraße 30, 49076 Osnabrück, Germany

Keywords: Maintainability, Measure, Web Components, Component-based-software-development, Web Applications.

Abstract: The last few years have seen an increased interest in web components composite W3C standard. These can
be used without or with frameworks like Angular or React. Modern web applications get developed by the
principles of component-based software development (CBSD). Therefore, a Web-Application is a composi-
tion of multiple web components, which are connected. In order to operate and continuously extend a web
application successfully in the long term, the non-functional requirement of maintainability has crucial impor-
tance. This paper describes a model to collect, measure and compare maintainability in web components and
web applications. These consist of object-oriented language (OOP) and a bound HTML-Fragment. Previous
knowledge of maintainability gets extended to the interconnection between OOP and HTML-Fragments. Es-
pecially the coupling and cohesion between web components get analyzed. Through the developed model, the
maintainability of web components can be specified in more detail. This allows web developers to analyze the
quality of their web applications and reach a higher software-quality level.

1 INTRODUCTION

Modern web applications can be found in several do-
mains like e-commerce, applications in the industry
or even applications for consumers. JavaScript has
reached the final frontier space by a web application
for the SpaceX operating system (Schiemann, 2020).
This system has to be maintainable in long a term life-
cycle.

Web components, which are a composite standard
of W3C from 2014, have currently an upswing by
the alternative approach frameworkless development
(Strazzullo, 2019). This approach focuses on min-
imizing external dependencies to increase maintain-
ability and security. This paper aims to offer methods
and tools to measure maintainability in web compo-
nents and web applications.

Modern web applications are developed by
the principles of component-based-software-
development (CBSD) (Brown et al., 2002). There-
fore, web applications consist of many composed
web components. This principle matches the current
development approach with frameworks.

The vast majority of the work in this area has fo-

a https://orcid.org/0000-0001-9424-6201
b https://orcid.org/0000-0002-8625-2289

cused on maintainability in object-oriented program-
ming (OOP). For OOP, characteristics such as inheri-
tance, coupling, cohesion and polymorphism have to
be used in addition (Riaz et al., 2009). The well-
known metric suites from Chidamber and Kemerer
or Li can be used (Pressman, 2014). Heitlager et al.
have connected these indexes to the previous ISO/IEC
9126 standard (Heitlager et al., 2007). These metrics
can be transferred to web components because they
are implemented partly in an OOP.

To date, no study has looked specifically at the
maintainability of web components, especially for
coupling and cohesion between them. Although,
there is limited research investigating the intercon-
nection between web components. This research leak
leads to the questions:

RQ1: Which aspects of the maintainability index
can be transferred to web components?

RQ2: How can maintainability be measured in-
side a web component, which consists of a Class and
a HTML fragment?

RQ3: How can maintainability be measured in
a web application, which is the composition of web
components?

Münch, T. and Roosmann, R.
Transfer, Measure and Extend Maintainability Metrics for Web Component based Applications to Achieve Higher Quality.
DOI: 10.5220/0011511100003318
In Proceedings of the 18th International Conference on Web Information Systems and Technologies (WEBIST 2022), pages 105-112
ISBN: 978-989-758-613-2; ISSN: 2184-3252
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

105

2 BASICS

In difference to native apps, web applications or
web apps can be written once and be executed ev-
erywhere (Mikkonen and Taivalsaari, 2011; Biørn-
Hansen et al., 2017; Heitkötter et al., 2012). A web
application is a software application which is based on
HTML5 standards and is developed by the principles
of CBSD (Brown et al., 2002). Therefore, it consists
of standard and custom web components (Strazzullo,
2019; Brown et al., 2002).

Web Components. can be described as custom,
encapsulated and reusable components which can
be used in web pages or applications. They are
interpreted and executed in modern web browsers
such as Google Chrome, Mozilla Firefox, Opera
and Apple Safari. Web components are based on
the web platform APIs Custom-Elements, Shadow-
DOM, ES-Modules and HTML-Templates. Today,
these APIs are included in the Web Hypertext Appli-
cation Technology Working Group (WHATWG) stan-
dard (WHATWG, 2022).

The ISO/IEC international standard 25010 defines
the product quality model (PQM) for applications,
which is defined by the sub-categories functional sta-
bility, performance efficiency, compatibility, usabil-
ity, reliability, security, portability and maintainability
(Standard, 2022).

Maintainability. gets described by the PQM as
”degree of effectiveness and efficiency with which a
product or system can be modified by the intended
maintainers” (Standard, 2022). It consists of the sub-
characteristics: modularity, reusability, analysability,
modifiability, and testability (Standard, 2022).

3 RELATED WORKS

Recent research shows that web applications can
be developed client-side or server-side (Heitkötter
et al., 2012). The traditional approach is server-
side-rendering, where an application server ren-
ders a HTML document, which is executed in the
web browser on a client (Mikkonen and Taivalsaari,
2011). These documents are less interactive than rich-
components web apps. JavaScript and web compo-
nents can be used to build a more interactive client-
side document (Braga et al., 2012).

Web Components. have been widely explained in
the last century. Krug and Gaedke have discussed

the communication between different web compo-
nents and proposed a communication bus in the pa-
per “SmartComposition: Bringing Component-Based
SoftwareEngineering to the Web” to simplify commu-
nication and thereby the composition of a web appli-
cation (Krug and Gaedke, 2015).

In the paper ”Self-contained web components
through serverless computing”, Ast and Gaedke
have demonstrated how serverless computing and
web components can be combined to create self-
component serverless web components (Ast and
Gaedke, 2017). They conclude that their approach
can be applied to reduce time and costs while inte-
grating web components.

Maintainability. has been systematically reviewed
by Riaz et al., and they collected evidence on predic-
tion and metrics (Riaz et al., 2009). Their study tar-
gets at software quality attributes of maintainability,
as opposed to the process of software maintenance.
The conclusion is that commonly used maintainabil-
ity prediction models are based on algorithmic tech-
niques with the sub-characteristics size, complexity
and coupling.

Ghosheh and Black have proposed new design
metrics measuring maintainability in heterogeneous
web applications (Ghosheh et al., 2008). The Web
Application Extension (WAE) for UML is used for
these metrics to measure the design attributes: size,
complexity, coupling and reusability (Ghosheh et al.,
2008).

4 METHODOLOGY

This section outlines the specific methods used within
our research. To describe the maintainability, sub-
characteristics have to be measured with source code
characteristics. Heitlager et al. have described the
connection between them for for ISO/IEC 9126 (Heit-
lager et al., 2007). These results are transferable to
ISO/IEC 25010.

4.1 Source Code Characteristics

Coupling. is defined by the metrics coupling be-
tween objects (CBO), afferent coupling (Ca) and ef-
ferent coupling (Ce) (Pressman, 2014; Anwer et al.,
2017). The CBO defines “a count of the number
of couples with other classes” for a class (Pressman,
2014). CBO has the theoretical basis that an object
uses methods or variables from another object. The
metric Ca measures how many other classes call a
specific class (Anwer et al., 2017). Ce is defined as

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

106

vice versa as how many other classes are called from
a specific class. Based on the results from Heitlager
and ISO/IEC 25010, the coupling can be used for the
system quality characteristic’s modularity, reusability,
analysability and testability.

Cohesion. is traditionally measured as the interre-
latedness between portions of a program (Pressman,
2014). In the manner of OOP, it measures the relation-
ship between methods and instance variables. Cohe-
sion is measured by the term lack of cohesion in meth-
ods (LCOM). Chidamer et al. assumed a class with a
n methods M1,M2, ...Mn and each method uses a set
of instance variables I1, I2, ...In. Let P = Ii, I j|Ii∩ I j =
0 and Q = Ii, I j|Ii ∩ I j 6= 0 be defined. From there
LCOM for a class is defined as

LCOM = |P|− |Q| i f |P|> |Q|

LCOM = 0 otherwise

This metric is also known as LCOM1. It has been
updated through several releases to the LCOM5 met-
ric, which was introduced by Satwinder and Kahlon
(Singh and Kahlon, 2011). LCOM5 is calculated by
the following function:

LCOM5 =
1
a ∑

a
j=1 µ(A j)−m

(1−m)

a = number of attributes or instance variables

µ(A j) = number of methods that access attribute
A j

m = number of methods in the class

µ(A j) is summed over all the attributes j = 1−n

Satwinder and Kahlon described the result range as
“LCOM5 is normalized in the range 0 to 1 under
the assumption that each attribute of a class is ref-
erenced by at least one method” (Singh and Kahlon,
2011). Based on the results of Heitlager et al., the
coupling metric links to the system quality character-
istic’s reusability and analysability.

Complexity. can be measured by different methods,
and it shows how complex the source code structure
is (Coleman et al., 1994). The cyclomatic complexity
(CC) is also known as the McCabe metric. CC can
be applied to functions, modules, methods or classes
of a program. Besides CC, the Cognitive Complexity
(CogC) exists, which calculates how difficult a unit of
code is to understand. The complexity metric links to
the system quality characteristic’s modifiability and
testability. Heitlager et al. introduced this intercon-
nection.

Size. of a software project is traditionally measured
in Lines of Code (LoC) (Coleman et al., 1994). These
are a part of the overall source code lines (SLOC),
which can be divided into LoC, comment lines, and
blank lines (Bhatt et al., 2012). Based on the results
of Heitlager et al., the size metric links to the system
quality characteristic’s analysability and testability.

Code Duplication. measures how much code exists
duplicated inside a software system codebase. Rieger
et al. proposed the metrics a) LCC - the amount
of copied code in the source files, b) LIC - lines of
code copied file-internally and c) LEC - lines of code
copied file-externally (Rieger et al., 2004). These
metrics are based on the LOC of the software code-
base. A higher LCC indicates a lower maintainabil-
ity (Rieger et al., 2004; Sjøberg et al., 2012). Based
on the results of Heitlager et al., the code duplica-
tion metric links to the system quality characteristic’s
modularity, analysability and modifiability.

Test Coverage. is also known as code coverage
measures to which degree a source code is executed
by a test suite. In practical code coverage tools, the
typical code coverage metrics are statement, branch
and path coverage, which are oriented at the con-
trol flow (Elbaum et al., 2001). It is measured how
much per cent of the coverage type is covered (El-
baum et al., 2001). Based on the results of Heitlager et
al., the test coverage metric links to the system qual-
ity characteristic’s reusability, analysability, modifia-
bility and testability.

4.2 Web Component

The measurement of complexity, size, code duplica-
tion and test coverage described above applies to web
components. CC and CogC can be used to measure
the complexity of source code written in JavaScript
or TypeScript. All files written in JavaScript, Type-
Script or HTML are evaluated to measure the met-
ric size. The SLOC metric measures the lines of
JavaScript or TypeScript and HTML files. Lines of
comments are recognized in both languages. LOC
only applies to JavaScript or TypeScript. The LCC,
LIC and LEC metrics can be used in HTML Markup
and JavaScript or Typescript to measure the character-
istic code-duplication. Test-Coverage applies to the
source code in JavaScript or Typescript. According to
current research, test coverage is not transferable to
HTML fragments.

Source code characteristics of coupling and cohe-
sion only can be applied inside a web component if it
contains multiple classes. Then CBO, Ca and Ce are

Transfer, Measure and Extend Maintainability Metrics for Web Component based Applications to Achieve Higher Quality

107

used to measure coupling between these classes, like
in other oop languages. In the same way, LCOM can
be used to measure cohesion.

4.3 Web Application

A web application consists of web components.
Therefore the metrics size, code duplication and test
coverage can be aggregated to apply to a web appli-
cation.

A web application is a composition of web com-
ponents, which in turn can contain other web com-
ponents. These components are connected by HTML
fragments or are initialized dynamically and inserted
in the document object model (DOM). At present,
there is no standard procedure or methodology for
measuring the coupling and cohesion between web
components in the DOM or HTML fragments. To
measure these new types of coupling, input proper-
ties CP and used event-listener CL are used. The
CP is defined analogical to the Ce because the DOM
sets a property from another component. CL registers
an event listener to a class instance, which is calling
the method afterwards, so this can be described as a
combination of Ca and Ce. Additionally, the exist-
ing metrics CBO, Ca and Ce measure coupling in the
JavaScript or Typescript part of a web component.

The metric CP differs into static HTML bindings
in markup like constant values CPconst and dynamic
usage in JavaScript or TypeScript code CPdyn. For ex-
ample, implemented event listener often uses proper-
ties of the targeted web component. CP can be com-
pared to Ca. All accesses on properties are computed
into the metric CP. The event-listeners, which are
bind by HTML markup CLconstor JavaScript CLdyn,
are counted into CL. Therefore, our metrics are

CP =CPdyn +CPconst

CL =CLdyn +CLconst

In order to compare two component coupling met-
rics, these metrics have to be relative. Therefore, n is
introduced as the amount of other used components
and this leads to:

CPrel =
CP
n

CLrel =
CL
n

The following code snippet illustrates a used web
component, which is accessed by some JavaScript
code. This example is used to explain these new met-
rics.
<html>
<body>
<my-input type="text" onclick="sayHello()">
</my-input>

<script>
function sayHello() {console.log("Hello")}
const myInput = document

.getElementById("input");
myInput.addEventListener(’keyup’,

(event) => {
console.log(event.target.value)

});
</script>

</body>
</html>

In the web component my-input the property type
is used (CPconst+ = 1) and an event-listener is reg-
istered to the ’click’-event (CLconst+= 1). The func-
tion sayHello prints out the target value (CPdyn+= 1).
Additionally, an event listener is registered to the
’keyup’-event in JavaScript (CLdyn+ = 1). In the
anonymous function of the listener, the value of my-
input is used (CPdyn+= 1). These measurements lead
to the result:

CP = 2+1 = 3
CL = 1+1 = 2

From this the following relative values CPrel and
CLrel can be derived:

CPrel = 3/1 = 3

CLrel = 2/1 = 2
Like the other coupling metrics like CBO CP and

CL states to how strong web components are coupled.
If CP = 0 and CL = 0, then the web components are
not coupled. The higher the value, the stronger the
coupling.

4.4 Tools

In order to measure the code characteristics, Sonar-
Qube and embold are used. It analyses the source
code characteristics complexity, size, code duplica-
tion and test coverage.

In order to have two measurement suites, embold
is selected (https://embold.io/). It has similar features
then SonarQube and is focused on DevOps.

Both tools can interpret test coverage, which is
generated, for example, by the test framework jest. In
our paper, we used free tooling for public repositories,
which is common for open-source projects.

5 RESULTS

5.1 Case Study

European Regional Development Fund (ERDF) has
funded Vet:ProVieh to reduce the use of antibiotics

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

108

in Lower Saxony. The project is an industry 4.0
software for veterinaries in the field of animal hus-
bandry (https://github.com/Vet-ProVieh/). Through
Vet:ProVieh, veterinary care is connected with antibi-
otics monitoring and action planning.

The Vet:ProVieh System is developed as a mi-
croservice architecture. A veterinary interacts with
the system through a component-based PWA, which
is structured by the domain-driven design (DDD)
from Eric Evans. It follows the principles of frame-
workless development and consists of many web
components. These must have a high degree of
maintainability to reduce such long-term maintenance
costs. Especially the sub-characteristics modularity,
reusability and testability are relevant for a growing
software system.

The Progressive Web App (PWA) of Vet:ProVieh
is structured in several packages. It consists of the
professional domains of veterinary care (careplans),
action planning (measures) and antibiotics monitor-
ing (drugTreatments). The shared domain provides
inputs, buttons, speech recognition for inputs and
other user elements across all professional disci-
plines. Besides, the base packages vetprovieh-shared,
vetprovieh-list, vetprovieh-select, formt-validation
and vetprovieh-pager provide functionalities such as
paging, interactive lists and select-inputs, annotations
and form validation.

5.2 Measurement Results

5.2.1 Web Component

To measure maintainability in web components,
we focus on the components vetprovieh-list and
vetprovieh-detail (see RQ2). Vetprovieh-list was de-
veloped to create an interactive user interface for pick-
ing or selecting entries. How an entry will be rendered
can be defined outside the component with a template.
Vetprovieh-detail is a form frame to edit an object and
send it afterwards to a RESTful-Webservice. It in-
cludes form validation, callbacks and a generic tem-
plate. For the results, we recognize only source code
in the lib folders by our measurement environment.

The measurement results for the vetprovieh-list
are based on the introduced source-code characteris-
tics (see table 1). It has been measured a CC of 102
and a CogC of 36. The component has an overall of
810 source code lines, which consists of 431 LOC and
283 comment lines (CL). There are 131 statements,
67 functions and six classes in seven files with zero
code duplications. Test coverage of 88.5% has been
achieved, which can be divided into a line coverage
of 93.1% and a condition coverage of 79.6%.

Table 1: Comparison of measurement results between
SonarQube and embold for vetprovieh-list.

Metric SonarQube Embold
SLOC 810 802
LOC 431 428
CL 283 283
CC 102 31

CogC 36 -
Test-Coverage 93.1% 93.1%

LCC 0 0

The second web component, vetprovieh-detail,
has a complexity of CC 129 and CogC 56 (see ta-
ble 2). It consists of 888 source code lines divided
into 516 LOC and 267 comment lines. This com-
ponent implements 203 statements, 88 functions and
five classes in six files. No code duplications have
occurred. Test coverage of 80.4% has been achieved,
which can be divided into a line coverage of 88.2%
and a condition coverage of 75.9%.

Table 2: Comparison of measurement results between
SonarQube and embold for vetprovieh-detail.

Metric SonarQube Embold
SLOC 888 879
LOC 516 513
CL 267 274
CC 129 45

CogC 56 -
Test-Coverage 85.9% 85.9%

LCC 0 0

The metrics for coupling and cohesion can not
be automatically measured with the selected tools.
SonarQube has removed the metric LCOM4 because
of many false-positive results (son, 2022). Embold
should support CBO and LCOM for TypeScript and
JavaScript according to the documentation, but in
our case study, no results are measured (Embold,
2022). In an explorative study, Open-Source Projects
on GitHub and NPM are examined to find different
tools to measure these metrics. We found some repos-
itories like cats from Thom Wright, but they are not
usable yet (ThomWright, 2022).

5.2.2 Web Application

We examine the introduced web application
Vet:ProVieh on the described metrics. Complexity,
size and test coverage are measured in the same way
as web components. The results are illustrated in
table 3. Vetprovieh-app has a complexity of CC 1731
and CogC 606. It consists of 17096 source code
lines divided into 10423 LOC and 3115 comment
lines. This component implements 2619 statements,

Transfer, Measure and Extend Maintainability Metrics for Web Component based Applications to Achieve Higher Quality

109

1194 functions and 173 classes in 310 files. A small
amount code-duplications have occurred, and there is
refactoring needed. Test coverage of 40.3% has been
achieved, which can be divided into a line coverage
of 43.0% and a condition coverage of 29.4%.

Table 3: Comparison of measurement results be-
tween SonarQube and embold for the web application
Vet:ProVieh.

Metric SonarQube Embold
SLOC 17096 19154
LOC 10846 12705
CL 4223 4584
CC 1731 752

CogC 606 -
Test-Coverage 39.8% 39.8%

LCC 544 1683

Like the results of web components, metrics for
coupling and cohesion can not be automatically mea-
sured with the selected tools. Additionally, the com-
plexity measurement from Kaur et al. can not be au-
tomatically calculated.

5.2.3 New Coupling Metric

To have results for our introduced metrics CP and
CL, we have measured some web components with-
out an automatic code analysis. We choose a part of
the domain ‘measures‘, which is illustrated in Fig-
ure 1. Only interactions between custom web com-
ponents are taken into account. The ‘vp-measure‘
is connected with ‘vetprovieh-notification‘, ‘measure-
pdf-button‘ and ‘vp-objectives‘. In the source code,
there is no event listener between these components,
therefore CL = 0. There are several property usages,
and the result is

CP =CPconst +CPdyn = 1+3 = 4

These values can be described in a more detailed way.
The connection to ‘vetprovieh-notification‘ can be de-
scribed with the values CPconst = 1 and CPdyn = 0,
‘measure-pdf-button‘ with CPconst = 0 and CPdyn = 1
and ‘vp-objectives‘ with CPconst = 0 and CPdyn = 2.

The seconds examined web component is ‘vp-
objectives‘, which is connected to ‘vp-objective-
item‘, ‘select-button‘ and ‘objective-modal‘. Cou-
pling with ‘vp-objective-item‘ can be described with
CPconst = 0, CPdyn = 8, CLdyn = 1 and CLconst =
0. The connection to ‘select-button‘ is shown up as
CPconst = 5, CPdyn = 2, CLdyn = 0 and CLconst = 0.
The usage of ‘objective-modal‘ can be described as
CPconst = 0, CPdyn = 2, CLdyn = 1 and CLconst = 0.
These details can be aggregated to:

CP =CPdyn +CPconst = 11+5 = 16

Figure 1: Evaluted web components of Vet:Provieh PWA.

CL =CLdyn +CLconst = 2+0 = 2

The third examined web component is ‘vp-
objective-item‘ with its interconnection to ‘vp-stars‘
and ‘objective-modal‘. The connection to ‘vp-stars‘
can be described with CPconst = 1, CPdyn = 1, CLdyn =
1 and CLconst = 0. The coupling to the component
‘objective-modal‘ is measured as CPconst = 1, CPdyn =
2, CLdyn = 1 and CLconst = 0. These detail results can
be summed up to:

CP =CPdyn +CPconst = 3+1 = 4

CL =CLdyn +CLconst = 2+0 = 2

In order to compare these values, we have to
compare them realtive to the amount of used com-
ponents. On the component ‘vp-measure‘ has used
three other components and so CPrel = CP/n = 4/3.
‘objective-item‘ uses two other components and so
CPrel =CP/n= 4/2= 2 and CLrel =CL/n= 2/2= 1.
‘vp-objectives‘ uses three other components and so
CPrel = CP/n = 16/3 = 5,33 and CLrel = CL/n =
2/3 = 0,66 It can be concluded that ‘vp-objectives‘
is closer coupled to its sub-components then ‘vp-
measure‘ and ‘objective-item‘.‘

5.3 Discussion

Our test measurement data of Vet:Provieh and its
web components provide convincing evidence that

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

110

the code characteristics complexity, size, code-
duplications and test coverage can be applied to the
OOP part of web components. Additionally, the used
tools SonarQube and embold have measured quite
similar results for these characteristics. Contrary to
our expectations, SonarQube and embold could not
measure coupling and cohesion between web com-
ponents. Therefore, the “RQ1 - Which aspects of
the maintainability index can be transferred to web
components?” can be answered. So the characteris-
tic’s complexity, size, code-duplications and test cov-
erage can be applied to web components written in
JavaScript or TypeScript. Size also includes HTML
documents.

There are significant differences in the results
for source code size between SonarQube and em-
bold. These differences exist because embold cal-
culates CC and LOC in another way than Sonar-
qube. Embold uses the original McCabe algorithm,
and SonarQube uses a self-implemented algorithm for
JavaScript measure CC. Their algorithm counts func-
tion, if statements, conditional expressions, loops,
switch case statements and throw catch statements.

To answer the “RQ2 - How can maintainability
be measured inside a web component, which con-
sists of a class and a HTML fragment?” it can be
concluded that metrics for coupling, cohesion, size,
complexity, code duplication and test coverage can be
used for web components. Still, only size, complex-
ity, code-duplication and test coverage are currently
automatically measurable. We calculated the results
on our own by using a proposed algorithm to mea-
sure coupling between web components. This algo-
rithm can be used to measure the connection between
classes and their coupling inside a markup language
like HTML. We would encourage researchers to ex-
amine the composition between markup language and
object-oriented language in more detail to provide a
static code analysis to measure our proposed metrics.

We can transfer the methods from the first two
research questions to web applications to measure
maintainability. Therefore, we can connect the re-
sults of RQ1 and RQ2 to answer the “RQ3 - How
can maintainability be measured in a web application,
which is the composition of web components?”. The
relationship between composed web components can
be measured by the results of RQ2 and be aggregated
to a result for a web application like our results have
shown. Our results cannot check the sub-aspect CPdyn
because it was not used in the Vet:ProVieh project.
Our case study has a small scope and needs to be ver-
ified through empirical research. In addition, the re-
sults of RQ1 can be transferred in precisely the same
way.

We can not measure coupling and cohesion au-
tomatically inside web applications with the selected
tools. After explorative research for other instruments
or GitHub repositories, none has been found.

6 CONCLUSIONS

The main conclusion that can be drawn is that well-
described traditional metrics complexity, size, code-
duplications and test coverage can be used for the
OOP part of web components and web applications.
These can describe the quality characteristic main-
tainability of the ISO/IEC 25010 well. We used tools
like SonarQube and embold to collect data for these
metrics.

The code characteristic coupling has been ex-
tended to measure the connection between web com-
ponents inside the DOM because web application
links their components in this way. We propose a
new metric, how to collect data for this extension,
to describe it in a more detailed way. The usage of
this metric has to be proven in multiple open source
projects because our experiment has only a small
scope. To apply our metrics to a greater area, they
have to be evaluated automatically.

Current tools like SonarQube can not automati-
cally measure coupling and cohesion between or in-
side web components. This lack of measurement and
the algorithms below is a possible research gap in web
development.

Therefore, the measurement of maintainability in
web applications is not yet up to the standard as in
other high-level languages such as Java or C#.

7 FUTURE WORK

Future research should consider the potential of mea-
suring the complexity of composing web components
inside a web component more carefully, for example,
to measure the cohesion between web components in-
side a web application. Especially we can not rec-
ognize dynamic DOM manipulations trivially inside
static code analysis.

Furthermore, we are looking forward to define
how our proposed metrics can be aggregated in web
applications to have an overall score.

Additionally, the metric suites from Chidamber
and Kemerer are not implemented for TypeScript or
JavaScript, which are implemented in an OOP style.
Therefore additional research and implementation are
needed to transfer the metric suite to web applications
and its components. This includes further questions

Transfer, Measure and Extend Maintainability Metrics for Web Component based Applications to Achieve Higher Quality

111

about how static and dynamic code analysis can be
used to measure coupling and cohesion in web appli-
cations and web components.

This is necessary because, with such tools, web
developers can increase the maintainability of web
applications, so long-term and high-reliability appli-
cations can be developed for the industry.

In Addition, this automation enables an empiri-
cal study to validate our proposed metrics in a more
detailed way. For this study, several open source
projects have to be selected.

REFERENCES

(2022). [SONAR-4853] Remove support of LCOM4
- SonarSource. https://jira.sonarsource.com/browse/
SONAR-4853. [Online; accessed 5. May 2022].

Anwer, S., Adbellatif, A., Alshayeb, M., and Anjum, M. S.
(2017). Effect of coupling on software faults: An em-
pirical study. In 2017 International Conference on
Communication, Computing and Digital Systems (C-
CODE), pages 211–215. IEEE.

Ast, M. and Gaedke, M. (2017). Self-contained web com-
ponents through serverless computing. In Proceedings
of the 2nd International Workshop on Serverless Com-
puting, pages 28–33.

Bhatt, K., Tarey, V., Patel, P., Mits, K. B., and Ujjain, D.
(2012). Analysis of source lines of code (sloc) met-
ric. International Journal of Emerging Technology
and Advanced Engineering, 2(5):150–154.

Biørn-Hansen, A., Majchrzak, T. A., and Grønli, T. M.
(2017). Progressive web apps: The possibleweb-
native unifier for mobile development. WEBIST
2017 - Proceedings of the 13th International Confer-
ence on Web Information Systems and Technologies,
(Webist):344–351.

Braga, J. C., Damaceno, R. J. P., Leme, R. T., and Dotta,
S. (2012). Accessibility study of rich web interface
components. In ACHI 2012, The Fifth International
Conference on Advances in Computer-Human Inter-
actions, pages 75–79.

Brown, A., Johnston, S., and Kelly, K. (2002). Using
service-oriented architecture and component-based
development to build web service applications. Ra-
tional Software Corporation, 6:1–16.

Coleman, D., Ash, D., Lowther, B., and Oman, P. (1994).
Using metrics to evaluate software system maintain-
ability. Computer, 27(8):44–49.

Elbaum, S., Gable, D., and Rothermel, G. (2001). The im-
pact of software evolution on code coverage informa-
tion. In Proceedings IEEE International Conference
on Software Maintenance. ICSM 2001, pages 170–
179. IEEE.

Embold (2022). Metrics overview - embold help-center.
https://docs.embold.io/de/metrics/. Accessed: 2022-
04-23.

Ghosheh, E., Black, S., and Qaddour, J. (2008). Design
metrics for web application maintainability measure-
ment. In 2008 IEEE/ACS International Conference on
Computer Systems and Applications, pages 778–784.
IEEE.

Heitkötter, H., Hanschke, S., and Majchrzak, T. A. (2012).
Evaluating cross-platform development approaches
for mobile applications. In International Conference
on Web Information Systems and Technologies, pages
120–138. Springer.

Heitlager, I., Kuipers, T., and Visser, J. (2007). A practical
model for measuring maintainability. In 6th interna-
tional conference on the quality of information and
communications technology (QUATIC 2007), pages
30–39. IEEE.

Krug, M. and Gaedke, M. (2015). Smartcomposition:
bringing component-based software engineering to
the web. In Proceedings of the 17th International
Conference on Information Integration and Web-
based Applications & Services, pages 1–4.

Mikkonen, T. and Taivalsaari, A. (2011). Apps
vs. Open Web: The Battle of the Decade.
http://www.w3.org/TR/offlinewebapps/.

Pressman, R. S. (2014). Software engineering: a practi-
tioner’s approach. McGraw-Hill Education.

Riaz, M., Mendes, E., and Tempero, E. (2009). A system-
atic review of software maintainability prediction and
metrics. In 2009 3rd international symposium on em-
pirical software engineering and measurement, pages
367–377. IEEE.

Rieger, M., Ducasse, S., and Lanza, M. (2004). Insights
into system-wide code duplication. In 11th Working
Conference on Reverse Engineering, pages 100–109.
IEEE.

Schiemann, D. (2020). JavaScript Reaches the Final Fron-
tier: Space. https://www.infoq.com/news/2020/06/
javascript-spacex-dragon.

Singh, S. and Kahlon, K. S. (2011). Effectiveness of encap-
sulation and object-oriented metrics to refactor code
and identify error prone classes using bad smells.
ACM SIGSOFT Software Engineering Notes, 36(5):1–
10.

Sjøberg, D. I., Yamashita, A., Anda, B. C., Mockus, A.,
and Dybå, T. (2012). Quantifying the effect of code
smells on maintenance effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156.

Standard, I. I. (2022). Systems and software en-
gineering — systems and software quality re-
quirements and evaluation (square) - system and
software quality models - iso/iec 25010:2011(e),
vol. 2011. https://www.iso.org/obp/ui/#iso:std:iso-
iec:25010:ed-1:v1:en. Accessed: 2022-04-01.

Strazzullo, F. (2019). Frameworkless front-end develop-
ment.

ThomWright (2022). cats. https://github.com/ThomWright/
cats. [Online; accessed 5. May 2022].

WHATWG (2022). Dom - living standard - last updated
22 march 2022. https://dom.spec.whatwg.org/. Ac-
cessed: 2022-03-27.

WEBIST 2022 - 18th International Conference on Web Information Systems and Technologies

112

