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Abstract: The global demand for batteries is increasing worldwide. To cover this high battery demand, optimizing 
manufacturing productivity and improving the quality of battery cells are necessary. Digitalization promises 
to offer great potential to address these challenges. Through data collection along the manufacturing processes, 
hidden correlations can be identified. However, data is highly diverse in battery cell manufacturing, 
complicating data analysis. A semantic data storage can increase the understanding of the relationships 
between the datasets, facilitating the identification of the causes of defects in manufacturing processes. To 
structure heterogeneous data in a semantically understandable and analyzable form, this paper presents the 
development of a semantic database model. The realization of this model enables structuring various datasets 
for simplified access and usage for increasing productivity and battery cell quality in battery cell 
manufacturing. 

1 INTRODUCTION 

The global demand for batteries for energy storage is 
growing due to the continued development of electric 
vehicles and other mobile devices (Asif & Singh, 
2017). The growing number of battery-electric 
vehicles registered illustrates the increasing global 
demand for battery cells (Carlier, 2021). To meet this 
high demand of the battery cell users, digitalization of 
production offers several opportunities to build a 
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flexible, intelligent, adaptable, and efficient 
manufacturing system (Zhong, Xu, Klotz, & 
Newman, 2017). Data is the key element to realizing 
such manufacturing systems, and its availability has 
been rapidly growing in the manufacturing industry 
(Yin & Kaynak, 2015). Smart manufacturing targets 
transforming data towards manufacturing intelligence 
to positively affect every manufacturing-related 
aspect (O’Donovan, Leahy, Bruton, & O’Sullivan, 
2015).  
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The use of data-driven manufacturing 
technologies is appealing for battery cell 
manufacturing to improve scrap and product quality. 
Data in battery cell manufacturing is heterogeneous, 
resulting from both converging and diverging 
material flows, continuous and non-continuous 
processes, and single and batch processes (Turetskyy 
et al., 2020). On the one hand, it is essential to build 
data storage in battery cell manufacturing to solve 
heterogeneous data problems. It is challenging to 
collect unstructured data from different 
manufacturing processes and perform informative 
analyses. On the other hand, it is a major gap in 
battery cell manufacturing to create and enable 
context-based data in a semantically understandable 
way because heterogeneous data consists of different 
unrelated datasets, which hinders identifying the 
cause of manufacturing process issues and 
discovering hidden optimization opportunities in the 
manufacturing process. 

A possible solution to address these challenges is 
creating a semantic database with a model that 
facilitates identifying, accessing and processing the 
appropriate data. Semantically structured data 
enables data scientists to track and evaluate the 
manufacturing processes and find optimization 
potentials in the battery cell manufacturing with 
various analysis tools.  

This paper aims to present the requirements for a 
specific battery manufacturing scenario and present a 
possible implementation of such a semantic database 
model as a solution. 

The following chapter describes the data storage 
transformation. It also presents current data 
challenges, introduces developed approaches to solve 
them, and derives the scientific gap. Chapter 3 
introduces the specific scenario for which the 
semantic database model is created. The following 
two chapters illustrate the model’s underlying 
concept and its realization. The paper concludes with 
a summary and highlights the future work with the 
developed semantic database model. 

2 RELATED WORK 

Data is a key element for smart manufacturing to meet 
manufacturing needs and inform manufacturing 
decision-making areas (O’Donovan et al., 2015). 
Relational databases have been used for decades as 
regular database systems to store manufacturing data. 
A relational database is a digital database used for 
electronic data management in computer systems and 
is based on a table-based relational database model as 

proposed by (Codd, 1970). With the introduction of 
IoT technologies, cloud computing, big data analytics, 
and AI integrated into manufacturing systems, a high 
level of multi-source and heterogeneous data is 
generated (Tao, Qi, Liu, & Kusiak, 2018). Therefore, 
more and more new database technologies were 
integrated into the existing data storage architectures, 
such as NoSQL. With these, the challenges associated 
with storing the great amount of manufacturing data 
could be adressed. NoSQL databases became widely 
used around 2009, which process data faster than 
relational databases because their data models are 
built more simply (Leavitt, 2010). They can be 
categorized into five groups (Column-based, 
document-based, key-value-based, graph-based, 
time-series-based) (Cui, Kara, & Chan, 2020; Yen, 
Zhang, Bastani, & Zhang, 2017). The same big data 
challenge is also observed in battery cell 
manufacturing. Various systems (e.g. equipment, 
controls and simulation models) are involved and 
generate heterogeneous (e.g. time series, discrete) 
data in large volumes. Data is distributed in several 
heterogeneous datasets and databases that need to be 
linked to enable in-depth analysis for identifying and 
addressing issues in battery cell manufacturing 
processes. 

Some solution approaches are developed to 
address this need. A hybrid framework for industrial 
data storage to utilize zero-defect manufacturing was 
introduced by (Grevenitis et al., 2019), where 
unstructured data generated by the IoT devices are 
processed in a NoSQL database (Apache Cassandra); 
at the same, time the structured data is stored in a SQL 
database (MySQL). Then, the filtered data from both 
databases is converted into knowledge and stored in a 
triplestore database to be used by experts.  
Furthermore, (Hildebrand, Tourkogiorgis, 
Psarommatis, Arena, & Kiritsis, 2019) developed a 
generic algorithm for the automated conversion of 
different data types into RDF. With this solution, the 
researchers seek to enable data mapping without hard 
coding. This solution is reusable across various data 
schemas and ontologies, which can be easily 
modified to fit other data formats. In addition, 
(Wessel, Turetskyy, Wojahn, Abraham, & Herrmann, 
2021) presented and implemented a methodology to 
develop an ontology-based traceability system in 
battery cell manufacturing so that the relations 
between the data sources along the manufacturing 
chain can be determined. Moreover, (Grimmel, 
Wessel, Mennenga, & Herrmann, 2022) introduced 
an ontology-based data processing that enables the 
creation and distribution of knowledge from 
decentralized and unstructured data such as 
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warehouse static data, stock exchange data, energy 
demand data, machine data and the production plan 
of heterogeneous battery processes in a learning 
factory. Furthermore, (Malburg, Klein, & Bergmann, 
2020) developed 70 semantic web services based on 
different ontologies for intelligent manufacturing 
control to enable a near real-time verification for 
executing cyber-physical workflows. Last, (Kalaycı 
et al., 2020) created a framework in that 
manufacturing data from the machines of the Bosch 
company in Salzgitter for placing electronic 
components and automated optical inspection are 
semantically integrated to be used in quality analysis 
tasks. However, the semantic representation (e.g. 
relations between process parameters and mapping of 
various discrete and time-series datasets from 
equipment, simulation models, and controls) to 
enable linked and structured datasets, which can be 
used to analyze optimization potentials in the battery 
cell manufacturing, has not yet been considered. The 
next chapter presents the battery cell manufacturing 
use case scenario adressed in this paper. 

3 THE VIPRO PROJECT 

The concept of the semantic database model for smart 
battery cell manufacturing is embedded in the project 
ViPro – “Virtual Production Systems in Battery Cell 
Manufacturing for cross-process production control”. 
The project’s objective is to develop and validate a 
concept of cross-process control with a virtual 
production system. The concepts’ envisioned benefits 
are an increase in battery cell manufacturing 
productivity and an improvement in the quality of the 
produced cells through an efficient operation. 
Realistic and low-risk testing of optimization 
measures shall be conducted in the virtual space. 
Once satisfactory results are achieved, these measures 
can be implemented seamlessly in the battery 
manufacturing process. 

The overall system architecture of ViPro consists 
of different components shown in  

Figure 1. The superordinate systems intelligent 
operation control and cross-process control are 
connected and perform data processing. The 
intelligent operation control system includes operator 
interfaces, where target conditions can be entered and 
relevant data for decisions is displayed. The cross-
process control contains machine learning algorithms 
evaluating process control values based on 
intermediate product features of preceding process 
steps. 

 
Figure 1: ViPro overall system architecture. 

Product features are evaluated within the single 
process models of the virtual production system based 
on the respective process input parameters. The 
virtual production system includes coating, stacking, 
electrolyte filling, and formation quality prediction 
models. All of the virtual process representations 
have a corresponding physical system: the coating 
machine of the ZSW “research platform for the 
industrial production of large lithium-ion cells”, the 
stacking machine of the KIT “Battery Technology 
Center”, the electrolyte filling unit of the TU 
Braunschweig “Battery LabFactory Braunschweig”, 
and the formation equipment of the Fraunhofer IPA 
“Center for Battery Cell Manufacturing”. 

To enable communication between the different 
ViPro components, Virtual Fort Knox (VFK) is 
implemented as a cloud IoT platform together with 
the communication middleware Manufacturing 
Service Bus (MSB) (Schel et al., 2018). The 
connection from the physical equipment to the VFK-
platform is carried out with Station Connector 
(Defranceski, 2021), which enables a control-
independent communication. 

To enable and ensure communication between the 
different services models, the intelligent operation 
control and cross-process control systems, a 
representation of the information structure of the 
underlying complex process behavior and 
relationships, as well as the heterogeneous data, is 
needed. This representation of the information 
structure builds up a network between the different 
services enabling operable communication and direct 
data exchange. Furthermore, continuous data 
exchange from the physical production equipment is 
needed to evaluate the potential for cross-process 
control. To address these challenges the semantic 
database presented in this paper is developed and 
integrated into the ViPro overall system architecture. 

 

Development of a Semantic Database Model to Facilitate Data Analytics in Battery Cell Manufacturing

15



 
Figure 2: Semantic database concept. 

4 SEMANTIC MANUFACTURING 
DATABASE CONCEPT 

The concept described in this paper aims to develop a 
semantic database that structures heterogeneous data 
in a semantically understandable and analyzable form, 
enabling a solid data foundation to analyze and 
optimize battery cell manufacturing. First, the 
requirements for developing this database concept are 
identifieed, and then the designed concept is 
introduced. After that, the semantic database model is 
described, consisting of the semantic description of 
the four simulation models considered in the ViPro 
project. Then, it is explained why the considered 
simulation models require this semantic database 
model and which quality and general parameters of 
this database model are relevant for the simulation 
models. Last, the requirements of the intelligent 
operation control and cross-process control systems 
are introduced. These requirements define what kind 
of datasets they need from the semantic database and 
which features the semantic database should 
additionally have. 

The following general requirements have been 
identified collaboratively with the project´s process 
engineers for the semantic database in the ViPro 
scenario: 

• Different heterogeneous data from the models, 
equipment, and control systems such as 
experiment, equipment’s process data 

(measurement data), and recipe data should be 
stored digitally. 

• The data should be easily accessible and 
trackable. 

• The relationships between different process 
parameters of the simulation data should be 
representable. 

• The data from the equipment should be stored 
in a time frame of one-second intervals. 

• The data from the equipment should be linked 
to the data from the simulation models. 

• The database system should be centrally 
provisioned and enable access for all partners 
involved (e.g. via virtual private networks) 
and the possibility to operate across processes. 

• The database should provide the interfaces so 
that required data can be processed via these 
interfaces by other IT systems in the ViPro 
project 

To cover the requirements, the proposed solution 
is a combination of several databases for the different 
types of data and a service that manages the 
referencing of the data (see Figure 2). Since the 
relationships between the different types of data and 
their underlying knowledge need to be stored, a 
knowledge graph is used to store data. A knowledge 
graph represents a self-describing knowledge base 
that stores data and its schema in a graph format and 
illustrates their relationship (Fensel et al., 2020). A 
graph database is used in this paper to store the 
knowledge graph. Due to the requirements of storing 
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and accessing data in real-time, a time-series database 
(TSDB) is used. The TSDB stores the data with an 
additional tag such as experiment ID to reference the 
experiment data, stored in a graph database. The 
graph database stores this reference key (experiment 
ID) to describe the simulation data semantically. With 
this design, the service can store different forms of 
data and respond to other ViPro IT systems’ requests. 
A middleware enables fast and low-overhead 
integration of smart objects and IT services (e.g., 
equipment, simulation models, and database service). 
Therefore, a middleware that understands different 
protocols is used to access the data and to connect to 
the database service.  

After introducing the designed concept for the 
semantic database, the semantic database model is 
described below. A semantic database model is 
required to identify the relations between the 
heterogeneous stored datasets in databases so that 
they can be easily exported from databases with their 
linked information to analyzing tools. 

Communication between the different services 
models, the intelligent operation control, and cross-
process control systems must be ensured. Therefore, 
data has to be transferred fast from and to the database.  

 
Figure 3: Semantic database model description. 

Furthermore, the simulation models' heterogeneous 
input and output data need to be considered. That is 
time-series data from the process execution and 
control data from the cross-process control and the 
intelligent operation control systems. To do so, a 
representation of the information structure of the 
simulation models concerning behavior and 
relationship has to be implemented in the semantic 
database. This representation of the simulation 
models’ information structure is the semantic 
database model. It is developed based on the 
description of the four simulation models considered 
in the ViPro architecture and described in the 
following paragraphs. 

Figure 3 shows the structure of the semantic 
database model description. Various experiments are 
carried out in which data of input and output 
parameters are stored in the graph database. Each 
experiment contains the considered battery cell 
manufacturing processes. The input data are divided 
into general input parameters and control parameters. 
The general input parameters include, for example, 
material parameters and specifications regarding the 
cell format, whereas the control parameters include 
the setting parameters on the respective production 
machine. The output parameters are further 
subdivided into general output parameters and quality 
parameters. The general output parameters include 
values that each process step contains. These are, for 
example, statements about the energy requirements of 
the process and the throughput. The quality 
parameters provide information about the respective 
intermediate product properties or process quality. 
The structure described can be transferred into a data 
exchange format such as JSON or XML. 

Four processes of battery cell manufacturing are 
considered for the semantic description of the models, 
which need to be integrated into the overall system of 
cross-process control: Electrode coating, assembly, 
electrolyte filling, and formation. The models are 
based on different approaches, and each of them 
focuses on specific key quality parameters. 

The model of the electrode coating process is 
based on historical data. A Kernel density estimation 
is used to determine the relationships between input 
and output parameters and tested via cross validation 
and optimized with a grid search (Hasilová & Vališ, 
2018). The key parameter of this model is the coating 
weight per unit area, which has a major impact on 
final cell performance. The next model considers the 
process of cell assembly. For this purpose, a 
simulation is implemented using Simcenter Amesim, 
which depicts the separation of electrodes and the 
stacking process. In particular, the target web tension  
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Figure 4: Semantic database components. 

and the web speed are the parameters that determine 
the final dimensional accuracy of sheets. Furthermore, 
the electrolyte filling of battery cells is considered. 
Due to the lack of quality data on the filling process, 
known historical relationships of various publications 
are used to map the process. The amount of 
electrolyte filled in is a decisive factor in determining 
the quality parameter wetting degree. The last model 
represents the process of formation. It is implemented 
as a grey-box model in MATLAB/Simulink and 
consists of a discrete-event-simulation and a database 
model part. The key parameters of the formation 
process equal the parameters for final cell 
performance, which are cell capacity and efficiency. 

To access data fast, the described structure of the 
database needs to be built up logically and according 
to the intelligent operation control and cross-process 
control systems that work together closely. They both 
need similar individually compiled datasets for 
different applications. One important requirement is 
that certain data types can be extracted from other 
experiments. For the human-machine interface, the 
control and machine learning modules, default 
datasets of process parameters, and historical and 
real-time data are needed from the database and the 
cross-process control system, respectively. The 
datasets are used for monitoring and decision support. 
Since the intelligent operation control system should 
be able to access and present all types of data related 
to the whole manufacturing process, including 
different analyses, the interfaces must be defined and 
designed accordingly. 

5 IMPLEMENTATION 

This chapter introduces the selected database 
software systems first. Then, the realization of the 
database systems for ViPro is described. At last, it is 

examined whether this realization fulfills the 
predefined requirements and can be implemented in 
all battery cell manufacturing processes. 

Neo4j is used as a graph database for storing the 
model data and its references to the control data and 
equipment data in a synchronized manner. The 
determining factor was Neo4j’s numerous advantages 
in points of performance, flexibility, and 
interoperability. 

The process data of four different ViPro equipment 
should be stored in one-second intervals in a database. 
According to the executed benchmark and the test 
results of (Hao et al., 2021), InfluxDB has the best 
compression performance, the highest performance at 
writing data at high concurrency and handles queries 
faster compared to the other three TSDBs.  

The realization of the database systems for ViPro 
is illustrated in Figure 4. A database service with 
InfluxDB and Neo4j connectors which can process 
data according to the relevant database, was 
developed and implemented. It is called Semantic 
Database Query Engine (SDQE). Using the Neo4j 
connector, the SDQE can store the simulated model 
data in a knowledge graph, as shown in Figure 2. The 
InfluxDB connector was developed in SDQE for 
storing the control and equipment data. The SDQE 
controls the underlying data with the service layer and 
decides which data structure is stored in which 
database. An application programming interface  

(API) layer was defined that can process the 
requests from the MSB middleware and the databases. 

According to the defined data structure in Figure 
3, a schema was created in Neo4j. The structure in 
Figure 5 shows the different information and their 
relationships. It shows that the "Experiment" node is 
connected to the "Process" node, which in turn may 
have the "InputParameter" and "OutputParameter" 
nodes. The parameter nodes then store the value and 
its reference to the TSDB. The "Unit" node is not 
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stored directly in the parameter to make the nodes as 
atomic as possible for better scalability. 

As described above, the implementation solution 
consists of a Neo4j graph database and Influx TSDB. 
Neo4j graph database contains the data of simulation 
models, while InfluxDB allows storing the data from 
the equipment and control systems. To query these 
databases, two database interfaces with InfluxQL and 
GraphQL were developed in the SDQE. Furthermore, 
every stored data is identified with a reference key in 
both databases so that the data from the databases can 
be accessed and used more efficiently. The data 
stored in the Neo4j graph database is built after the 
semantic database model description. This design 
aims to visualize the relationships of the simulation 
data with each other and to create a fundamental 
database for further analysis. 

 
Figure 5: Data schema in Neo4j. 

Moreover, both databases are deployed in a cloud 
platform so that only certain services and users have 
access to these systems via VPN. In addition, the first 
tests are performed with the equipment. The 
equipment's process data (measurement data) can be 
read out in a one-second time cycle and stored with a 
tag (experiment ID, which is created by the Neo4j 
graph database) in the InfluxDB.  

The proposed semantic database model is a generic 
model for all battery cell manufacturing processes. 
Only the input and output parameters should be 
adjusted for the new manufacturing processes. Thanks 

to the Neo4j IT architecture, new processes can be 
easily added to the database with new input and output 
parameters. Additionally, the equipment data of the 
new processes can be stored in the InfluxDB as new 
measurements. With a new reference key, which 
SDQE creates, the data from Neo4j can be linked to the 
equipment data from the InfluxDB.  

6 CONCLUSIONS 

A semantic database with a model is developed 
considering the ViPro use case for smart battery cell 
manufacturing. First, requirements that enable 
managing heterogeneous data in a semantically 
comprehensible and analyzable format are identified. 
Then, the designed concept is introduced. Last, the 
realization of two different database technologies and 
a connecting middleware was presented. 

The developed concept shows that the 
heterogeneous data from the simulation models, 
equipment, and controls can be stored in a 
semantically understandable way. Various datasets 
are linked and structured for all manufacturing 
processes, which can be used later to analzye and 
exploit battery cell manufacturing optimization 
potentials. In future work, the communication 
solution is built for the ViPro use cases so that the 
ViPro IT-components exchange data with each other 
and retain the data as in the created concept. Future 
developments can include the inclusion of further 
processes and models or a transfer to different use 
cases and industries. 
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