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Abstract: Unsupervised and explainable approaches are critical in anomaly detection for mechanical systems. This work 
proposes a density-based k-nearest neighbor method to combine an unsupervised learning setup with the 
added value of explainability. The algorithm is applied to detect anomalies in vibration data from acceleration 
sensors or microphones. In a training phase, we transform healthy vibration data into mel-spectrograms and 
extract feature patches representing healthy turbines' vibration energy distribution. We determine anomaly 
scores by calculating a k-nearest neighbor similarity between operational feature patches and healthy feature 
patches. Hence, we use basic statistical methods with interpretable results, which contrasts with deep learning 
techniques. The evaluation paradigm is data from damaged and healthy wind turbines and a secondary 
machine audio data set. This work introduces and explores a novel sensor-level anomaly score. The model 
identified all damaged sequences as anomalies on the wind turbine sequences. Furthermore, the method 
achieved competitive results on the more complex DCASE sound anomaly dataset. Concluding, our anomaly 
score lays the foundations for an interpretable condition monitoring system.  

1 INTRODUCTION  

Renewable energy sources drive the energy 
transformation and are central for supply reliability. 
Applied machine learning and data mining methods 
carry the developments of the transitions in the 
energy sector (Arnoldt, 2010). The utilization of 
unsupervised methods has been a research area for 
wind turbines (Sheng, 2014) and multiple                     
other application domains (Masino, 2017) (Bernhard, 
2021/1) (Hofmockel, 2018). Anomaly detection with 
structure-born sound data describes detecting 
suspicious noises in a sound sequence that differs 
from the sound source's common character. 
Especially in machine condition monitoring, there is 
great economic potential because the standstill of 
complex production plants or wind turbines causes 
serious economic damage. Data acquisition is a near-
impossible task, as the anomalous samples are sparse 
and usually highly diversified. As such, it is difficult 
to collect sufficient data samples from the anomaly 
class to comprehensively represent the intra-class 
variability and the unbalanced domains (Schutera, 

2019). The notorious limitations of data acquisition 
and sparse target domains in machine learning 
(Bernhard, 2021/2) can be coped by unsupervised 
learning and encoding approaches (Schutera, 2020). 
In the field of acoustic anomaly detection, Gaussian 
mixture models (Dufaux, 2000), hidden Markov 
models (Chan, 2010), and support vector machines 
(Aurino, 2014) are common approaches. In recent 
years, neural networks have obtained superior results 
by modeling the regular, normal data samples with an 
encoder-decoder architecture (Koizumi, 2018) 
(Kawaguchi, 2017), using the reconstruction loss as a 
cue an anomaly measure. We show that with an 
algorithmic simple, density-based k-nearest neighbor 
method, we achieve high performance on two data 
sets, including different machine types and wind 
turbine data. Condition monitoring on wind turbine 
gearbox data has been of interest due to the significant 
downtime gearbox damages caused (Sheng, 2011/1). 
There are different data modalities for condition 
monitoring on wind turbine gearboxes, such as 
lubricant pressure (Wang, 2016), temperature 
monitoring (Feng, 2013), or performance monitoring 
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(Sharma, 2013). However, particular interest has been 
put into analyzing vibration signals (Zappala, 2014), 
which allow for direct sampling of structure-borne 
sound from gearbox components. For vibration data 
condition monitoring, amplitude analysis on specific 
frequency ranges can be used for automatic fault 
detection (Antoniadou, 2015). For online fault 
detection algorithms, in current work impulse 
analysis in the frequency spectrum has been proposed 
(Gong, 2014).  

In detail, this work examines:  
• A density-based k-nearest neighbor anomaly 

detection method for wind turbines and 
machine vibration data. 

• The design and introduction of a sensor-level, 
frequency-based explainable anomaly score. 
 

Especially in condition monitoring and predictive 
maintenance, the interpretability and explainability of 
anomaly scores are important and add value. By 
allowing insights into the nature and type of the 
detected anomaly, the explainability of the approach 
simplifies and supports the maintenance or other 
interventions to the monitored machines.  

2 DATA 

In real-world machine deployment, anomalous 
vibration signals are the exception and are of various 
kinds; this impedes data acquisition of anomalous 
samples. Therefore, the data sets for unsupervised 
detection of anomalous vibration signals are 
composed of a training set consisting of normal 
vibration samples only, a validation and test set 
consisting of normal and anomalous samples. In the 
following, we outline two data sets with these 
required characteristics. 

2.1 NREL Wind Turbine 

The wind turbine gearbox condition monitoring 
vibration analysis benchmarking data sets (Sheng, 
2014) consists of data from a stall-controlled, three-
bladed, upwind turbine with a rated power of 750kW 
(Sheng, 2011/2). The vibration data of the wind 
turbine is collected by three IMI 626B02 and five IMI 
626B01 accelerometers, in ௠௦మ.  Mounted on the 
outside of the gearbox. The sample rate is 40 kHz per 
sensor channel. The whole data set comprises ten 
healthy H (normal) vibration sequences of one minute 
each and ten damaged D (anomalous) vibration 
sequences of one minute each. Training is based on 

the sequences H1-H4. Validation is based on the 
sequences H5-H6 and D1-D2. For testing, the 
sequences H7-H10 and D3-D10 are deployed and 
evaluated. 

2.2 DCASE2020 Anomaly Challenge 
Data Set  

The unsupervised detection of anomalous sounds     
for machine condition monitoring data set (Koizumi, 
2019) (Purohit, 2019) consists of data from six 
machine types (toy car, toy conveyor, valve, pump, 
fan, and Slider) with three to four machine instances. 
The whole data set comprises a training set of around 
2000 (normal) sequences, a validation set of two 
times 100-200 (normal and anomalous) sequences, 
and a test set of around 400 (unlabeled) sequences for 
each machine instance. Each sequence represents an 
audio recording of around ten seconds. 

3 ANOMALY DETECTION 
ARCHITECTURE 

Anomaly detection is a data science discipline that 
focuses on finding outlier data points that indicate a 
significant deviation towards an underlying 
distribution. Hence, the model should learn features 
that describe patterns in the training data. The 
presence or absence of these patterns in the test data 
points helps estimating whether the point is part of the 
estimated distribution during training.  

This paper uses a density-based anomaly 
detection method that incorporates a k-nearest 
neighbor search of frequency patterns. First, the data 
must be transposed into a fitting feature 
representation to create a metric space that is useful 
to the model. Transforming the sensor signals into a 
mel-spectrogram that comprises the vibration 
behavior on different frequency ranges serves this 
purpose. Afterward, forming a histogram with fixed 
bins for each frequency range converts the 
spectrogram data. The following subsections describe 
the model's workflow to set up a training library, 
depicted in figure 1. 
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Figure 1. The feature extraction process for the training library. a) Vibration data files are transformed into spectrograms 
(mel-spectrogram processing) to provide a detailed representation of the frequency spectrum. b) A library (spectrogram 
sampling) that describes normal behavior, consisting of sampled short frames, is set up. c) Each frame translates into the 
feature representation by generating a histogram for each frequency bin (frequency band histogram feature extraction). 

3.1 Data Preparation 

The general audio classification approach extracts 
features from the temporal vibration signal specific to 
each class. Current state-of-the-art algorithms often 
use mel-spectrograms to transform the vibration 
signal from time to frequency domain. This time-
frequency representation allows a good extraction of 
the frequency patterns and, at the same time, a 
dimensional reduction compared to a regular 
spectrogram. Log-mel-energies were by far the most 
popular feature in DCASE Task 4 (Serizel, 2019). For 
a mel-spectrogram, a Discrete Fourier Transform of 
the input signal is determined, and the power 
spectrum is converted to log-scale. A vibration signal 
of a previously defined window length is the input to 
calculate the DFT. This window then runs over the 
entire file to display the power spectrum change over 
time. Based on a person's relative perceived pitch, the 
frequencies are then converted into mel-scale, 
creating a mel-spectrogram (see figure 1a and      
figure 2). Since the frequency resolution is higher in 
the lower range and decreases for higher frequencies, 
this time-frequency representation is particularly 
suitable for machine condition monitoring. Most of 
the observed signal's energy is in the lower range. 
Finally, the spectrograms for each type of machine 
are normalized. 
 
 
 

3.2 Feature Extraction 

The underlying assumption for the anomaly detection 
method in this paper is that the vibration data of 
damaged wind turbines will have intensities in 
different frequency ranges than the vibration data of 
healthy wind turbines. Hence, if over a given time 
frame, for normal and anomalous data, a histogram 
for a given frequency range displays different value 
distributions. Therefore, calculating the distance 
between their histograms for each frequency range 
yields the spectrograms' similarity. The model 
focuses on small extracts with length 𝑙  along the 
entire spectrogram's time axis, subsequently denoted 
frames (see figure 1b). Hence, with frame length 𝑙, a 
spectrogram 𝑺  of size 𝑓 ൈ 𝑛 , where 𝑓  denotes the 
number of frequency bins, and 𝑛  denotes the total 
number of time steps, can be cut into a maximum       
of 𝑛 െ 𝑙 ൅ 1  frames 𝑬  of size 𝑓 ൈ 𝑙 . To create a 
feature representation of the value distribution for a 
given frame and frequency range 𝑖 ∈ ሼ1, … , 𝑓ሽ , a 
histogram 𝒉௜,௕ of row 𝑖 with 𝑏 bins is generated (see 
figure 1c). The maximum and minimum intensity 
observed on the frequency range of 𝑖 in the training 
data equal each histogram's maximum and minimum 
values. Therefore, a frame 𝑬 of size 𝑓 ൈ 𝑙 is used to 
generate a histogram matrix 𝑯 ൌ ሼ𝒉ଵ,௕, … , 𝒉௙,௕ሽ் of 
size 𝑓 ൈ 𝑏. 
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Figure 2. Mel-spectrogram of audio data depicted as frequency (Hz) over time (s). A comparison of healthy and damaged 
valve audio data shows the signal’s energy distribution difference. 

3.3 Anomaly Score Calculation 

To apply a k-nearest neighbor search (see equation 
(1)) for anomalies, a set of training features must be 
generated describing normal vibration behavior. This 
is done by uniformly sampling 𝑣 data points from the 
set of all training data frames and converting the 
sampled frames to histogram matrices that are added 
to the training library ℒ ൌ  ሼ𝑯௜ሽ௜∈ሼଵ,…,௩ሽ . To get the 
anomaly value of a test frame, the frame is 
transformed into the histogram matrix 𝑯෩ . The 
anomaly score is then calculated as the average 
distance to the k-nearest neighbors: 

                         𝐴 ൌ 1𝑘 ෍ 𝑂ሺ𝒅ሻ௜௞
௜ୀଵ                                   ሺ1ሻ 

with 𝑑௜ ൌ ||𝑯෩ െ 𝑯௜||ଶ being the distance vector from 𝑯෩  to ℒ and 𝑂ሺ𝒅ሻ being a function that arranges the 
distance vector 𝒅 in ascending order. For calculating 
the anomaly score of a whole test-spectrogram, the 
anomaly scores of each frame are evaluated and 
averaged. 
The whole process of calculating the anomaly score 
for a test sequence 𝒙 of arbitrary length is expressed 
by the function 𝑀ሺ𝒙ሻ. 
 3.4 Anomaly Detection Metrics 

Metrics for benchmarking anomaly detection systems 
are Area Under Curve (𝐴𝑈𝐶, see       equation (2)) and 
partial Area Under Curve (𝑝𝐴𝑈𝐶, see equation (3)), 
which are independent of decision rules and thus 
provide a reliable measure for anomaly detection. We 
divide the set of test data in 𝒩  (normal) and 𝒩ା (anomalous) test data. Let ሼ𝒙௜ି ሽ௜ୀଵேష  and ሼ𝒙௜ାሽ௜ୀଵேశ  be the normal and anomalous test sequences 
in descending order of their average anomaly score. 
By using the flooring function ⌊∙⌋  and the step 

function 𝐺ሺ∙ሻ, which is 1 when the input is above 0, 
and 0 otherwise, the metrics are defined as: 

𝐴𝑈𝐶 ൌ 1𝒩 𝒩ା ෍ ෍ 𝐺 ቀ𝑀൫𝑥௝ା൯ െ 𝑀ሺ𝑥௜ି ሻቁ𝒩శ
௝ୀଵ

𝒩ష
௜ୀଵ  

(2) 

𝑝𝐴𝑈𝐶 ൌ 1⌊𝑝𝒩 ⌋𝒩ା ෍ ෍ 𝐺 ቀ𝑀൫𝒙௝ା൯ െ 𝑀ሺ𝒙௜ି ሻቁ𝒩శ
௝ୀଵ

⌊௣𝒩ష⌋
௜ୀଵ   

(3) 

We choose 𝑝 ൌ 0.1 and thus estimate how high 
the probability is that our model, with a false positive 
rate of a maximum of 10%, predicts for a random 
normal test sample a lower anomaly score than for a 
random anomalous test sample. 

4 EXPERIMENTS 

The NREL wind turbine data set is split into training 
and validation data, as detailed in section 2. Each of 
the nine sensor channels initiates the training of a 
sensor channel-specific model. Hence, for each time 
frame, there are nine individual anomaly scores. 
Averaging the anomaly scores provides the 
evaluation of the wind turbine's cumulative behavior. 

4.1 Training Parameters 

The model's performance relies on a set of 
hyperparameters that can be adjusted: Number of mels 𝑓  specifies the number of mel-bins, indicating the 
frequency resolution on the mel-scale. We use an fft-
length of 1024 with hop size 512 and a Hanning 
window (Gautam, 1996). Extract length 𝑙 specifies the 
number of time steps that are included in one frame.  
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Figure 3. Anomaly scores across the sensors with different mounting positions [2] for damaged and healthy wind turbine data. 
The sensors’ emerging anomaly pattern potentially supports during troubleshooting and hints at specific failure cases. 

During extraction of the frames, we used a stride 
parameter of 15 that defines the number of time steps 
the window is shifted for the next frame. While a high 𝑙  allows to reduce noise and focus on periodic 
patterns, it also bears the risk of significant 
anomalous spikes being vanished by normal behavior 
before and after. Number of histogram bins 𝑏 
specifies the resolution of the intensity distribution. 
Choosing 𝑏 allows adjusting the model's sensitivity 
towards noise. Number of nearest neighbors 𝑘 
specifies the number of training data points for the 
anomaly score evaluation. The hardware setup for 
training, inference, and evaluation consisted of an 
NVIDIA Tesla P100 GPU (16GB GPU memory). 

5 RESULTS 

5.1 Anomaly Detection Performance 

Deployed on the NREL wind turbine data, the model 
distinguishes between healthy and damaged samples. 
Figure 3 depicts the anomaly scores for damaged and 
healthy wind turbine data across all sensor types. 
Table 1 shows the averaged anomaly scores for each 
sequence with the respective standard deviation. The 
model achieves a clear delineation between the 
anomalous (anomaly scores approx. 310, see table 1) 

and healthy samples (anomaly score approx. 78, see 
table 1) of the wind turbine. 

Furthermore, the model achieves AUC scores 
above 70% and pAUC scores above 65% across all 
machine types and IDs on the DCASE2020 data set 
(see table 2). Especially machine toy car experiences 
robust results, while the machine valve poses a 
challenge to the proposed model. The model 
outperforms the deep-learning baseline model on 
every machine other than slider. 

5.2 Model Interpretability  

Our model's implementation on the wind turbine data 
allows evaluating the vibration behavior on sensor-
level (see figure 3). High anomaly scores on specific 
sensors indicate damage location. Our model supports 
interpretable anomaly scores in contrast to deep 
learning-driven anomaly detection approaches, such 
as auto-encoders. High scores can be tracked down to 
and explained by the distribution of intensity values 
on specific frequency ranges and individual sensors. 
Tracking allows the analysis of anomalous patterns 
and the comparison with previous occurrences. 
Hence, the model detects general anomalies and lays 
the foundation for anomaly classification and 
prediction.

Table 1. Anomaly score estimation for wind turbine data. Scores are averaged across sensor types and time steps.  There is a 
clear delineation between the anomaly scores for healthy wind turbine recordings and the anomaly scores for damaged wind 
turbine recordings. Training parameters: l = 128, f = 40, b = 8, k = 4. 

 H7 H8 H9 H10 D3 D4 D5 D6 D7 D8 D9 D10 

mean 77.0 77.3 78.0 79.4 309.1 313.4 308.7 305.8 311.7 310.9 313.9 311.9 
Std. ±1.01 ±0.96 ±1.26 ±0.88 ±1.03 ±1.01 ±0.92 ±1.05 ±1.05 ±1.10 ±1.05 ±0.92 
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Table 2. Performance comparison between the proposed model and the DCASE2020 Challenge 2 baseline model (Koizumi, 
2020). They implemented a classical deep-learning auto-encoder approach to find anomalous behavior in the sound files. As 
a result, the model manages to achieve a significant anomaly detection performance on each machine. Furthermore, the model 
outperforms the baseline model on every machine type except slider. 

 Proposed Model 
(ours)

Baseline   Proposed Model 
(ours)

Baseline 

 AUC 
(%) 

pAUC 
(%) 

AUC 
(%) 

pAUC 
(%) 

  AUC  
(%) 

pAUC 
(%) 

AUC 
(%) 

pAU
C 

(%)
Toy Car f = 128 l = 75 b = 10 k = 2  Toy 

Conveyor
f = 128 l = 70 b = 5 k = 2 

ID 1 95.6 80.6 81.4 68.4 ID 1 87.1 71.0 78.1 64.3
ID 2 98.9 94.5 86.0 77.7 ID 2 67.2 52.4 64.2 56.0
ID 3 92.5 78.1 63.3 55.2 ID 3 79.2 66.7 75.3 61.0
ID 4 98.9 96.6 84.5 69.0 Average 77.8 63.4 72.5 60.4

Average 96.4 87.5 78.8 67.6    
Fan f = 128 l = 75 b = 7 k = 4 Pump f = 128 l = 70 b = 7 k = 4
ID 1 60.5 51.9 54.4 49.4 ID 1 76.2 55.4 67.2 56.7
ID 2 89.5 65.9 73.4 54.8 ID 2 83.6 75.8 61.5 58.1
ID 3 78.3 58.9 61.6 53.3 ID 3 94.1 77.1 88.3 67.1
ID 4 81.1 57.0 73.9 52.4 ID 4 78.7 57.5 74.6 58.0

Average  77.3 58.4 65.8 52.5 Average 83.2 66.4 72.9 56.0
lider f = 128 l = 75 b = 5 k = 5 Valve f = 128 l = 35 b = 10 k = 1
ID 1 98.5 93.7 97.0 81.4 ID 1 74.1 55.3 68.8 51.7
ID 2 81.6 65.5 79.0 63.7 ID 2 68.7 51.8 68.2 51.8
ID 3 83.0 55.0 94.3 72.0 ID 3 75.2 51.4 74.3 52.0
ID 4 60.9 51.2 69.6 49.0 ID 4 62.8 48.6 53.9 48.4

Average 81.0 66.3 84.8 66.5 Average 70.2 51.8 66.3 51.0

6 DISCUSSION 

We introduce a method for effective fault detection on 
vibration data with this work. The proposed method 
uses spectrogram transformations of the input signal 
to automatically extract healthy signals' 
characteristics over the whole frequency spectrum by 
building histogram representations. The analysis 
pipeline can identify the core frequency windows and 
characteristics without prior knowledge of the 
underlying mechanical system.  

Using the k-nearest neighbor anomaly detection 
method, the systems deployment signals are examined 
for damages or malfunctions. This method was tested 
on sound signals and vibration signals to prove its 
viability.  

There is a range of potential future work to 
improve the presented approach: Starting with 
deploying the approach to related areas, such as 
premature fault prediction or supervised fault 
classification by comparing the extracted features of 

 
1 An interactive implementation of the model can 
be found in: https://github.com/VanLock9988/ 
Vibration_Data_Anomaly_Detection 

deployment data to previously observed features. 
Another extension introduces the ability to recognize 
long-term dependencies by estimating conditional 
distributions. Not only recognizing anomalous 
frequency patterns but also anomalous sequences of 
frequency patterns.  

We are confident that this work supports 
practitioners when deploying condition monitoring or 
predictive maintenance algorithms1. Further, we hope 
to stimulate research on overcoming the restrictions 
imposed by unbalanced domains in acoustic anomaly 
data sets while ensuring interpretability. 
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