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Abstract: Drivers pressures are major causes of road accidents, and thus drivers’ pressures states recognition become 
an important topic in Advanced Driver Assistant System (ADAS). Physiological signals provide information 
about the internal functioning of human body and thereby provide accurate, reliable and robust information 
on the driver’s state. In this work, the several features, which are 8 heart rate variability features and 10 
mathematical features, are trained using three classifiers: Support Vector Machine (SVM), K-nearest-
neighbor (KNN) and Ensemble. The algorithms based pNN5 and LF/HF achieved best performance in HRV 
linear features evaluation, and the accuracy (AC), sensitivity (SE), specificity (SP) for Stress Recognition in 
Automobile Drivers data are 89.0%, 91.8% and 77.3% respectively. The mathematical features result in 
98.6%,99.1% and 91.5% for accuracy (AC), sensitivity (SE), specificity, respectively.  

1 INTRODUCTION  

It is easy for drivers to have mental stress during the 
driving process, due to monotonous driving behavior. 
For example, long-time traffic jams or driving on 
heavily congested roads will increase the risk of 
driver accidents. It is found potential hazards caused 
by various driver pressures (Gibson 2000). However, 
the recognition and classification of driver pressure 
levels can be used as a monitoring and early warning 
technology for ADAS, which has developed rapidly 
in recent years. 

In the selection of driver's physiological 
parameters, the mental state recognition method 
based on EEG has been proposed (Su 2008, C 2010, 
F 2012, Hashemi 2014), but it is difficult to put into 
actual use, due to the poor noise immunity and 
difficulty of deployment of EEG acquisition in the 
vehicle scene. It is proved that drivers’ skin 
conductance and heart rate parameters are more 
clearly related to their stress levels, according to 
experiments (Singh 2014). In addition, driving 
fatigue state detection has also been proposed, based 
on analysis method of facial image and vehicle 
driving data (Mbouna 2013, Jo 2014, Cyganek 2104). 
However, these methods require special equipment to 
be installed in the vehicle, such as a camera for facial 
image collection or a data recording device for 
accessing vehicle driving data. 

Based on the driver's heart, the pressure detection 
method has also attracted much attention. According 
to the principle that sleep affects the driver's 
autonomic nervous system (ANS) and heart activity, 
fatigue detection is carried out, based on the 
physiological parameters of the heart. In 2005, It is 
proposed the most practical method to detect the 
driver’s condition during actual driving based on 
heart rate detection (Healey 2005). In 2016, it is (Chui 
2016) et al. proposed a fatigue detection method 
based on driver's electrocardiogram. The 
psychological impact of the road traffic environment 
on drivers and the resulting physiological burden and 
changes in driving behavior were studied (Domestic 
2001). In addition, some researchers detect fatigue 
driving behavior based on Photo Plethysmo Graphy 
(PPG) signals (Lee 2011). Although experiments 
show that this method can obtain good performance, 
it is difficult to stably obtain good ECG or PPG 
signals, due to the influence of car motion. 

Nevertheless, the heart rate variability (HRV) 
extracted from ECG and PPG signals has a strong 
anti-noise ability, which is an effective sign to 
identify the internal state of the human body. 

Based on the MIT-BIH autopilot pressure 
recognition data set, this paper carried out research on 
the pressure state recognition algorithm by using the 
driver's HRV. After the ECG signal is preprocessed, 
8 kinds of HRV parameters are extracted, and then 10 
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mathematical features with statistical significance are 
obtained. After sorting all the features, support vector 
machine (SVM) and K nearest neighbor (KNN) are 
trained in two classifiers. 

The structure of this article is as follows: in the 
second section, we will introduce the new system 
structure. The third section introduces the analysis 
methods of the studied variables. The experimental 
results are shown in the fourth section. Finally, this 
article reviews the main conclusions and discusses 
future work in the fifth section. 

2 DRIVER STATE FEATURE 
EXTRACTION BASED ON 
HEART RATE VARIABILITY 

2.1 Heart Rate Variability 

The R wave is the highest peak in the ECG, and the 
RR interval (RRI) is defined as the interval between 
the R wave and the next R wave. HRV is the 
fluctuation of RRI, a physiological phenomenon that 
reflects the activity of the cardiac autonomic nervous 
system. Therefore, HRV analysis is used to monitor 
stress and cardiovascular disease. Although there are 
two features of HRV: linear finite element features 
and nonlinear features, this study mainly uses linear 
finite element features, as the extraction of non-linear 
features requires long-term RRI measurement to keep 
the output features stable, which can’t be used in real 
time, for example, fatigue driving early warning. 
Linear HRV features are divided into time domain 
features and frequency domain features. 

Time-domain features include: 
 MeanNN: the average value of RRI. 
 SDNN: standard deviation of RRI. 
 RMSSD: root mean square error of adjacent 

RRI. 
 TP: total power change of RRI. 
 pNN50: the number of sample pairs where 

the difference between adjacent RRIs is 
greater than 50ms in a given measurement 
time. 

Frequency-domain features include as follows. 
The first one is Low Frequency (LF), which is the 

power in the low frequency band of the PSD (0.04 
Hz-0.15 Hz). LF mainly reflects the regulation of 
sympathetic nerves, with the main function of 
sympathetic nerves to strengthen the heartbeat and 
muscle work ability. The sympathetic nerve has an 
inhibitory effect on the smooth muscle of the 
bronchioles, making the bronchi dilate, which is 

conducive to lung breathing. Sympathetic nerve 
activity increases when the body is under tension and 
requires intense ventilation. 

The second one is High Frequency (HF), which is 
the power in the high frequency band of the PSD 
(0.15 Hz–0.4 Hz). HF mainly reflects the adjustment 
of the parasympathetic nerve to the body. The 
function of the parasympathetic nerve is opposite to 
the sympathetic nerve. The two jointly regulate the 
body's heart rate, respiration, glandular secretion, and 
the blood flow distribution of important organs, such 
as the liver and adrenal glands, which can slow the 
body's heartbeat, lower blood pressure and shrink the 
bronchi, so as to reduce unnecessary energy 
consumption and reflect the activities of the 
parasympathetic nervous system. 

The third one is LF/HF, that is, LF to HF ratio, 
which shows the balance between the activities of the 
sympathetic nervous system and the parasympathetic 
nervous system. When the body holds still, the 
activity of the parasympathetic nerve increases. 
However, it may cause the body to fatigue after a long 
time. LF/HF must change continuously within a 
certain range, so as to maintain human health. 

2.2 Mathematical Characteristics of 
Heart Rate Variability 

After the ECG signal is filtered, the mathematical 
features of each linear feature are obtained based on 
linear HRV feature extraction. There are 12 time-
domain linear features, including mean, median, 
standard deviation (SD), variance, maximum, 
minimum, skewness, kurtosis, power, root mean 
square (RMS), approximate entropy and Hurst 
exponent. 

3 DATA SET OF DRIVER HEART 
RATE 

3.1 Date Set 

This research uses MIT-BIH’s Stress Recognition in 
Automobile Drivers data set. Each sample in the data 
set uses electrocardiogram (ECG), electromyography 
(EMG), skin conductance (EDA) and respiration rate. 
The sampling frequency of ECG is 496 Hz, the 
sampling frequency of skin conductance and 
respiration is 31 Hz and the sampling frequency of 
EMG is 15.5 Hz, with a total of 17 driving tests. The 
labeled information comes from a questionnaire of all 
drivers, including the perception of low, medium, and 
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high stress during rest, highway and city driving, with 
two scoring methods, free scoring and mandatory 
ranking. Drivers score the driving event amid the free 
scoring method, with the scoring standard from "1" to 
"5", where "1" represents the feeling of "no pressure" 
while "5" represents the feeling of "high pressure". 
Mandatory ranking requires drivers to rank events on 
a scale from 1 to 7, where "1" is assigned to the least 
stressful driving event, while "7" is assigned to the 
most stressful driving event. Drivers are asked to rate 
events by using this scale, including encounters with 
toll booths, mergers and exits and other city, and 
highway driving tasks. The values of the two stress 
levels in each questionnaire are standardized, and 
then the average and standard deviation are calculated 
and inversely transformed. The test analysis of all 
categories shows that the overall score and the 
comparison score are significantly different 
(p>0.001), which supports the rationality of the data 
set. 

3.2 Data Preprocessing 

The original ECG data collected from the driver 
includes noise caused by various reasons. First, it is 
needed to use a filter with a cutoff frequency of 3-100 
Hz to eliminate noise. Then the heartbeat is detected 
by QRS complex scanner using Pan and Tompkins 
algorithm (Karegar 2017). The HRV signal is 
obtained by accurately measuring the R peak value 
from the ECG signal based on the wavelet transform 
technique (Zhao 2012). 

3.3 Feature Extraction 

The preprocessed ECG signal is first subjected to 
HRV linear feature extraction to generate 8 HRV 
features, including MeanNN, SDNN, RMSSD, TP, 
NN50, LF, HF and LF/HF. The time-domain features 
are extracted by algorithms to generate mathematical 
features, with a total of 5*10+3=53 types of features. 
The significant difference values of the mathematical 
characteristics of the sample categories are shown in 
Table 1. 

Table 1: Significant differences of varies characteristics. 

Time-frequency 
characteristics 

Time-frequency   
characteristics 

Mean Skewness 
Median Kurtosis 

Standard variance power 
variance Root Mean Square (RMS) 

Hurst index Approximate entropy 

3.4 Classifier  

SVM, KNN and ensemble classifiers are used to 
classify features in the experiment. 75% of the data is 
used for training the classifier, while 25% of the data 
is used for testing. Support vector machine is a classic 
binary classification algorithm, which seeks the 
optimal linear decision surface between classes by 
minimizing structural risks (Zhang 2015). KNN is a 
super machine learning algorithm that uses 
autoregressive features and each form to classify 
various low alert states, which is better than quadratic 
discriminant analysis (QDA) and linear discriminant 
analysis (LDA) (Bhuvaneswari 2015). 

3.5 Evaluation Method  

We can calculate true positive (TP), false negative 
(FN), true negative (TN) and false positive (FP), so 
we can calculate performances of accuracy (AC), 
sensitivity (SE) and specificity (SP). For example: 

(%) 100TP TNAC
TP TN FP FN

+= ×
+ + +

 (1) 

(%) 100TPSE
TP FN

= ×
+

 (2) 

(%) 100TNSP
TN FP

= ×
+

 (3) 

In addition, because our test data is biased (the 
pressure-free interval is more than the pressure 
interval), it is important to have two parameters, 
namely, the balance accuracy (BA) and the geometric 
mean (GM), such as 

1(%) ( ) 100
2

TP TNBA
TP FN TN FP

= + ×
+ +

 (4) 

(%) 100TP TNGM
TP FN TN FP

= + ×
+ +

 (5) 

4 THE RECOGNITION OF 
DRIVER'S STRESS STATE 

This research carried out the following experiments. 
the first one is to extract 5 kinds of heart rate 
variability features, and then calculate 20 kinds of 
time-frequency domain features, and then input the 
heart rate variability features as training data into the 
classifier for training and evaluation. The second one 
is to extract 5 kinds of heart rate variability features, 
and then calculate 20 kinds of time-frequency domain 
features, and then input each time-frequency domain 
feature as training data into the classifier for training 
and evaluation. The difference between the two 
experiments is to focus on the characteristics of heart 
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rate variability and time-frequency domain 
characteristics. And the contribution of various 
features to the performance of the classifier is tested 
through the experiments. 

Experiment 1 uses various HRV features 
extracted by the heart rate variability analysis 
method, carries out training modeling and obtains 

experimental results. It can be seen from Table 2 that 
SDNN and RMSSD can get better recognition results, 
while RRI and pNN50 are slightly less effective, and 
features got by TP are the worst. This reflects that the 
sensitivity of these features has a high degree of 
discrimination for identifying the driver's stress state. 

Table 2: Driver status recognition results based on the characteristics of heart rate variability. 

HRV Classifier Accuracy 
AC (%) 

Sensitivity 
SE (%) 

Specificity 
SP (%) 

Balance  
accuracy 

BA (%) 

Geometric  
mean 

GM (%) 

MeanNN SVM 69.0  77.2  32.6  54.9  104.8  
KNN 75.0  81.9 41.2 61.6  111.0 

SDNN SVM 78.0  84.1 47.6 65.9  114.8 
KNN 77.0  83.1 49.5 66.3  115.1 

RMSSD SVM 72.0  78.7 47.2 62.9  112.2 
KNN 79.5  84.8 57.3 71.0  119.2 

TP SVM 69.0  75.4 49.2 62.3  111.6 
KNN 69.0  75.1 51.2 63.1  112.4 

pNN50 SVM 88.0  91.1 74.5 82.8  128.7 
KNN 89.0  91.8 77.3 84.6  130.1 

LF SVM 74.3  79.1 60.9 70.0  118.3 
KNN 72.7  77.3 60.9 69.1  117.5 

HF SVM 71.5  75.8 61.2 68.5  117.0 
KNN 75.6  79.4 66.1 72.8  120.6 

LF/HF SVM 89.0  91.3 82.0 86.6  131.6 
KNN 92.0  93.7 86.8 90.2  134.3 

 
Experiment 2 uses various HRV features extracted 

by the time-frequency analysis method, carries out 
training modeling and obtains experimental results. It 
can be seen from Table 3 that the model recognition 
accuracy of features such as mean, variance, mean 
square deviation, and maximum value is higher, 

which reflects that these features contain more 
discernable information about the driver's state. 
However, the Hurst index, skewness, kurtosis, Q1 
and other parameters have little effect on the 
performance of the recognizer, with the recognition 
rate at the range of 50%±5. 

Table 2: Driver status recognition results based on time-frequency characteristics 

Mathematical 
characteristics Classifier Accuracy 

AC (%) 
Sensitivity 

SE (%) 
Specificity 

SP (%) 
Balance 
accuracy 
BA (%) 

Geometric 
mean 

GM (%)

features 
SVM 98.6  99.1  91.5  95.3  138.0 

KNN 98.2  98.8  90.7  94.8  137.7 

mean 
SVM 96.0 97.4 78.9 88.2  132.8 
KNN 92.0  94.7  68.6  81.6  127.8 

median 
SVM 92.0  94.6  71.4  83.0  128.8 
KNN 95.0  96.6  81.8  89.2  133.6 

standard 
deviation (SD) 

SVM 94.0  95.9  80.6  88.3  132.9 
KNN 95.0  96.6  84.6  90.6  134.6 

variance 
SVM 91.0  93.6  76.9  85.3  130.6 
KNN 92.0  94.3  80.2  87.3  132.1 

Hurst index 
SVM 85.0  88.8  70.0  79.4  126.0 
KNN 86.5  89.8  73.5  81.7  127.8 
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Skewness 
SVM 89.0  91.7  78.4  85.1  130.4 
KNN 88.9  91.5  79.3  85.4  130.7 

Kurtosis 
SVM 87.1  89.9  77.7  83.8  129.5 
KNN 89.2  91.5  81.5  86.5  131.5 

power 
SVM 68.0  71.4  61.0  66.2  115.1 
KNN 70.5  73.7  64.0  68.8  117.3 

Root mean 
square(RMS) 

SVM 93.5  94.8  89.4  92.1  135.7 
KNN 94.4  95.5  91.1  93.3  136.6 

Approximate 
entropy 

SVM 84.3  86.5  79.3  82.9  128.7 
KNN 85.4  87.3  81.1  84.2  129.8 

 
5 CONCLUSION 

This study uses the ECG physiological signal data set 
to study the method of identifying the driver's stress. 
The results show that the features perform better in 
detecting the three categories of low pressure, 
medium pressure and high pressure, according to the 
results of the classifier, with classification accuracy 
rates at 93.1%, 96.6%, and 96.6%, respectively. With 
the improvement of ECG performance, other 
physiological signals can also be combined to 
improve the detection accuracy of low vigilance. In 
the future, vehicle and behavior-based methods can 
be combined with physiological methods to develop 
reliable detection methods of driver state. 
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