

State Management of API Web Service using Redux on React
Native App

Miftachudin, Muhammad Khoirul Hasin and Afif Zuhri Arfianto
Mechanical Engineering, Politeknik Perkapalan Negeri Surabaya, Surabaya, Indonesia

Keywords: Redux, React Native, State Management, API Web Service.

Abstract: There are two data types which control components in the React Native framework, props and state. React
Native uses state and it often raises problems in client-side applications. The state changes of the enterprise
application component leads to collisions between the states. To avoid these collisions, it is necessary to
have a management state. Whereas, Redux is the most widely used state management for Javascript based
applications, for instance; framework React Native. This study is to discuss comprehensive processes to
make React Native-Redux application. The first step is to discuss some ways to make component in React
Native. To obtain the data from API web service data sources, applying library third-party React Native is
taken. Data which is resulted from the source stored in Redux state. Then it will be discussed deeply how to
manage more than one state that is in a different component. The results of this study are in the form of an
Android application using the Redux management state. The application runs normally when tested using an
Android emulator from Android Studio. The data displayed matches the defined action type.

1 INTRODUCTION

There are two types which control the component at
React Native framework, props and state. Props is
set by immutable application. However, for data
which has mutable value, React Native uses state
(Facebook, 2019). Mostly, state produces problems
for client-side application. The state changes at the
enterprise application component lead to collision
between states. To avoid the collision, it requires
state management. The most state management used
for Javascript- based application is Redux, for
instance, React Native framework (B. Alex, et al,
2017).

In Github, the definition of Redux is a
predictable state container (D. Abramov, 2019).
This means that any change in state can be easily
identified. Redux will first save the actions of states
in one container so that they are informed to other
states to adjust the order of the change reaction. For
more details, the role of Redux in an application,
namely:1) state changes will be made the time,
place, and sequence should 2) state changes are only
made by one person in charge (read: redux) 3) when
there is a change, all states will receive information
to adjust the reaction. 4) when there is an error in the

state, Redux can immediately fix it (D. Abramov,
2015). In this study the data source used is from the
web service API provided by Github. The format
uses a shared data format in the form of JSON
(JavaScript Object Notation).

There are several studies that have discussed
Redux, those are: Matthias Kevin Caspers who
explained the relationship of React (not React
Native) and Redux, he explained only the elements
used in Redux without any more comprehensive
explanation on how to apply it in React (M. K.
Casper, 2017). Wenhao Wu only explained the
principle of Redux and compared it with other state
management, namely Mobx (Wu, 2018). Mikael
Nordström created a bug report tool to diagnose the
state in the React Native third-party library (M.
Nordström, 2018). However, this study discusses
comprehensive some steps to create a Redux React
Native application. First is to discuss how to create
components in React Native. To retrieve data from a
web service API data source, the next step is to
implement a React Native third-party library. Data
generated from these sources, stored in a state where
the state is managed by Redux. Deeper, will be
discussed how to manage more than one state that is
in a different component.

Miftachudin, ., Khoirul Hasin, M. and Zuhri Arfianto, A.
State Management of API Web Service using Redux on React Native App.
DOI: 10.5220/0010966700003260
In Proceedings of the 4th International Conference on Applied Science and Technology on Engineering Science (iCAST-ES 2021), pages 1425-1430
ISBN: 978-989-758-615-6; ISSN: 2975-8246
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

1425

2 REACT NATIVE

React Native is a Javascript framework used to
create mobile applications using web technology.
This Facebook framework is a development of a
web framework that was first released, React
(without Native). This mobile framework makes it
easy for developers who have been usually with web
programming to build a mobile user interface.
Unlike hybrid frameworks, such as Ionic, although it
is Javascript, React Native is truly native in terms of
user experience. To create a user interface, React
Native has JSX components such as View, Text, and
Image which are directly attached to the native
platform. In addition, once developing an
application based on React Native, the developer can
simultaneously deploy it to two mobile operating
systems, Android and iOS.

There are two ways to install React Native, Expo
CLI and React Native CLI. In this study, the
installation uses the React Native CLI method, using
the Mac OS operating system with a choice of
applications in the form of Android. To get started,
Node must first be installed on the desktop. Like
native applications, Android development requires
an Android emulator found in Android Studio or an
Android mobile phone to run the results of its
development.

3 API WEB SERVICE

API (Application Programming Interface) web
service is a group of protocols and standards that
allow the exchange of data between systems or
applications (RapidApi, 2019). Github provides API
web service which is free used by anyone.
Developers can directly interact by accessing the
interface in the form of a URL with a basic URL
https://api.github.com/. By adding the URL segment
that Github has specified in its documentation
(https://developer.github.com/v3/) (Github, 2019),
the developer can obtain data in the form of JSON.
To be able to access, the application in this study
uses a third-party library for React Native that is
axios.

4 JSON

JSON (JavaScript Object Notation) is small data
exchange format, easy to read and write by humans,
and easy to translate and generated by a computer

(D. Crockford, 2019). This Javascript format allows
communication between machines or applications in
one standard. JSON structures can be objects (key
and value pairs), arrays, and a combination of
objects and arrays. The example can be seen in
Table 1.

In this study, JSON is taken from the Github web
service API at the GET /users / ${user_name}/ repos
and GET/ repos/ $ {user_name} /$ {repo_name}
endpoints. Each endpoint aims to get the entire data
repository from a particular user and get one specific
repository detail on that user. Each data display can
be seen in Table 2 and Table 3 (Github, 2019).

Table 1: Example of JSON Structure.

Types Structure Remark
object {"key0":0,"key1":1,"k

ey2":2}
key0, key1, and key2
are key which have
value 0, 1, and 2

array [0,1,2] It is like array
structure in general

object
+ array

[{"key00":0,"key01":1
,"key02":2},
{"key10":0,"key11":1,
"key12":2}]

JSON consists of two
objects, each object is
in brackets separated
by commas

Table 2: Illustration of Data Endpoint GET.
/USERS/${USER_NAME}/REPOS

GET /users/relferreira/repos
[
 {
 "id": 63728367,
 "node_id":
"MDEwOlJlcG9zaXRvcnk2MzcyODM2Nw==",
 "name": "angular2-webpack-
starter",
 …………
 "owner": {
 "login": "relferreira",
 ………… },
 "html_url":
"https://github.com/relferreira/angu
lar2-webpack starter",
 …………
 "license": {
 "key": "mit",
 "name": "MIT License",
 ………… },
 "forks": 0,
 …………
 },
 {
 "id": 100611195,
 "node_id":
"MDEwOlJlcG9zaXRvcnkxMDA2MTExOTU=",
 "name": "apollo-server",
 …………
 "owner": {
 "login": "relferreira",
 …………
 },

iCAST-ES 2021 - International Conference on Applied Science and Technology on Engineering Science

1426

 "html_url":
"https://github.com/relferreira/apol
lo-server",
 …………
 "license": {
 "key": "mit",
 "name": "MIT License",
 ………… },
 "forks": 0,
 …………
 },
…………]

Table 3: Illustration of Data Endpoint GET.
/repos/${user_name}/${repo_name}

GET /repos/relferreira/angular2-webpack-starter
{
 "id": 63728367,
 "node_id":
"MDEwOlJlcG9zaXRvcnk2MzcyODM2Nw==",
 "name": "angular2-webpack-
starter",
 …………
 "owner": {
 "login": "relferreira",
 …………
 },
 "html_url":
"https://github.com/relferreira/angu
lar2-webpack-starter",
 …………
 "license": {
 "key": "mit",
 "name": "MIT License",
 …………
 },
 "forks": 0,
 …………
 "parent": {
 "id": 31829770,
 "node_id":
"MDEwOlJlcG9zaXRvcnkzMTgyOTc3MA==",
 …………
 "owner": {
 "login": "PatrickJS",
 …………
 },
 "html_url":
"https://github.com/PatrickJS/angula
r-starter",
 "description": ":tada: An
Angular Starter kit featuring
Angular (Router, Http, Forms,
Services, Tests, E2E, Dev/Prod, HMR,
Async/Lazy Routes, AoT via ngc),
Karma, Protractor, Jasmine,
Istanbul, TypeScript, TsLint,
Codelyzer, Hot Module Replacement,
@types, and Webpack",
 …………
 "license": {
 "key": "mit",
 "name": "MIT License",
 …………
 },
 "forks": 5361,
 "open_issues": 83,
 …………

 },
 "source": {
 "id": 31829770,
 "node_id":
"MDEwOlJlcG9zaXRvcnkzMTgyOTc3MA==",
 "name": "angular-starter",
 …………
 },
 "html_url":
"https://github.com/PatrickJS/angula
r-starter",
 "description": ":tada: An
Angular Starter kit featuring
Angular (Router, Http, Forms,
Services, Tests, E2E, Dev/Prod, HMR,
Async/Lazy Routes, AoT via ngc),
Karma, Protractor, Jasmine,
Istanbul, TypeScript, TsLint,
Codelyzer, Hot Module Replacement,
@types, and Webpack",
 …………
 "license": {
 "key": "mit",
 "name": "MIT License",
 …………
 },
 "forks": 5361,
 "open_issues": 83,
 ………… },
 "network_count": 5361,
 "subscribers_count": 1
}

5 REDUX

Redux is a predictable container state for the
Javascript app. Usually for state management, React
uses Redux. Likewise the React family, which is
used to develop mobile applications, namely: React
Native, pairs Redux so that the statistics are well
managed.

Some reasons that require using Redux include:
1) in the application a lot of data changes occur all
the time 2) the developed application needs a place
to store the entire state 3) top-level component is no
longer sufficient to maintain the whole state.

The overall process of Redux management state
with API web service is illustrated in Figure 1.

There are five main components in Redux
according to the illustration, namely Actions, API,
Store, Reducer, and View. Actions are functions that
change state. Actions are Javascript objects so
Actions must have a type. Because the state has
value, in this study the value comes from the API
(Github API web service) which is processed using
the help of middlewares from axios.

The Dispatcher method sends Actions to the
Store for safekeeping and provides information to
other states that a new state will be processed.
Reducer acts as a component that changes state to

State Management of API Web Service using Redux on React Native App

1427

new state. Reducer accepts two parameters, namely
state and Actions from Dispatcher. Reducers process
actions according to their type. Furthermore, in
View, Redux is integrated so that the View
component responds every time a state changes.

Figure 1: Five main components at Redux by illustration,
Actions, API, Store , Reducer, and View.

6 EXPLANATION

This study does not discuss the details of React
Native, so readers must ensure they understand
React Native. After installing React Native, create a
directory like in Table 4. This study creates two
views stored in /app/pages. In View RepoPage.js
uses JSX <FlatList /> while RepoInfoPage.js uses
only <Text></Text> to display the data. To connect
both of them, this application uses react-navigation,
when the user clicks the list of data displayed in
RepoPage.js then the system goes to RepoInfo
Page.js.

Before the Dispatcher method sends Actions and
states to View, all Reducers in the / app / reducers
folder are combined into one Reducer to become
rootReducer in /app/reducers/index.js, then stored in
the Store defined in /App.js and informs other states
that there will be new states. Of course, each of
these views has a Dispatcher method.

By using the Dispatcher method found in View,
each Reducers accepts Actions and states. Each
Actions is stored in/ app/ actions. While all types of
actions are defined in the folder/ app constants. The
State in Actions stores data that comes from API
web service. The API is accessed using axios. In
order for the axios to be integrated with Redux, in
the Store axios middleware is applied. The next
discussion will be detailed with one example on
each component of Redux.

6.1 Type

There are three types of state in constants owned by
RepoReducer, those are GET_REPOS, GET_
REPOS_SUCCESS, and GET_REPOS_FAIL.

/app/contants/repo.js
export const GET_REPOS = 'my-

awesome-app/repos/LOAD';
export const GET_REPOS_SUCCESS =

'my-awesome-app/repos/LOAD_SUCCESS';
export const GET_REPOS_FAIL = 'my-

awesome-app/repos/LOAD_FAIL';

6.2 Actions

A provided type is imported to Actions, but the type
taken is only GET_REPOS type to request data from
endpoint /user/${user}/repos. This action is defined
in listRepos function.

/app/actions/RepoAction.js
import {GET_REPOS} from

'../constants/repo';

export function listRepos(user) {
 return {
 type: GET_REPOS,
 payload: {
 request: {
 url: `/users/${user}/repos`
 }
 }
 };
 }

6.3 Reducers

Reducers defined in the RepoReducer function have
state and Actions in their parameters. Absolutely,
each type that is imported has its own new state.

/app/reducers/RepoReducer.js
import {GET_REPOS,

GET_REPOS_SUCCESS, GET_REPOS_FAIL }
from '../constants/repo';

const initialState = {data: []};
export default function

RepoReducer(state = initialState,
action) {

 switch (action.type) {
 case GET_REPOS:
 return { ...state, loading:

true };
 case GET_REPOS_SUCCESS:
 return { ...state, loading:

false, data: action.payload.data };
 case GET_REPOS_FAIL:
 return { ...state, loading:

false, error: 'Error getting repos
info' };

 default:
 return state;
 }
 }

iCAST-ES 2021 - International Conference on Applied Science and Technology on Engineering Science

1428

Reducers that have been made are combined into
one in the combineReducers function. In this study,
there are two Reducers namely: RepoReducer and
RepoInfoReducer.

/app/reducers/index.js
import { combineReducers } from

'redux';
import RepoReducer from

'./RepoReducer';
import RepoInfoReducer from

'./RepoInfoReducer';

export default combineReducers({
 RepoReducer, RepoInfoReducer
});

6.4 Stores

Store defined by createStore function which has
Reducers and Middleware parameter. Reducers
imported into these parameters are Reducers that
have been combined into one while Middleware
imported is axios middleware which contains a root
endpoint on github (https://api.github.com).
Furthermore, the Store is imported in the Provider
which acts as the only one that regulates the state in
the application.

/app/App.js
import React, { Component } from

"react";
import { View, Text, StyleSheet,

Image, TouchableOpacity, FlatList }
from "react-native";

import {createAppContainer,
StackNavigator } from 'react-
navigation';

import {createStackNavigator} from
'react-navigation-stack';

import RepoPage from
'./app/pages/RepoPage';

import RepoInfoPage from
'./app/pages/RepoInfoPage';

import { createStore,
applyMiddleware } from 'redux';

import { Provider, connect } from
'react-redux';

import reducer from
'./app/reducers';

import axios from 'axios';
import axiosMiddleware from 'redux-

axios-middleware';

const client = axios.create({
 baseURL: 'https://api.github.com',
 responseType: 'json'
});

const store = createStore(reducer,
applyMiddleware(axiosMiddleware(client)

));

const MainNavigator =
createStackNavigator({

 Repo: {screen: RepoPage,

navigationOptions: {
 header: null
 }
 },
 RepoInfo: {screen: RepoInfoPage,

navigationOptions: {
 header: null
 }
 }
});
const Navigation =

createAppContainer(MainNavigator);

class App extends Component {
 render() {
 return (
 <Provider store={store}>
 <View

style={styles.container}>
 <Navigation />
 </View>
 </Provider>
);
 }
}

// here cut code style

export default App;

6.5 Views

Every time a change occurs, the state is mapped and
dispatched with the Dispatcher method contained in
View on mapStateToProps and mapDispatchTo
Props, both of which are connected to Redux using
the connect function.

/app/pages/RepoPage.js
import React, { Component } from

'react';
import { View, Text, StyleSheet,

FlatList, TouchableOpacity } from
'react-native';

import { connect } from 'react-
redux';

import { listRepos } from
'../actions/RepoAction';

class RepoPage extends Component{
 componentDidMount() {

this.props.listRepos('relferreira');
 }
 renderItem = ({ item }) => {
 const {navigate} =

this.props.navigation;
 return (

State Management of API Web Service using Redux on React Native App

1429

 <View style={styles.item}>
 <TouchableOpacity

onPress={() => navigate('RepoInfo',
{user: 'relferreira', repo:
item.name})}>

 <Text>{item.name}</Text>
 </TouchableOpacity>

 </View>
);
 }
 render(){
 const { data, loading } =

this.props;
 if(loading) return

(<View><Text>Loading...</Text></View>);
 return (
 <FlatList

styles={styles.container}
 data={data}
 keyExtractor={(item) =>

item.node_id}

renderItem={this.renderItem}
 />
);
 }
}
// here cut code style

const mapStateToProps = (state) => {
 return {
 data: state.RepoReducer.data,
 loading:

state.RepoReducer.loading
 };
}
 const mapDispatchToProps = {
 listRepos
 };

export default
connect(mapStateToProps,
mapDispatchToProps)(RepoPage);

7 CONCLUSION

The result of the study is Redux-Android
Application. This application runs normally when
tested using an Android emulator from Android
Studio. When the data in the process of loading the
Actions RepoAction.js retrieved is of type
GET_REPOS, but when the data is successfully
loaded Actions, the data taken are of type
GET_REPOS_SUCCESS.

After all the data appears in the RepoPage.js
View, the author clicks on one of the data
repositories, the system transitions the page to
RepoInfoPage.js and brings up the data in the
RepoInfoAction.js Actions. It can be seen in figure 2.

Figure 2: The left side is View from RepoPage.js while the
right side is View from RepoInfoPage.js

REFERENCES

Facebook. (2019). React Native. Facebook, [Online].
Available: https://facebook.github.io/react-native/.

B. Alex and P. Eve, Learning React: Functional Web
Development with React and Redux, California:
O'Reilly, 2017.

D. Abramov. (2019). Redux. [Online]. Available: https://
github.com/reduxjs/redux

D. Abramov. (2015). Redux. [Online]. Available: https://
redux.js.org/.

M. K. Casper. (2017). React and Redux. Ausarbeitungen
zum Seminar Rich Internet Applications w/HTML and
Javascript.

W. Wu. (2018). React Native vs Flutter, cross-platform
mobile application framework. Metropolia University
of Applied Sciences.

M. Nordström (2018). Diagnostic tool for React Native –
Reporting application state. Linköping University |
Department of Computer and Information Science
Bachelor thesis, 16 ECTS | Innovativ Programmering.

RapidApi. (2019). API vs Web Service: What’s the
Difference?. 14 February 2019. [Online]. Available:
https://rapidapi.com/blog/api-vs-web-service/.

Github. (2019). Github Developer Guide Rest Api V3.
Github, [Online]. Available: https://developer.github
.com/v3/.

D. Crockford. (2019). Introduction JSON. [Online].
Available: https://www.json.org/json-en.html.

M. Zabriskie. (2019). Promise based HTTP client for the
browser and node.js. [Online]. Available: https://
github.com/axios/axios.

M. Eric and F. Jacob. (2017). Mastering React Native,
Birmingham: Puck Publishing.

iCAST-ES 2021 - International Conference on Applied Science and Technology on Engineering Science

1430

