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Abstract: Preserving the quaternion unity norm has significant importance when combined with the extended Kalman 
filter (EKF) for state estimation of nonlinear systems perturbed by noise using noisy measurements. Although 
this unity challenge is solved numerically on the estimated quaternion, it is normalized out of the EKF 
algorithm. Projecting this constraint on the derivation of the EKF algorithm to preserve the quaternion unity 
norm is the purpose of this paper. The quaternion unity norm constraint is derived in two forms and projected 
on the EKF gain derivation. Then this gain is used to update the quaternion vector keeping its unity norm. 
The results show that the unity norm is preserved using the proposed constrained quaternion EKF (CQEKF) 
even though sudden changes occur. 

1 INTRODUCTION 

The state of art of estimation based on the extended 
Kalman filter EKF integrates the Bayesian approach 
with the observer theory. The system nonlinear model 
along with stochastic models form the EKF structure 
(Simon, 2006); (Grewal, 2001); (Maybeck, 1982). 
The time behavior of the system is described by the 
former while the later describe the noise properties.  
This  filter  is  used  extensively  in many applications 
(Ulrich, 2011); (Jassemi-Zargani, 2002); (Hedberg, 
2017); (Bussi, 2017); (Xu, 2018). The EKF works in 
two steps, the first one predicts the states of the 
nonlinear  system  based  on  the  previous  known 
states   and   input.   The   next   step   updates   the 
predicted states based on the measurement residual.  

In robotic applications, the quaternion 
representation combines the advantages of both Euler 
based orientation and direct cosine matrix 
representations (Phuong, 2009). Therefore it is used 
for orientation representation. However, it is used 
with the constraint of unity norm (Murray, 1994).  

Quaternion based Kalman filters are reported in 
the literature (Choukroun, 2006); (Kim, 2004); (Suh, 
2010). The quaternion EKF is implemented for rigid 
body orientation estimation based on the 
measurements of  the  angular velocity (Hashlamon,  
2010). The quaternion vector forms the EKF states. 
However, the quaternion is constrained to unity norm 
which is not preserved by the EKF (Leffert, 1982). To 
overcome this problem, numerical techniques are 

applied on the post estimated quaternion to maintain 
its unity norm after the estimation is finished . 
However, this is an approximation and the constraint 
is not included into the filter derivation. Kalman 
filtering with state constraints is reported in (Simon, 
2009). 

This paper proposes a systematic method of 
including the unity norm constraint into the filter 
derivation to form the constrained quaternion 
extended Kalman filter (CQEKF). The constraint is 
derived in two forms. Then the EKF gain is derived 
based on minimizing the state covariance subjected to 
the given constraint. 

The rest of the paper is organized as follows: The 
conventional EKF is introduced in section II. The unit 
quaternion is in section III. The model derivation is in 
section IV. The problem is defined in section V. The 
CQEKF derivation is in section VI The results are 
presented in section VII and the paper is concluded in 
section VIII. 

2 CONVENTIONAL EKF AND 
DESIGN ASSUMPTIONS 

Consider the discrete-time nonlinear state space 
model 

 ( )1 1 1 1,k k k k kx f x u υ− − − −= + Φ , (1) 
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 kk kHxy v= + , (2) 
where 𝑥 ∈ ℝ  is the vector of states, u  is the 

input, 𝑦 ∈ ℝ  represents the measurement vector, 
and k  is the time index.𝜐 ∈ ℝ  and 𝑣 ∈ ℝ  are the 
Gaussian process and measurement noises with 
covariances Q  and R  respectively. It is assumed 
that they are independent and uncorrelated. 𝛷 ∈
ℝ ×  maps the noise to the states space. H  is the 
output matrix and given as [ ]4 4 3H I ×≡ 0 . 4I  is 
identity matrix of size four and 4 3×0  is 4 3×  zero 
matrix.  

Then for the given system in (1), the conventional 
EKF algorithm is composed of two steps: 

The prediction step 

 ( )1 1ˆ ˆ ,k k kx f x u−
− −= , (3) 

 1 1 1 1 1 1
T

k k k k
T

k k kP A P QA−
− − − − − −= + Φ Φ , (4) 

where 

 
1 1

1
ˆ ,k ku

k
xx

A f

− −

−
∂=
∂

, (5) 

x̂  and P  are the posterior estimated state and the 
estimation error covariance matrix respectively. x̂−

and P − are the prior estimates.  
The measurement update step updates the 

estimates using the measurement residual e and 
Kalman gain K as  

 ˆ ˆk k k kx x K e−= + , (6) 

where K   

 1T
k k kK P H S− −= , (7) 

and 

 ˆk k ke Y Hx−= − , (8) 

 Y  is the measurement vector with the same 
dimension as y  and S  is 

 T
k k kS HP H R−= + , (9) 

The time update of P  is given by 

 ( )k k kP I K H P−= − , (10) 

where I is the identity matrix, and The Kalman 
gain in (7) can be expressed as 

 1T
k k kK P H R−=   (11) 

3 UNIT QUATERNION 

The quaternion is a four elements vector, one element 
is scalar represented by 0q R∈  and the remaining 
three elements form a vector represented by 3n R∈ . 
The quaternion is written mathematically as  

0q n= +q   (12) 

or can be extended using the three imaginary axes 
ˆ ˆ, ,i j and k̂ as  

 
[ ]

0 1 2 3

0 1 2 3

ˆˆ ˆ k
T

q q i q j q

q q q q

= + + +

≡

q
 (13) 

The quaternion norm is 

 
3

2 2
2

1
i

i
q q

=

=  (14) 

For rigid bodies, representing the rotations and 
orientation is of significant importance. The 
quaternion q  subjected to the constraint of unit 2

2

norm ( 2

2
1=q ) is employed to represent the 

orientation of a rigid body with respect to a reference 
frame (Murray, 1994). This necessitates deriving the 
quaternion model. 

4 MODEL DERIVATION 

There is a direct relation between the measured 
angular velocity 𝜴 ∈ ℝ  and the quaternion time 
derivative q . This relation utilizes the quaternion 
multiplication ⊗  as 

 ⊗q = q Ω . (15) 

However, the measured angular velocity has bias 𝒃 ∈ ℝ and contaminated white zero mean noise 𝒗 ∈
ℝ  (Roetenberg, 2006) 

 Ω = ω+ b + v , (16) 

where ω is the true angular velocity and b  is 
given by 

 1 , 1k k b k− −= +b b v . (17) 

where 𝒗 ∈ ℝ  is white zero mean noise. 
Equation (15) is nonlinear and perturbed by noise. 

Therefore the EKF is employed to estimate the 
quaternion and bias.  
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Define the state vector as 
TT T

k k kx  ≡  q b , then 
after mathematical manipulation and discretization, 
the model (1) is obtained with 

 4 1 1 1
1 1

1

1 ( )
( , ) 2 k k k

k k

k

I T
f x u − − −

− −

−

  + −  ≡   
  

F Ω b q

b
,

 (18) 

 1
1

, 1

k
k

b k

υ −
−

−

 
≡  
 

v
v

, (19) 

where 

 

0 - - -
0 -

( )
- 0

- 0

x y z

x z y

y z x

z y x

λ λ λ
λ λ λ

λ
λ λ λ
λ λ λ

 
 
 =
 
 
  

F , (20) 

and 

 

1 2 3

0 3 2
4 3

3 0 11

2 1 0 1

3 3 3

1
2k

k

q q q
q q q

T
q q q
q q q

I

×
−

−

×

 − − −  
  −  −  −Φ =
  −  
 
 

0

0

.

 (21) 

This model is used in the EKF algorithm and the 
quaternion q  is considered to be the output. 

5 PROBLEM DEFINITION 

Maintaining the quaternion unity norm during the 
estimation is a challenge. The conventional EKF does 
not preserve this constraint. In the previous studies, 
this challenge is solved numerically by normalizing 
the posterior estimates q̂  out of the EKF algorithm as 
in 

 
2
2

ˆˆ
ˆN = qq
q

, (22) 

or as reported in (Hashlamon, 2010) 

 ( )2

2
ˆ ˆ ˆ ˆ1N = + −q q q q , (23) 

where ˆ Nq is the normalized estimated quaternion 
vector. It is a low cost method of unity preserving 
done out of the EKF algorithm. Here the unity norm 

constraint is projected on the Kalman gain derivation 
and included into the EKF algorithm. 

6 CQEKF DERIVATION 

The unity norm of the estimated quaternion q̂ is given 
as  

 ( )
3

2 2
2

0

ˆ ˆ ˆ 1i
i

f q
=

= = =q q , (24) 

however, q̂  is unknown before the updating step 
in the EKF. The best known quaternion vector is the 
predicted quaternion vector ˆ k

−q  obtained from (3). 
Then (24) can be written in terms of ˆ k

−q  as 

( ) 2

2
ˆ ˆ 1f − −= =q q and linearized about ˆ k

−q  using 

Taylor series in two forms.  
The first form is 

( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆ 1k k k k kf f f− − − − −= + − =q q q q q . (25) 

then (25) can be simplified as   

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ1k k k k kf f f− − − − −= − +q q q q q  , (26) 

which has only ˆ −q  as unknown, (26) is written as  

ˆ kG d− =q , (27) 

where 

( ) ( )
( ) 0 1, 2 3

ˆ
ˆ ˆ ˆ ˆ ˆ2

ˆ
k

k k
k

f
G f q q q q

−
− − − − −

−

∂
 = = =  ∂

q
q

q
 , (28) 

and  

( )
3 2

0

ˆ1 i k
i

d q−

=

= + .     (29) 

The second form used the previous known value of 
the estimated quaternion as  

 ( ) ( ) ( )( )1ˆ ˆ ˆ ˆ ˆ 1k k k k kf f f− − − −
−= + − =q q q q q . (30) 

then (30) can be simplified as   

 ( ) ( ) ( ) 1ˆ ˆ ˆ ˆ ˆ1k k k k kf f f− − − −
−= − +q q q q q  , (31) 
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For this case, G  and d  in (27) are as expressed as in 
(28) and 

 ( )
3 2

1
0

ˆˆ1 i kk
i

d q G−
−

=

= − + q . (32) 

respectively. 
The gain in (7) is the solution of (33) 

( ) ( )arg min
k

T
k k k k k

k TK
k k k

I K H P I K H
K Tr

K R K

− − −
 =
 + 

,

 (33) 

In the same way, minimizing (33) subjected to the 
constraint ˆ kG d− =q  yields to the constraint system 

Kalman gain kK


  

 
3 4

k
k kK K

δ

×

 
= −  

 0


, (34) 

where kK is given in (7) and δ is  

( ) ( ) ( )1 11 1ˆT T T T
k k k k k k kG GG G d e S e e Sδ

− −− − −= −q . (35) 

where d  is as in (29) or (32). 

As a final estimation, the CQEKF has the 
equations(3)-(9) and 

 1T
k k k kK P H S− −= , (36) 

 
3 4

k
k kK K

δ

×

 
= −  

 0


, (37) 

 0 0

3 1 0 0

1 ˆ ˆ
ˆ ˆ ˆ

T

k
q q n n

e
q n q n n n

− −

− − −
×

 + 
= −    − − ×   0

, (38) 

 ˆ ˆk k k kx x K e−= +


, (39) 

 ( )k k k kP I K H P−= −


, (40) 

where [ ]0
Tq n≡q   is considered as the 

measured quaternion. The zero error in quaternion 
means that both of the quaternions, the measured and 
the estimated, are coinciding on each other and in the 
same direction i.e. 0 0ˆ ˆ 1Tq q n n+ =  and 

0 0 3 1ˆ ˆ ˆq n q n n n ×− − × = 0 . Accordingly, ke  in 
quaternion representation is as in (38).  

The derived CQEKF can be projected directly on 
the adaptive EKF proposed in (Hashlamon,2020). 

7 RESULT 

In this part, the CQEKF is tested. MATLAB Simulink 
is used as an experimental platform. The noise with 
the specified covariance matrices are generated using 
the Simulink Gaussian noise generator. The input u  
in (1) is the measured angular velocity Ω . To form 
Ω , the bias and process noise with covariance Q  are 
added to ω . The measured vector Y in (8) has 
contaminated noise with covariance ... The model 
equations (18) -(21) are used to form the CQEKF 
algorithm. The true bias values are generated based 
on time t  as in (41) . 

 

[ ]
[ ]
[ ]

0.5 0.1 0 20

1 2 1 20 50

0 0 2

T

T

T

t

t

else

 ≤


= < ≤



b . (41) 

The initialization, simulation parameters, and the 
corresponding constants values are listed in Table 1. 
The experiment duration is 500 sec. The performance 
of the CQEKF displays its ability to preserve the 
quaternion constraint as depicted in Fig. 1. This also 
shows that though sudden changes in the bias take 
place, the norm still unity. Both forms in (28), (29) or 
(32) show the same steady state behavior.  

Table 1: Initialization and simulation parameters. 

Parameter Value 
T  0.01 sec 
R  6

410 I−  
Q 2

610 I−  

0P  710 I  

0q  [ ]0.5 0.5 0.5 0.5 T
 

0b  [ ]0 0 0 T
 

 

 
Figure 1: The estimated quaternion norm error. 
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8 CONCLUSIONS 

A constrained quaternion extended Kalman filter 
CQEKF is proposed. The norm constraint is projected 
on the derivation of the EKF gain. Two forms of the 
constraint are obtained, both have the same effect. 
The obtained CQEKF preserves the unity norm 
constraint for the quaternion during the running of the 
algorithm. The results show that unity norm is 
preserved even sudden changes to the states may 
occur. 
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