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Abstract: Ultrasonic wire bonding is a solid-state joining process used to form electrical interconnections in micro and
power electronics and batteries. A high frequency oscillation causes a metallurgical bond deformation in
the contact area. Due to the numerous physical influencing factors, it is very difficult to accurately capture
this process in a model. Therefore, our goal is to determine a suitable feed-forward control strategy for the
bonding process even without detailed model knowledge. We propose the use of batch constrained Bayesian
optimization for the control design. Hence, Bayesian optimization is precisely adapted to the application of
bonding: the constraint is used to check one quality feature of the process and the use of batches leads to
more efficient experiments. Our approach is suitable to determine a feed-forward control for the bonding
process that provides very high quality bonds without using a physical model. We also show that the quality
of the Bayesian optimization based control outperforms random search as well as manual search by a user.
Using a simple prior knowledge model derived from data further improves the quality of the connection.
The Bayesian optimization approach offers the possibility to perform a sensitivity analysis of the control
parameters, which allows to evaluate the influence of each control parameter on the bond quality. In summary,
Bayesian optimization applied to the bonding process provides an excellent opportunity to develop a feed-
forward control without full modeling of the underlying physical processes.

1 INTRODUCTION

Ultrasonic wire bonding (Harman, 2010) is a method
of making electrical interconnections in micro and
power electronics and batteries. The quality of a
bonding process is specified by the so-called process
capability index, which is a common performance
measure in the industrial environment. Specifically
for the bonding process, the process capability index
depends on empirical measurements of the maximum
shear force of a bond, which can be influenced by the
control inputs. The goal in setting up the process is
to select control inputs to maximize the bond qual-
ity while meeting certain constraints. Since the bond-
ing process is very complex and, therefore, physically
difficult to model, we apply the data-driven Bayesian
optimization (BO) method from the field of machine
learning to perform a feed-forward control design.

The feed-forward control design is usually real-
ized in a model-based fashion, where the system dy-

namics are described by a set of physically moti-
vated nonlinear differential equations. Considering
the background of the bonding process, one of these
equations should represent the time evolution of the
shear force. This allows the shear force at the end of
the trajectory to be determined. Based on this model,
a control system can be calculated that maximizes
the shear force, for example by transcription methods
(Kelly, 2017).

Various publications deal with the physical mod-
eling of the ultrasonic wire bonding process, (Mayer
and Schwizer, 2002; Gogh et al., 2020; Schemmel
et al., 2020) to name just a few. A common assump-
tion is that the bond strength can essentially be de-
scribed by the frictional energy induced over the pro-
cess duration. These models provide a good physical
explanation of how the strength of the connection in-
creases over time. However, they lack extensive val-
idation by measurements with various control inputs.
They also have a long simulation time because the
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system is excited at high frequency and the connec-
tion area usually has to be discretized with a fine grid.
These shortcomings make it difficult to further design
the control for the bonding process. An exception is
(Unger et al., 2018), where the feed-forward control
is designed through multi-objective optimization for a
detailed physical model. However, extensive valida-
tion is also lacking here and generalizability has not
been investigated. To the best of our knowledge, there
is no other practical application of model-based feed-
forward control design in the literature. So far, there
are no publications on the prediction of the constraints
that must be satisfied in order to solve the designing
problem completely model-based.

For this reason, in practice, a parameterized func-
tion is assumed for the control inputs and the dedi-
cated parameters are manually identified through ex-
periments on the real system, also called trial and er-
ror learning. Each time the environmental conditions
of the process change, e.g. due to different mate-
rials of the contact partners, the parameters have to
be re-identified. Expert knowledge that has been ac-
quired over many years is required for this identifica-
tion. Additionally, the time demand is high, because
the objective function is multi modal, noisy and mul-
tiple control parameters must be set accordingly. For
a human being, even a rather low-dimensional search
space seems large, however, a good overview of the
performed experiments is important in order to avoid
redundant or irrelevant experiments. Therefore, the
risk of finding only a locally optimal solution, which
does not meet the quality requirements, is high. For
these disadvantageous reasons, we investigate the use
of BO to find the optimal control parameters for the
bonding process. Our aim is to find the global maxi-
mum efficiently and robustly with an automated, ob-
jective and structured algorithm.

One of the first publications that includes the com-
bination of BO and control theory is (Calandra et al.,
2016), where BO is used to find control parameters
for a walking robot. The control parameters are in
this case transition times in a finite-state machine.
After a relatively low number of experiments, robust
walking can be realized with BO, whereas other ap-
proaches, like random search, fail to solve this task.
In (Neumann-Brosig et al., 2020) BO is used to fine-
tune an active disturbance rejection controller for a
throttle valve which is part of combustion engines.
Robustness and the duration from one desired state
to another are objectives for the system. In this case
remarkable results can also be achieved via the usage
of BO.

The contribution of our paper is as follows: 1.) We
develop an adjusted version of BO for the application

Figure 1: Components of the ultrasonic wire bonding pro-
cess, side view (left, not to scale) and cross section detail
(right). Control inputs are the normal force FN(t) pressing
the wire to the substrate, and the alternating voltage US(t)
applied to the piezoelectric transducer, exciting in mechan-
ical vibration.

to the bonding process which we describe in depth in
Section 2. In this context, we propose adjustments to
represent the process capability index and to be able
to run multiple experiments (called a batch) in one
iteration and to preserve the constraints. These theo-
retical considerations are presented in Section 3. 2.)
We apply our developed method to the real bond pro-
cess in Section 4 and discuss the results in Subsection
4.2. Thus, we answer the question of what kind of
objective function a physical model should imply so
that it can be used as prior knowledge for BO. 3.) Fi-
nally, we investigate the efficiency and robustness of
our method in a simulated environment and evaluate
the influence of the control inputs on the bond quality
in Subsection 4.3. We conclude with a summary and
outlook of future work in Section 5.

2 ULTRASONIC WIRE BONDING

Ultrasonic wire bonding is a solid-state joining pro-
cess. It is a standard technology for the production of
electrical interconnections in micro and power elec-
tronics for diverse applications (Harman, 2010) and
also used in battery production (Hunstig et al., 2020).

Figure 1 shows the main components of an ultra-
sonic wire bonding process. Oscillating relative mo-
tion between wire and substrate is induced by an alter-
nating voltage US(t) at ultrasonic frequencies, com-
monly 40 to 150 kHz, applied to a tranducer contain-
ing piezoelectric elements. The transducer converts
electrical excitation to mechanical vibration, which is
transmitted to the process zone through a bond tool.
This bond tool presses the wire to the substrate with
a normal force FN(t). The two metallic partners, e.g.
aluminum wire on a gold-plated substrate, are con-
nected without melting by interdiffusion and forma-
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Figure 2: Assumed control function for normal force and
voltage amplitude.

tion of intermetallic compounds, induced by the ul-
trasonic vibration. Vibration is applied for a process
time from less than 10 to some 100 ms, depending on
wire diameter. Usually, the transducer is held in reso-
nance during this process by an underlying frequency
controller to obtain the maximal amplitude of the tool.
We assume that this frequency controller is given and
appropriately tuned.

After this first bond, a wire loop to a second lo-
cation is formed in a normal wire bonding process.
The wire is also bonded to this destination location
and afterwards, unless more than two locations shall
be connected, it is severed by cutting or tearing. In
this investigation, we focus on the ultrasonic bonding
process of the first bond. In the experiments, we cut
the wire after the first bond and do not form loops,
see Figure 3. We also focus on aluminum for both the
wire and the substrate in the experiments. Our feed-
forward control design is governed by the normal
force FN(t) and the voltage amplitude ÛS(t). In Figure
2 we see the proposed parameterized control function
u(t;θ) = [FN(t;θ),ÛS(t;θ)]T for both inputs. The ex-
act shape of the control is characterized by the param-
eter vector θ = [F0,F1,F2,Û1,Û2,T1,T2]

T ∈ R7
+. The

transition times (ramp lengths) are set to 25% of the
respective total phase time T1/T2 for simplicity. Phys-
ically, the bonding process consists of four phases,
with a seamless overlapping transition between the
last three (Geißler, 2009; Long et al., 2017): In the
first pre-deformation phase, the wire is first pressed
onto the substrate and deformed without the applica-
tion of vibration. When the bond tool begins to vi-
brate, it causes relative motion between wire and sub-
strate. This removes contamination such as dust parti-
cles or oxide layers and also reduces the roughness of
both surfaces, it is a phase of cleaning and activation.
After this there is a phase of large plastic deformation
of the wire, supported by the ultrasonic softening ef-
fect (Unger et al., 2014). In the final diffusion phase,
the contact area increases and both contact partners
diffuse into another until the end of the process, re-
sulting in a solid bond.

A good control function for creating stable bond
connections supports the formation of these physical

Figure 3: Microscopic images of two bonds from top view.
The left connection meets all visual criteria and has a high
quality, whereas the right one shows tool collisions on its
sides and thus has a poor quality.

phases, but it does not have to directly reflect them in
its parameters. Based on expert experience, our con-
trol function has three phases. The first phase is the
pre-deformation phase, with the force F0, no vibra-
tion and irrelevant duration. The second control phase
with parameters T1,F1, Û1 can be assumed to roughly
cover the the physical processes of cleaning and acti-
vation, and some first deformation and interdiffusion.
The last control phase with parameters T2,F2, Û2 cov-
ers the rest of the deformation and most interdiffu-
sion.

There are several criteria that define the quality of
a bond. According to (DVS - German Welding Soci-
ety, 2017), we particulary consider the shear strength
and optical criteria, such as collisions of the tool with
the substrate. The shear strength of a bond can be
measured using a load cell combined with a chisel.
The chisel moves over the bond at a certain small
height above the substrate, meanwhile the maximum
force FS(θ) up to the breaking point of the bond is
measured. This is therefore a destructive measure-
ment method. A contact between tool and substrate
can occur if the used control introduces too much
energy into the system. In this case, the wire de-
forms too much and the edges of the bond tool col-
lide with the substrate, possibly damaging both com-
ponents. This scenario should be avoided, especially
when bonding on sensitive, crack-prone substrates
such as semiconductor chips. Collisions are detected
with an optical microscope after the process (see Fig-
ure 3).

The process capability index CpK is an important
statistical measure in the industrial environment and
is used in our context to quantify the quality of the
bonding process. It depends on the mean and variance
of the shear force, which is influenced by process and
measurement noise. Thus, the shear force is a random
variable with mean E[FS(θ)] and variance V[FS(θ)].
The capability index is then defined by

CpK(θ) =
E[FS(θ)]−LSL
3 ·

√
V[FS(θ)]

, (1)

where LSL is the lower specification limit. It de-
termines the minimum shear force that should be
achieved and is chosen depending on the application.
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In order to calculate the CpK value, we approximate
the mean and variance empirically via

E[FS(θ)]≈
1

nrep

nrep

∑
i=1

F(i)
S (θ) =: µFS(θ),

V[FS(θ)]≈
1

nrep −1

nrep

∑
i=1

(F(i)
S (θ)−µFS(θ))

2 =: σ
2
FS
(θ),

(2)

where we use nrep separate bonds with the same un-
derlying control, resulting in the data F(i)

S (θ),with i =
1, ...,nrep.

Tool collisions and other optical criteria are cap-
tured by the binary variable g, where 0 represents a
good bond and 1 represents a bond with an optical
deficit. More specifically, if at least one of the nrep
bonds has an optical deficit, we set g to 1.

The feed-forward control design for the ultrasonic
wire bonding process can then be formulated as the
following optimization problem

θ∗ = argmax
θ

CpK(θ), s.t. g(θ) = 0. (3)

This problem is usually solved in practice by manual
trial and error, as there is no automated solution yet.
In the next chapter, we present our approach, which is
based on Gaussian process regression and Bayesian
optimization.

3 DATA-DRIVEN
FEED-FORWARD CONTROL
DESIGN

Before considering the application of BO (Shahriari
et al., 2016), (Snoek et al., 2012), (Jones et al., 1998)
to the ultrasonic wire bonding process, the method-
ology is explained here in detail and BO is adapted
to the requirements. At the end of this section, we
present the overall algorithm for the batch constrained
BO. Accordingly, the section is structured as follows:
Subsection 3.1 describes the construction of Gaussian
process regression models. These are used to learn
the unknown objective and constraint from pointwise
evaluations obtained through experiments. On this
basis, the batch constrained version of BO is intro-
duced and explained in detail in Subsection 3.2.

3.1 Gaussian Process Regression

From the experiments performed, we obtain an ap-
proximation of the mean µFS(θ) and standard devi-
ation σFS(θ) of the shear force FS(θ), along with the

evaluation of the constraint g(θ). In the context of our
approach, we treat these function values as parameter-
dependent random variables, each following a partic-
ular probability distribution. The assumption is that
each distribution is equal to a separate Gaussian pro-
cess (Rasmussen and Williams, 2006). In the fol-
lowing, we present the underlying equations for the
Gaussian process depending on the variable y(θ)∈R,
which stands for one of the three functions we are
looking for. For the remainder of this paper, we dis-
tinguish between the true unknown function y(θ) de-
scribing a real life process and the belief about the
function that we describe with an approximation ŷ(θ).

A Gaussian process is completely specified by
its mean m(θ) = E[ŷ(θ)] and its covariance function
k(θ,θ

′
) = E[(ŷ(θ)−m(θ))(ŷ(θ

′
)−m(θ

′
))]. Thus, the

Gaussian process formally forms a distribution over
the function values

ŷ(θ)∼ GP (m(θ),k(θ,θ
′
)). (4)

With this approach there is now the possibility to ap-
propriately choose the mean value and the covariance
function for the considered process. A common as-
sumption is that there is no prior knowledge about the
process. In this case, the prior mean function is set
to zero or a constant value (and thus does not depend
on the parameters). However, if expert knowledge is
available in advance or experiments have already been
performed, a-priori knowledge about the function can
be integrated into the Gaussian process framework via
the mean function. We will deal with this case in Sub-
section 4.2. The covariance function encodes other
assumptions, such as the degree of smoothness or pe-
riodicity of the unknown function. Although there are
many functions and combinations of them that can
be used, we figured out that the so-called 3/2-Matérn
kernel (Rasmussen and Williams, 2006)

k(θ,θ
′
;η) = σ

2
f (1+

√
3d)exp(−

√
3d)+δdσ

2
n,

d(θ,θ
′
;η) =

√
nθ

∑
i=1

(θi −θ
′
i)

2

l2
i

,

δd =

{
1 if d = 0,
0 else,

(5)

works reasonably well for our setting. The reason
relies in the weak smoothness assumption implied
by this type of kernel, so that even highly fluctuat-
ing functions can be reproduced. We will use this
covariance function throughout this paper. The co-
variance function (5) depends on two configurations
of the control parameters (θ,θ

′
) and on the hyper-

parameters η = [σ2
f , l1, ..., lnθ

,σ2
n]

T ∈ Rnθ+2
+ , which
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contains the variance of the function σ2
f , a scaling

factor li for each dimension of the control parame-
ters, and the variance of the noise σ2

n. Given a set
of nd observations Dθ = [θ1, ...,θnd ]

T ∈ Rnd×nθ , Dy =

[y1, ...,ynd ]
T ∈ Rnd , i.e., the experimental data, these

hyper-parameters can be estimated by maximizing the
logarithm of the likelihood

η∗ = argmax
η

log(p(Dy))

= argmax
η

− 1
2 (Dy −mD)

T K(η)−1(Dy −mD)

− 1
2 log(|K(η)|),

(6)

where mD = [m(θ1), ...,m(θnd )]
T and the ma-

trix K(η) ∈ Rnd×nd is the symmetric and pos-
itive definite Gram matrix with entries Ki, j =
k(θi,θ j;η), i, j = 1, ...,nd . Since the logarithm is a
strictly monotonously increasing function, it does not
change the location of the optimum, but the numer-
ically unstable multiplication of two possibly very
small numbers becomes more stable.

The a-posteriori distribution is calculated by
Bayes’ theorem which is by definition a normal dis-
tribution that depends on arbitrary control parameters.
The following equations describe how this distribu-
tion can be evaluated to get an estimation for mean
and variance

p(ŷ(θ) | Dy) = N (µ(θ),σ2(θ)),

µ(θ) = m(θ)+ kT
D(θ)K

−1(Dy −mD),

σ
2(θ) = k(θ,θ)− kT

D(θ)K
−1kD(θ),

(7)

where we use kD(θ)= [k(θ,θ1;η∗), ...,k(θ,θnd ;η∗)]
T .

At this point, we return to the previous functions.
Thus, we have three Gaussian processes for the mean
and standard deviation of the shear force and for the
constraint

µ̂FS(θ)∼ GP (mµ(θ),kµ(θ,θ
′
)),

σ̂FS(θ)∼ GP (mσ(θ),kσ(θ,θ
′
)),

ĝ(θ)∼ GP (mg(θ),kg(θ,θ
′
)),

p(µ̂FS(θ) | Dµ) = N (µµ(θ),σ
2
µ(θ)),

p(σ̂FS(θ) | Dσ) = N (µσ(θ),σ
2
σ(θ)),

p(ĝ(θ) | Dg) = N (µg(θ),σ
2
g(θ)).

(8)

For our experiments in Section 4, we used the Matérn
kernel from (5) for all covariance functions. Although
the same kernel function was used for all covari-
ance functions, they still differ because other hyper-
parameters are determined by (6) for each covariance

function. The mean functions with respect to the vari-
ance of the shear force σFS and the constraint g are
set to constant values mσ = 60,mg = 0. In the case
of the constraint, our assumption is comparable to an
optimistic initialization, since we assume that the con-
straint is not violated in the entire parameter space.
For the mean function with respect to µFS , we con-
sider two cases in this paper. In the first case, we set
mµ = LSL = 2500 also constant and assume that there
is no special prior knowledge. In the second case, we
use a quadratic function mµ(θ) = θT Aθ+bT θ+ c in-
stead of a constant one, where the quantities A,b,c
are fitted to data via least-squares regression (details
in Subsection 4.2).

Since we want to optimize the process capability
index

ĈpK =
µ̂FS(θ)−LSL

3σ̂FS(θ)
, (9)

we need to combine the associated Gaussian pro-
cesses for µ̂FS and σ̂FS . Because ĈpK depends non-
linearly on these quantities, the related probability
distribution p(ĈpK) is not Gaussian anymore. Nev-
ertheless, the exact distribution can be calculated an-
alytically (Dı́az-Francés and Rubio, 2013). In general
it is heavily tailed and has no moments. The shape
can be uni modal, bi-modal, symmetric or asymmet-
ric. However, the authors of (Dı́az-Francés and Ru-
bio, 2013) suggest a normal approximation

p(ĈpK)≈ N (µC(θ),σ
2
C(θ)),

µC(θ) =
µµ −LSL

3µσ

,

σ
2
C(θ) =

(
σσ

σµ

)2((
σµ

3σσ

)2

+

(
µµ −LSL

3µσ

)2)
,

(10)

which is valid for σσ/µσ ≤ 0.1. This value is just
over the threshold for our considered application. We
figured out that this is unproblematic through prelim-
inary examinations so that we rely on the normal ap-
proximation.

3.2 Batch Constrained Bayesian
Optimization

BO aims to find the global maximizer of an unknown
function using an iterative procedure. Therefore, the
method alternates between 1.) training the Gaussian
process based on the currently available data 2.) solv-
ing an underlying optimization problem that depends
on the trained Gaussian process and provides the next
control parameter configuration that should be tested
and 3.) testing the chosen parameters on the real sys-
tem and obtaining a new observation that is added
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Figure 4: Illustrative representation for an iteration of our
BO method in the one-dimensional case with one control
parameter. A detailed explanation can be found in the text.

to the previous data. These steps are repeated un-
til, e.g., a predetermined number of experiments have
been performed. Then, the best control parameter-set
with respect to (3) is selected from all observations
collected so far.

In the following we present a detailed explana-
tion of the execution of our batch constrained BO
approach. For a better understanding of subsequent
explanations, the reader is referred to Algorithm 1
and Figure 4. Algorithm 1 summarizes the steps of
our BO implementation. In addition, Figure 4 shows
the relationships of the considered functions during
one iteration for a one-dimensional example. Note
that the application to the bonding process is multi-
dimensional. The assumption here is that we already
have 5 evaluations of the real unknown functions.
These are represented by the blue and red circles in
the upper image. In addition, the true function CpK(θ)
for the process capability index and the constraint
g(θ) are shown in solid and dashed green lines. With
reference to the objective function, we also see the
current Gaussian process assumption in blue. Here,
the solid line is the mean and the shaded area is the
standard deviation (in comparison to (7) and (10)).

A key component in step 2.) is the so-called acqui-
sition function that defines the underlying optimiza-
tion problem. The acquisition function is required to
derive the new parameter configuration from the two
sources of information available from the Gaussian
process, i.e. the mean µC(θ) and the uncertainty in
form of the variance σ2

C(θ). Here, we consistently use
the criterion of expected improvement

αEI(θ) = E[max(0,ĈpK(θ)−ξC)]

=
∫

∞

ξC

(ĈpK(θ)−ξC)N (µC(θ),σ
2
C(θ)) dĈpK

= σC(θ)φ(γ(θ))+(ξC −µC(θ))(1−Φ(γ(θ))),

γ(θ) =
ξC −µC(θ)

σC(θ)
,

(11)

where φ(·) is the probability density function and Φ(·)
is the cumulative distribution function of a standard
normal distribution. The main idea here is to focus
on the probability measure above a certain threshold
ξC and use the center of this measure as a point to
determine the next query location. The criterion thus
strikes a balance between exploration and exploita-
tion.

In the lower picture of Figure 4 we see the evalu-
ation of the objective Gaussian process from the up-
per picture. The solid light blue line shows the ex-
pected improvement acquisition function from Equa-
tion (11). The associated threshold value ξC is 1. This
is why the function is close to 0 in a range around the
parameter value of 0.5. Maximizing this function re-
sults in the real functions from the upper image being
evaluated near the left data point. This is the global
maximum, however the constraint is not met in this
region (g(θ) = 1 for θ ∈ (0.1,0.4)). Thus, an evalua-
tion is not desired at this location.

Next, we turn our consideration to the constraint
for preventing tool collisions. Here the probability
density distribution p(ĝ(θ) | Dg) = N (µg(θ),σ

2
g(θ))

is given. In contrast to the objective function, we are
not interested in the specific value for the constraint,
but rather in the probability for the occurrence of a
tool collision. For this reason, we integrate over the
probability density function from a certain threshold
ξg

P(ĝ(θ)> ξg) =
∫

∞

ξg

N (µg(θ),σ
2
g(θ))dθ

=
1
2

(
1+ erf

(
θ−µg√

2σ2
g

))
,

(12)

where erf(·) is the so called error-function. We treat
g(θ) = 0 as a soft constraint and multiply the acquisi-
tion function (11) by the counter probability of (12),
which yields

αEI,g(θ) = αEI(θ)
(

1−P(ĝ(θ)> ξg)
)
. (13)

In this way, even favorable regions where the proba-
bility for a tool collision is high and the acquisition
function value is also high are still taken into account
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Algorithm 1: Batch Constrained Bayesian Optimization.

1: Input: Initial dataset D1 = {θi,µFS,i,σFS,i,gi}, with i = 1, ...,ninit , batchsize nbatch, iteration budget nbudget ,
mean functions mµ,mσ,mg and covariance functions kµ,kσ,kg, threshold values ξC,ξg, lower specification
limit LSL.

2: for i = 1 to nbudget do
3: Update Gaussian process hyper-parameters w.r.t. µFS ,σFS ,gi based on Di. ▷ By solving (6)
4: for b = 1 to nbatch do
5: Calculate b-th batch element θq,b. ▷ By solving (15)
6: end for
7: Evaluate at θq,b and receive {µFS,q,b,σFS,q,b,gq,b}, for b = 1, ...,nbatch.
8: Attach new data to existing one Di+1 = Di ∪ {θq,b,µFS,q,b,σFS,q,b,gq,b}.
9: end for

10: Returns: θr,with r = indexmaxr,gr=0 CpK,r=1,...,ninit+nbatchniter .

and can thus be evaluated. This is especially impor-
tant for the early iterations where a small amount of
data is available and the Gaussian process with re-
spect to the constraint provides poor predictions.

The red dashed line in the upper image of Fig-
ure 4 shows the probability of a tool collision (12).
The threshold ξg was set to 0.5. It can be seen
that the probability of a tool collision on the right
side is broadly zero, whereas the probability changes
smoothly to a value of one for the only observed tool
collision on the left side. For a diminishing value θ

towards zero, the probability drops again as we ex-
trapolate here and have chosen an optimistic mean
function of zero. The orange dashed line in the lower
image shows the weighting of the expected improve-
ment acquisition function with the counter probability
for a tool collision (13). The left area is discounted
down so that the new maximum is assumed to be on
the right and should be evaluated at the location of the
yellow cross.

Up to this point, we have only considered one
experiment in each iteration. With respect to ultra-
sonic wire bonding, the first step is to insert a blank
substrate plate into the bonding machine and auto-
matically bond it with the selected control parame-
ters. Then, the substrate plate must be removed from
the bonding machine and placed into the shear tester,
where the shear resistance is measured. The result-
ing values are then manually entered into the database
on which the BO algorithm operates. Since bond-
ing and shearing are relatively fast and automated, it
is reasonable to calculate multiple control parameter-
sets directly in one BO iteration instead of one and to
evaluate them in parallel. These parallel evaluations
are called batches and we will use the approach from
(Gonzalez et al., 2016) for our implementation. To
further motivate the usage of batches, we take a look
at the specific time needed for one iteration. This time
is composed of the time to calculate the query loca-

tion tcalc, the time needed to prepare the experiment
tprepare and the time spent for the actual evaluation
teval . The total time then sums up to Tsingle = (tcalc +
tprepare+teval) ·niter, where niter is the number of itera-
tions. For nbatch batch elements the total time amounts
to Tbatch = (nbatchtcalc+tprepare+nbatchteval) · niter

nbatch
un-

der the assumption that the preparation time does not
change and the time for calculation and evaluation
scales linearly, which is a rather pessimistic assump-
tion in most cases. For our experimental setting, the
following times can be roughly estimated (in sec-
onds) as tcalc = 10, tprepare = 100, teval = 50. With
niter = 100 and nbatch = 6, the total times correspond
to Tsingle = 4 hours and Tbatch = 1.9 hours, which is
equivalent to a reduction of more than 50%. However,
this reduction comes at the price of a decreased effi-
ciency because all identified batch elements are based
upon the same Gaussian processes and therefore, it
is only updated after all batch elements are evaluated
and not one by one.

To accommodate multiple query locations, the
weighted acquisition function must be further modi-
fied. The approach in (Gonzalez et al., 2016) recom-
mends the use of a so-called local penalizer

ϕ(θ,θq) =
1
2

erf
(
− 1√

2σ2
C(θq)

(
∥G∥2 ∥θ−θq∥2

−ξC +µC(θq)
))

,

with G =
dµC(θ)

dθ

∣∣∣∣
θ=θq

.

(14)

This penalizer depends on the control parameters θ

and on a specific query location θq, which is the pre-
viously selected batch element. The strength of the
penalty depends on the norm of the gradient of the
posterior mean function ∥G∥2 times the distance be-
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tween the parameters under consideration and the pre-
vious batch element ∥θ−θq∥2. Other components are
the posterior mean µC(θq) and variance σ2

C(θq) eval-
uated at the previous batch element and the threshold
value ξC. The basic idea is to use a penalizer for each
calculated batch element and determine the next batch
element by the product of the soft constrained acqui-
sition function and all local penalizers

θq,b = argmax
θ

{
αEI,g(θ) if b = 1,

αEI,g(θ)∏
b−1
i=1 ϕ(θ,θq,i) else,

(15)
for b = 1, ...,nbatch. In summary, the individual opti-
mization problems (15) are solved sequentially one
after the other until all nbatch batch-elements have
been calculated. Afterwards, all batch elements re-
spectively control parameters are tested on the real
system. Figure 4 illustrates this concept by the black
solid line representing the local penalizer (14) at the
location of the yellow cross. The product of the black
line and the orange dashed line gives the magenta
dashed line, whose maximum value is at the position
of the cyan cross (compare to (15)). For this illus-
trative example the total number of batch elements
is two. Further batch elements can be calculated by
additional local penalizers as required by the applica-
tion.

4 APPLICATION

In order to obtain high quality results for the bond
joints despite the complexity of the process in ultra-
sonic bonding, our proposal is to apply BO for deter-
mining the optimal feed-forward control. For this pur-
pose, in this section we will first list our experimental
settings regarding our specific equipment and chosen
inputs for Algorithm 1 (Subsection 4.1). Then, the re-
sults from the real experiments are described and an-
alyzed to clearly show the benefits in ultrasonic bond-
ing (Subsection 4.2). To further strengthen the results,
we also show the application of our method to a sim-
ulated bonding process, allowing us to study the be-
havior for many more initial conditions (Subsection
4.3).

4.1 Experimental Settings

For our experiments we used a Hesse Mechatronics
automatic wire bonder BJ955 with an RBK03 bond
head. Aluminum dibond plates are used as the sub-
strate. The wire also consists of aluminum, has a
diameter of 500 µm and is manufactured by Tanaka,

type TANW Soft 2. Shear strengths are measured us-
ing a Xyztec Sigma shear tester.

With respect to Algorithm 1, we set the num-
ber of initial experiments ninit to 10, the number of
batch elements nbatch to 6, the iteration budget nbudget
to 15, which limits the number of experiments to
ninit + nbatchnbudget = 100, and the threshold values
ξC to 2 and ξg to 0.5. The lower specification limit
LSL is 2500 cN and the number of bonds per control
parameter-set nrep is 10. The search space of the con-
trol parameters is box-constrained with lower limit θlb
and upper limit θub (see Table 1).

All Gaussian processes assume the 3/2-Matérn
covariance function described in (5). In order to
compare the hyper-parameters we also normalized
the inputs to the unit interval via the lower and up-
per bounds from Table 1. Algorithm 1 was imple-
mented in MATLAB. The optimization of the acquisi-
tion function is solved in two steps via random search
with 1 million candidates. The best candidate is used
as an initial guess for the follow up optimization with
the build-in routine fminsearch1. Note that the mas-
sive number of evaluation of the acquisition function
is unproblematic, since its computational complexity
is low and it can be calculated relatively fast.

4.2 Real-world Results

In this subsection we present the results from the real
bonding process. We compare 4 different approaches
with each other:

• Random Search: A random controller
parametrization is drawn from the uniform
distribution θi ∼ U(θlb,θub) for every experi-
ment.

• Manual Tuning: A non-expert, who is familiar
with the process and its physical effects, is tun-
ing the control parameters manually. The person
has to choose 6 parametrizations in every itera-
tion, which will then be evaluated in parallel. This
is comparable to the proceeding of Algorithm 1.
All previous experiments can be accessed at any
time in order to draw conclusions for the next
parametrizations.

• BO with a Constant Prior Mean Function: This
is our base case scenario, where no specific a-
priori knowledge about the process is available.
Therefore, we set the prior mean functions for the
mean shear force and the standard deviation to
constant values, namely mµ = 2500 and mσ = 60,

1More information can be found at math-
works.com/help/matlab/ref/fminsearch.html
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Table 1: Box-constraints for the search space.

F0[cN] F1[cN] F2[cN] Û1[V] Û2[V] T1[ms] T1[ms]
θub 300 375 375 43.3 7.75 5.5 29.5
θlb 900 1125 1125 80.6 54.25 38.5 206.5

Figure 5: Progress of the objective over the number of per-
formed experiments. An improvement is only achieved if a
tested control parameterization leads to bonds with a higher
process capability index than any previous parametrization
and the optical criteria are satisfied. Otherwise the progress
curve stays constant.

resulting in a rather pessimistic initialization with
a process capability index value of 0.

• BO with a Quadratic Mean Prior Function:
This is a reference scenario, where a quadratic
prior mean function mµ(θ) = θT Aθ+ bT θ+ c for
the mean shear force is used instead of a constant
one. The mean function for the standard deviation
stays constant. The quantities A,b,c are fitted to
all data gathered from the other three approaches
via least-squares regression.

In Figure 5, we see the progress in the process ca-
pability index over the number of experiments. Con-
stant plateaus indicate that no improvement happened
in the related experiments. Note that a jump in the
objective only occurs if the CpK value is higher com-
pared to all previous experiments and the constraint,
with respect to optical criteria, is satisfied. All ap-
proaches were given the same 10 initial experiments.

In industrial processes, a minimum CpK of 1.33
to 1.67 is typically required (DVS - German Welding
Society, 2017). Random search gets stuck near the
value of 1 pretty fast and no significant improvement
happens. From these observations, we suspect that
the surface of the objective function is rather flat for a
large part of the search space. Manual tuning provides
an improvement in efficiency. However, after around
50 experiments, no further improvement was found.
On the other hand, BO with a constant prior found a
significantly better control, although it was previously
on the same level as manual tuning. We think that the
early random search like behavior is due to initial ex-

Figure 6: Progress in an reduced parameter space. The
transparency indicates the number of the experiment, the
greater the earlier. The stars show the best parameters for
each approach.

ploration of the search space. However, this behav-
ior might be beneficial for later iterations. BO with a
quadratic prior shows the best results and provides the
best control over all approaches. Several experiments
are needed to obtain this parametrization, which in-
dicates that the quadratic prior has some mismatches
to the real objective function. However, the explo-
ration is guided to a region of potentially high qual-
ity parameters, which results in an overall high effi-
ciency. This case shows how a reasonably good, but
not necessarily perfect prior mean function improves
the progress of BO. Instead of a data-driven model,
we might think of a physical model of the process
to improve performance. From a reverse-engineering
perspective, our results show that this physical model
has to imply a quadratic function for the shear force.
We want to investigate this general idea in the future.

Next, we focus on the progress in the param-
eter space, see Figure 6. Since a 7-dimensional vi-
sualization of all parameters would be confusing, we
transformed the data onto a 2-dimensional space by a
principal component analysis (PCA). A singular value
decomposition (SVD) of the data matrix, which is
formed from all parameter values of all experiments,
was calculated. Then, the parameter values were
transformed into a 2-dimensional space via the first
two columns of the matrix with the left singular vec-
tors, which are thus assigned to the two largest singu-
lar values. The parameters related to random search
are broadly diversified as expected. The concentra-
tion of red dots in one area is noticeable. This region
was locally explored by the manual tuner, since the re-
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Figure 7: Progress of the objective function value over the
number of experiments in the simulated environment. The
solid lines show the average progress over multiple runs and
the transparent areas indicate two standard deviations. The
dashed lines show the maximum values found for the real
process (compare to Figure 5).

sulting objective function values were relatively good
and the constraint was fulfilled. We would classify
the proceeding as safe exploration, where the region
of tested parameters is iteratively expanded. We also
noticed that the overview of the previous experiments
was lost at around 30 to 40 experiments, which is the
explanation for the lack of progress on the objective
function in Figure 5. On the other hand, BO espe-
cially explores the bounds of the search space and fo-
cuses relatively fast on the region where the highest
values were found. For reasons of confidentiality, we
are not permitted to provide the optimal parameters.

4.3 Simulated Results

Since experiments on the real system are time and
cost consuming, we could not investigate the influ-
ence of the initial experiments and therefore the ro-
bustness of each approach. Based on this reason,
we set up Gaussian processes, which are built upon
all data gathered so far, to replace the real system.
Hence, their predictions are relatively accurate. This
virtual environment enables us to test the approaches
used in Subsection 4.2, excluding manual tuning, for
different initial experiments.

Figure 7 shows the dedicated results for 50 differ-
ent runs. First of all, we see that the runs with re-
spect to the real system are reasonable, because they
fit the simulated runs. Furthermore, the used BO
methods outperform random search robustly and con-
verge to high objective function values. The fact that
the global maximum from the measurements (dashed
cyan line) is not reached by quadratic prior BO may
be related to the regularization of the reference Gaus-
sian processes. However, the optimal parameters
found are identical. These results strengthen our hy-

pothesis that BO is appropriate for the control design
of the bonding process.

Another advantageous property of training Gaus-
sian processes with all data is the ability to investi-
gate the learned hyper-parameters η∗. Especially the
learned scales reveal the relevance of a given param-
eter dimension to the output. This is called automatic
relevance determination in the literature (Rasmussen
and Williams, 2006).

The hyper-parameters are shown in Table 2. Note
that a direct comparison is possible, since we stan-
dardized the parameter dimensions to the unit inter-
val. The higher the value of the scale l, the smaller
the influence of the underlying parameter. Regarding
the mean shear force µ̂FS(θ) and the label ĝ, we see
that the normal force of the pre-deformation phase
F0 is less relevant compared to the standard devia-
tion σ̂FS(θ), which seems plausible, because a suffi-
cient initial contact area is formed by a wide range
of values. On the other hand, the values of the ultra-
sonic voltages (Û1,Û2) have a relatively high impact
on the mean shear force. This also holds for the stan-
dard deviation of the shear force σ̂FS(θ). However, we
see that the force F2 and time T2 of the second phase
have the most influence, which means that these val-
ues have to be chosen with high accuracy for receiv-
ing a low standard deviation. The values for the signal
and noise variance (σ2

f , σ2
n) match with the observa-

tions during the experiments.

5 CONCLUSION AND OUTLOOK

Real-world and simulated results showed that the ap-
plication of BO to the feed-forward control design
of ultrasonic wire bonding is very appropriate. The
suggested approach outperforms random search and
manual tuning in terms of efficiency and robustness.
We also showed that the incorporation of a quadratic
prior mean function is advantageous and increases the
performance. We see this result as a guideline for fur-
ther research, where we exchange the quadratic prior
with a physical simulation model of the bonding pro-
cess. Our work lays the foundation for this since
it builds upon numerous measurements with a wide
range of control inputs applied to the real bonding
process and is thus well validated. Furthermore, we
investigated the hyper-parameters and discovered that
the touchdown force, which is applied during the pre-
deformation phase, has little influence on the bond
quality. The mean shear force is sensitive to the volt-
age amplitude values, whereas the variance responds
the most to the normal force in the second phase and
its duration.
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Table 2: Hyper-parameters for the reference Gaussian processes.

GP σ2
f lF0 lF1 lF2 lU1 lU2 lT1 lT2 σ2

n

µ̂FS(θ) 4.4 ·105 13.7 2 1.9 1.7 1.4 2.9 2.6 1.6 ·103

σ̂FS(θ) 1.7 ·103 1.3 1.9 0.2 0.9 0.9 2.3 0.8 335
ĝ 0.3 3 0.7 1.1 0.5 0.5 1 1.3 0.05

Besides a physics-based prior mean function, we
want to investigate other materials, like copper, or dif-
ferent wire diameters. The modification of other gen-
eral conditions could also be considered. Our pro-
posed method can be applied in the same way. How-
ever, we can build on the results from this paper and
examine the field of transfer learning. A good start-
ing point might be the Gaussian processes which were
trained with all the data points from our experiments.
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