Multi-Objective Bees Algorithm for Feature Selection

Natalia Hartono^{1,2}^{1,2}

¹Department of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. ²Department of Industrial Engineering, University of Pelita Harapan, MH Thamrin Boulevard 1100, Tangerang, Indonesia

Keywords: Bees Algorithm, Classification, Feature Selection, Machine Learning, Multi-objective.

Abstract: In machine learning, there are enormous features that can affect learning performance. The problem is that not all the features are relevant or important. Feature selection is a vital first step in finding a smaller number of relevant features. The feature selection problem is categorised as an NP-hard problem, where the possible solution exponentially surges when the number of n-dimensional features increases. Previous research in feature selection has shifted from single-objective to multi-objective because there are two conflicting objectives: minimising the number of features and minimising classification errors. Bees Algorithm (BA) is one of the most popular metaheuristics for solving complex problems. However, none of the previous studies used BA in feature selection using a multi-objective approach. This paper aims to present the first study using the Multi-objective Bees Algorithm (MOBA) as a wrapper approach in feature selection. The MOBA developed for this study using basic combinatorial BA with combinatorial of swap, insertion and reversion as local operators with Non-Dominated Sorting and Crowding Distance to find the Pareto Optimal Solutions. The performance evaluation using nine Machine Learning classifiers shows that MOBA performs well in classification. Future work will improve the MOBA and use larger datasets.

1 INTRODUCTION

The main issue in machine learning and data mining is that there are immense features that are often redundant and unrelated that lead to poor performance of classification accuracy (Hammami et al., 2019; Al-Tashi et al., 2020a; Jha and Saha, 2021). The curse of dimensionality is a term coined by Gheyas and Smith (2010) to describe a large number of features (dimension) that leads to a large search space size even though not all of the features are relevant. To handle this problem, the researcher uses feature selection. Researchers emphasise the benefit of feature selections: reducing redundant data, improving accuracy, and reducing the complexity of the algorithm, thus increasing the algorithm training speed (Xue et al., 2015; Hancer et al., 2018; Al-Tashi et al., 2020a). Feature selection is known as an NPcomplete problem (Gheyas and Smith, 2010). Albrecht (2006) provide the mathematical proof of NP-complete of this feature selection problem. The possible feature subsets are 2ⁿ with n features, which is unrealistic to find the best subset using an

exhaustive search (Gheyas and Smith, 2010; Hancer et al., 2018).

There are four known methods for feature selection: filter method, wrapper method, hybrid method, and embedded method (Jha and Saha, 2021). The most widely used methods are the filter and wrapper method. The difference between the filter and wrapper lies in evaluating feature subsets, where the wrapper uses classifiers in the evaluation process (Al-Tashi et al., 2020a). Xue et al. (2015) point out that the wrappers method is slower than filters but yields better classification performance. Similarly, other researchers also noted that the wrapper yields more promising results than the filter approach (Jimenez et al., 2017; Hancer et al., 2018; Hammami et al., 2019). In addition, in their multi-objective feature selection systematic literature review, Al-Tashi et al. (2020a) reports that 84% of the articles use the wrapper method, whereas 13% and 2% use the filter method and hybrid method, respectively. Adding to that, they also identify that the wrapper method is exceptionally preferred by the researchers because of the better performance compared to the filter method.

^a https://orcid.org/0000-0003-2314-1394

358

Hartono, N. Multi-Objective Bees Algorithm for Feature Selection. DOI: 10.5220/0010754200003113 In Proceedings of the 1st International Conference on Emerging Issues in Technology, Engineering and Science (ICE-TES 2021), pages 358-369 ISBN: 978-989-758-601-9 Copyright © 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Initial research for feature selection uses a singleobjective (SO) approach; however, the multiobjective (MO) approach has gained attention in recent years due to the ability to yield trade-off solutions between two objectives (Wang et al., 2020). In the literature review, the researcher has argued that feature selection has at least two conflicting objectives, for example, minimising the error rate of classification and minimising the number of features (Vignolo et al., 2013; Kozodoi et al., 2019; Al-Tashi et al., 2020b). The MO approach is different from SO because the best solution for one objective may not be the best solution for the other objectives. The MO approach gives different solutions that give trade-off that balance between the objectives. Xue et al. (2015) also compare the single-objective and multi-objective approaches and concludes that multi-objective is preferred over single-objective.

As explained earlier, it is impractical to search for all possible solutions to find the best solution; the use of metaheuristic in feature selection has attracted the attention of researchers. Metaheuristics are wellknown for their ability to find a near-optimal solution in a shorter computational time, and they have been used in numerous studies. For example, Genetic Algorithm and Particle Swarm Optimisation and its MO version Non-dominated Sorting Genetic Algorithm (NSGA-II) and MO-PSO are popular metaheuristics used in feature selection. Regarding the metaheuristic technique, one of the populationbased metaheuristics with a robust solution in the continuous and combinatorial domain is Bees Algorithm (BA). BA, inspired by the foraging activity of honeybees to find nectar sources, was introduced by Pham et al. (2005) and gained popularity due to its ability to solve complex problems in faster computational time and wide application in engineering, business, bioinformatics (Yuce et al., 2013; Hussein et al., 2017).

BA was used to solve SO feature selection. From 2007 to 2021, sixteen previous research articles are used single-objective BA for feature selection. The first research of single objective BA for feature selection is in semiconductor manufacturing by Pham et al. (2007), and the latest research in liver disease case study by Ramlie et al. (2020). However, to date, there is no single research using multi-objective BA for feature selection. Hancer et al. (2018) also point out in their study that multi-objective research for feature selection is still in its early stages. Similar to that, Kozodoi et al. (2019) said that the literature on MOFS is lacking. Al-Tashi et al. (2020) supported this view in their systematic literature review of multi-objective feature selection (MOFS); they

provide 38 articles from 2012 to 2019. Further literature search to find new articles until April 2021 shows that no previous studies use MOBA; thus, MOBA's potential for MOFS has not been investigated. The previous studies in MOFS and the research position of this study are depicted in Table 1.

Initially, BA's development is in the continuous domain and yields good results because of the balance between local and global search architecture; however, in the combinatorial domain, the approach is different due to different neighbourhood concepts; thus, it needs a different approach in the local search operator (Koc, 2010). Koc (2010) developed the combinatorial BA using simple-swap and insertion as local search operator with application in a single machine scheduling problem. Ismail et al. (2020) improve the local search operator using swap, reverse, and insertion with the Travelling Salesman Problem (TSP). The results show that the best local search operator uses a combination of those three operators (swap, reverse and insertion) rather than using single operators. This version developed by Ismail et al. (2020) is called basic combinatorial BA. The second application of basic combinatorial BA in Vehicle Routing Problem by Ismail et al. (2021). Zeybek et al. (2021) improved the combinatorial BA called VPBA-II using the Vantage Point (VP) strategy proposed by Zeybek and Koc (2015). The VPBA-II put the Vantage Point Tree (VPT) in the initial solution and global search while keeping the same local search operator with previous research by Ismail et al. (2020). The difference between the basic combinatorial BA and VPBA-II lies in the initial solution and global search architecture, where the former uses random permutation while the VPBA-II uses VPT.

The current work is the first study using the Multiobjective Bees Algorithm (MOBA) for feature selection. The aim is to use a wrapper method using MOBA for better classification with Pareto Optimal Solutions that reduces the number of features while minimising the error rate of classification. As aforementioned, the wrapper method and multiobjective approach produce better results, and this study employs this approach in the development of BA. In addition, the MOBA uses the same local operators as basic combinatorial BA. As Al-Tashi et al. (2020a) point out, the MOFS is gaining traction in machine learning and data mining research due to its enormous number of features. They suggest that the area of MOFS still has a wide improvement possibility in the future regarding improvement of accuracy, reduced computational time, the search

		r	
Author	Search Technique	Evaluation	Dataset
Xue et al. (2012)	NSBPSO & CMDBPSO	Filter	UCI
Vignolo et al. (2013)	MOGA	Wrapper	Essex Face Database
Mukhopadhyay and Maulik (2013)	NSGA-II	Wrapper	Medical Dataset
Xue et al. (2013a)	NSGA-II and SPEA2	Filter	UCI
Xue et al. (2013b)	MOPSO	Wrapper	UCI
Xia et al. (2014)	MOUFSA	Wrapper	UCI
de la Hoz et al. (2014)	NSGA-II	Wrapper	NSL-KDD
Tan et al. (2014)	MmGA	Wrapper	UCI
Khan and Baig (2015)	NSGA-II	Wrapper	UCI
Wang et al. (2015)	MECY-FS	Filter	UCI
Han and Ren (2015)	MO-MIFS & NSGA-II	Wrapper	(Own) Real
Kundu and Mitra (2015)	NSGA-II	Wrapper	UCI
Kimovski et al. (2015)	MOEA	Wrapper	BCI (Own)
Yong et al. (2016)	MOPSO	Wrapper	UCI
Sahoo and Chandra (2017)	MOGWO	Wrapper	(Own) Real
Mlakar et al. (2017)	MODE	Wrapper	CK, MMI, JAFFE
Zhu et al. (2017)	I-NSGA-III	Wrapper	NSL-KDD
Peimankar et al. (2017)	MOPSO	Wrapper	DGA
Jiménez et al. (2017)	ENORA	Wrapper	Kaggle
Sohrabi and Taijk (2017)	NSGA-II & MOPSO	Wrapper	(Own) Real
Deniz et al. (2017)	MOGA	Wrapper	UCI
Zhang et al. (2017)	MOPSO	Wrapper	MULAN
Das and Das (2017)	MOEA/D	Wranner	UCI
Kizilos et al. (2018)	MO-TLBO	Wranner	UCI
Amoozegar and Minaei-Bidgoli (2018)	MO-PSO	Filter	UCI
Hancer et al. (2018)	MO-ABC	Wranner	UCI
Dashthan et al. (2018)	MO-Bat	Wranner	Cancer Dataset
Lai (2018)	MOSSO	Hybrid	Medical Dataset
Cheng et al. (2018)	MOESRank	Wranner	LETOR
Kozodoj et al. (2019)	NSGA-II	Wrapper	Credit Scoring (Kaggle)
González et al. (2019)	NSGA-II	Wrapper	BCL (Own)
Sharma and Pani (2010)	MOSHO & SSA	Wrapper	Concer Dataset
$\frac{1}{2} \frac{1}{2} \frac{1}$	MOFSBDE	Wrapper	
Navak et al. (2020)	FAEMODE	Filter	UCL
$\frac{1}{12}$	Grev Wolf	Wrapper	UCL
$\frac{1}{1} \frac{1}{1} \frac{1}$	MOARC	Wrapper	
Postami et al. (2020)	MORDO	Wrapper	Medical Dataset
Podriguos et al. (2020)	APO	Wropper	LICI
Pathon and Patron (2020)		Wronner	
Kathee and Kathoo (2020)	NSCAIL JLD	Wrapper	UUI NSI KDD LINSW ND15 CIC IDC2017
Knammasi and Krichen (2020)	NSGAII and LK	wrapper	INSL-KDD, UINSW-INB15, CIC-IDS2017
Kou et al. (2021)	NSGA-II	wrapper	(Uwn)
Karagoz et al. (2021)	NSGA-II	wrapper	MIR-Flickr and WMS
Jha and Saha (2021)	MOPSO	Filter	
Hu and Zhang (2021)	PSOMOFS	Wrapper	UCI & Real (Own)
Hu et al. (2021)	Grey Wolf	Wrapper	IEEE CEC3014
This paper	MOBA	Wrapper	UCI

Table 1: Previous Research and Research Position.

mechanism, the number of objectives, and evaluation measure. Therefore, the contribution of this study is two-fold. First, the current work is the first study using MOBA for feature selection. Secondly, this study used more than three Machine Learning classifiers to measure the feature subsets' performance.

2 METHODS (AND MATERIALS)

As explained earlier, the objective of MOBA for feature selection in this study comprises of two objectives: minimise the number of features and minimise the error rate of classification. The equation for multi-objective feature selection as follows:

$$f(x) = min(f_1(x), f_2(x))$$
 (1)

where

$$f_1 = F_s \tag{2}$$

and

$$f2 = (\omega train.Ftrain) + [(1 - \omega train).Fval]$$
(3)

Fs denotes the Number of Feature Selected, ω train denotes the weighting factor for training set in crossvalidation. For this study, the ω train set at 0.8. The classification error on the training set is Ftrain, and Fval is the classification error on the validating set. The research steps for this study are depicted in Figure 1, followed by the description of each step.

Figure 1: Research Steps in current work.

As depicted in Table 1, 89% of previous MOFS studies use benchmark datasets, and only 11% use their own datasets. The most widely used benchmark datasets are the UCI Machine Learning Repository (University of California). Due to the fact that benchmark datasets are popular and concerning data availability, this study uses the UCI Machine Learning Repository, detailed in Table 2. The dataset has a balanced distribution of classes.

Table 2: Benchmark Data Description.

Dataset	Number of	Number of	Classes	
	Features	Instances		
Pima Indian Diabetes	8	768	2	
Breastcancer	9	699	2	
Wine	13	178	3	
Sonar	60	208	2	

In this study, the MOBA for feature selection was developed using the best local operator from basic combinatorial BA. The combination of swap, insertion and reserve introduced by Ismail et al. (2020) was chosen for MOBA's development. As a wrapper-based method, the MOBA needs a classifier to calculate the error of the classification. Al-Tashi et al. (2020b) point out that the Artificial Neural Network (ANN) is known as a superior classifier due to its speed in classification. Moreover, Baptista et al. (2013) suggest that one of the best ANN training algorithms Levenberg-Marquardt is (LM)backpropagation. The MOBA utilises ANN to calculate the classification error, which in this study uses LM backpropagation with 10 hidden layers and a 0.8 learning rate. The MOBA parameter for this study is as follows: 20 number of scout bees (n), 10 number of elite bees (nep), 5 number of best bees (nsp), 1 number of elite sites (e) and 5 number of best sites (m), maximum iteration 50. The MOBA algorithm flowchart for this study is presented in Figure 2.

The experiment runs 10 times using Matlab 2020a in the University of Birmingham's BEAR Cloud service for each dataset. The results are Pareto Optimal Solutions in the form of a feature subset that balanced the two objectives. The performance measurement for feature subsets generated by MOBA, nine supervised Machine Learning (ML) Techniques, is used to compare the accuracy of the full features and the feature subsets. The ML techniques are Medium Tree (MT), Linear Discriminant (LD), Quadratic Discriminant (QD), Gaussian Naive Bayes (GNB), Kernel Naive Bayes (KNB), Linear Support Vector Machine (L-SVM), Quadratic SVM (Q-SVM), Medium KNN (M-KNN), and Cosine KNN (Co-KNN) with 10-fold crossvalidation.

Figure 2: MOBA flowchart for this study.

3 RESULTS AND DISCUSSION

The benefit of using the MO approach is that decision-makers will have more options to choose from the Pareto Frontier. For example, figure 3 depicts the Pareto Optimal Solution from one of the experiments performed on Wine Datasets. As can be seen, the higher the number of features selected, the lower the classification error. As a result, the decision-maker could pick one subset for classification calculations, saving time on the experiments.

Table 3 provides the average results from 10 runs for each dataset. It is apparent from this table that MOBA is able to reduce the number of features by more than 50%. The average ratio of selected features ranges from 0.38 to 0.45. The average error of the feature subset ranges from 0.05 to 0.17. Interestingly, the bigger dataset shows lower errors.

As described in the previous section, the selected features trained using nine ML classifiers and Pima Indian Diabetes, Breastcancer, Wine and Sonar presented in Table 4, 5, 6, and 7, respectively. The MOBA feature subsets and the accuracy of the Pima Indian Diabetes Dataset can be seen in Table 4. It shows that most of the feature subsets generated by MOBA for this dataset yield the same or better accuracy (in bold) with a smaller number of features than the accuracy of full features for all nine ML training. The interesting finding in Table 5 is that accuracy using Medium Tree and Coarse KNN is higher than using all features. What stands out in Table 6 is that in the 9th run, the feature subsets with eight features (ratio equal to 0.6154) yield 100% classification accuracy when trained using QD. Table 7 shows that the classification accuracy in each feature subset is all higher in Medium KNN. Thus, overall results from four benchmark datasets indicate that feature subsets generated by MOBA yield good performance for classification.

Figure 3: Pareto Optimal Solution on Wine Dataset.

Table 3: Average Size of Selected Features (f1), Average Error of the Selected Features (f2) and Average Ratio of Selected Features.

Dataset	Total Features	Mean f1	Mean f2	Mean Ratio		
Pima Indian Diabetes	8	3.05	0.17	0.38		
Breastcancer	9	3.68	0.17	0.41		
Wine	13	5.57	0.05	0.43		
Sonar	60	26.95	0.09	0.45		

This study confirms previous studies that not all the features are relevant for classification, and a reduced dimensionality can achieve similar or higher classification accuracy. Furthermore, results show that MOBA performs well in classification accuracy.

			Feature	Accuracy								
Run	fl	f2	subsets	MT	LD	QD	GNB	KNB	L SVM	Q SVM	M KNN	Coarse KNN
	1	0.2193	F3	62.9%	65.1%	64.7%	64.7%	64.6%	65.1%	60.0%	59.5%	65.0%
	3	0.1569	F2, F4, F6	72.8%	76.6%	75.1%	76.0%	75.3%	76.2%	75.1%	71.9%	75.1%
1	2	0.2081	F1, F4	66.3%	67.1%	67.3%	67.3%	66.4%	65.1%	66.9%	64.2%	68.0%
	5	0.1450	F1, F2, F5, F6, F8	73.6%	76.3%	75.4%	75.1%	74.0%	76.4%	76.7%	75.7%	75.9%
	1	0.1996	F8	64.8%	65.6%	66.4%	66.4%	65.6%	65.0%	44.1%	62.5%	64.6%
2	5	0.1531	F2, F3, F4, F7, F8	71.6%	76.7%	74.7%	77.0%	75.1%	76.3%	76.6%	72.8%	74.5%
	3	0.1599	F1, F2, F7	72.3%	76.2%	75.4%	75.7%	76.0%	76.3%	75.5%	75.4%	76.0%
	2	0.1929	F4, F8	65.5%	65.1%	66.1%	64.5%	67.3%	65.1%	64.5%	64.2%	67.2%
	2	0.1934	F1, F8	66.5%	66.3%	65.8%	66.9%	66.9%	65.1%	64.6%	65.9%	66.8%
	3	0.1512	F2, F7, F8	70.7%	75.3%	74.9%	75.1%	75.3%	74.3%	75.4%	73.4%	76.4%
3	6	0.1463	F1, F2, F4, F6, F7, F8	73.2%	77.3%	74.7%	76.3%	77.5%	77.1%	76.0%	75.7%	75.0%
	4	0.1470	F2, F6, F7, F8	73.3%	77.5%	76.4%	77.9%	77.3%	77.5%	77.7%	75.5%	77.6%
	1	0.1997	F8	64.8%	65.6%	66.4%	66.4%	65.6%	65.0%	44.1%	62.5%	64.6%
	2	0.1701	F2, F4	71.9%	73.7%	74.7%	74.6%	74.6%	74.2%	71.1%	71.0%	74.7%
4	5	0.1488	F1, F2, F4, F6, F7, F8	72.9%	76.8%	75.1%	75.8%	77.1%	77.2%	77.0%	75.7%	76.0%
	3	0.1531	F2, F6, F8	73.7%	76.8%	76.2%	77.0%	76.8%	76.7%	76.3%	74.7%	76.3%
	2	0.2045	F1, F4	66.3%	67.1%	67.3%	67.3%	66.4%	65.1%	66.9%	64.2%	68.0%
	3	0.1540	F2, F5, F8	73.4%	73.3%	75.3%	73.2%	70.4%	74.1%	76.0%	72.7%	76.7%
5	5	0.1449	F2, F3, F5, F6, F8	73.8%	77.3%	75.1%	76.2%	73.2%	77.2%	77.0%	75.5%	75.8%
	4	0.1497	F2, F5, F7, F8	70.3%	75.3%	74.1%	74.7%	72.7%	75.7%	76.7%	74.7%	75.9%
	1	0.2201	F3	62.9%	65.1%	64.7%	64.7%	64.6%	65.1%	63.2%	59.5%	65.0%
6	4	0.1512	F2, F3, F6, F8	73.6%	76.7%	75.9%	77.2%	75.8%	76.6%	77.7%	75.8%	76.0%
	3	0.1768	F5, F6, F8	70.3%	68.0%	69.7%	69.0%	70.6%	68.2%	69.7%	71.5%	68.0%
	2	0.1950	F1, F8	66.5%	66.3%	65.8%	66.9%	66.9%	65.1%	64.6%	65.9%	66.8%
	1	0.2162	F7	64.8%	65.6%	66.4%	66.4%	65.6%	65.1%	41.9%	62.5%	64.6%
7	4	0.1533	F1, F2, F7, F8	70.2%	75.8%	75.7%	74.7%	74.7%	75.7%	76.2%	76.4%	75.4%
	3	0.1889	F5, F7, F8	66.5%	65.9%	67.6%	67.8%	69.3%	65.1%	67.3%	66.5%	68.5%
	2	0.1893	F5, F6	66.1%	67.2%	68.8%	67.6%	67.4%	65.1%	55.6%	67.3%	65.1%
	2	0.1936	F4, F8	65.5%	65.1%	66.1%	64.5%	67.3%	65.1%	64.5%	64.2%	67.2%
8	4	0.1503	F2, F4, F6, F8	74.0%	76.7%	75.4%	76.8%	77.3%	77.2%	77.2%	75.5%	76.6%
	3	0.1620	F2, F3, F7	69.5%	74.2%	74.3%	75.4%	74.7%	74.1%	74.9%	73.7%	74.3%
	1	0.1696	F2	71.2%	74.7%	75.0%	75.0%	74.2%	74.6%	47.0%	70.2%	74.0%
9	5	0.1529	F1, F2, F3, F6, F8	74.2%	77.0%	75.7%	75.7%	76.0%	76.8%	78.0%	75.5%	75.1%
	3	0.1540	F2, F5, F6	72.1%	75.7%	74.9%	75.1%	71.1%	75.9%	75.5%	74.9%	75.0%
	2	0.1584	F2, F6	72.8%	77.1%	76.0%	76.8%	75.5%	76.0%	74.2%	73.8%	75.0%
10	6	0.1443	F1, F2, F3, F4, F6, F8	74.2%	77.0%	74.5%	76.2%	75.3%	76.4%	77.6%	77.1%	74.2%
10	5	0.1527	F1, F2, F5, F6, F8	73.6%	76.3%	75.4%	75.1%	74.0%	76.4%	76.7%	75.7%	75.9%
	3	0.1555	F2, F3, F8	72.1%	74.2%	75.3%	74.6%	74.6%	75.0%	77.0%	74.2%	74.3%
All features	8	-	F1-F8	74.2%	77.5%	73.4%	75.3%	73.0%	77.1%	76.7%	72.9%	73.8%

Table 4: MOBA result and classification accuracy on Pima Indian Diabetes Dataset.

Run II IZ subsets subsets MT LD QD GNB KNB L- Q SVM KN- KN KN- KN 1 2 0.1839 P3, F4 68,99% 70,3% 71,3% 70,3% 71,3% 67,85% 69,2% 70,3% 71,3% 67,85% 69,2% 70,3% 71,3% 67,85% 69,2% 70,3% 71,3% 67,85% 69,2% 70,3% 71,3% 71,3% 67,85% 73,4% 70,3%				Feature	Accuracy									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Run	f1	f2	subsets	MT	LD	OD	GNB	KNB	L-	Q-	M-	Co-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	0.1020	F2 F4	(0.00/	70.20/	71.20/	71.70/	70.20/	SVM	SVM (7.00)	KNN (0.2%)	KNN 70.20/	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	0.1839	F3, F4	68.9%	70.3%	71.3%	71.7%	70.3%	71.3%	67.8%	69.2%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7	0.1560	F1, F3, F4, F5 F6 F7	67 5%	74 1 %	72 0%	74 5%	70.6%	72 0%	75 5%	73 /0/	70 3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		0.1500	F3, F0, F7, F8	07.370	/4.1 /0	/2.0/0	/4.3 /0	/0.0/0	/2.0/0	13.370	/3.4/0	/0.5 /6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			F1, F4, F5,										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	0.1614	F6	73.1%	74.8%	72.0%	72.7%	71.7%	72.4%	74.5%	74.5%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	0.1770	F3, F6, F7	71.7%	71.7%	69.9%	70.3%	70.3%	70.3%	69.6%	70.3%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	0.2067	F8	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	68.5%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	0.1758	F5, F6	75.2%	75.9%	71.0%	71.3%	70.3%	71.0%	76.2%	70.3%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	6	0.1496	F1, F5, F6, F7, F8, F9	71.7%	73.8%	72.4%	71.7%	71.3%	71.0%	74.5%	75.2%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	0.1581	F1, F3, F4, F5, F6	67.8%	73.1%	71.7%	73.4%	72.7%	72.0%	74.8%	73.4%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	0.1909	F3, F9	71.0%	67.5%	68.5%	69.2%	68.5%	70.3%	69.2%	67.5%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	5	0.1569	F4, F5, F6,	75 5%	75 2%	69.9%	72 7%	72 4%	72 0%	76.6%	72.0%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	5	0.1507	F7, F9	15.570	13.2 /0	07.770	12.170	/2.4/0	72.070	/0.0/0	72.070	/0.5 /0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	3	0.1698	F3, F4, F6	71.3%	73.4%	72.7%	72.7%	73.1%	71.7%	75.9%	72.7%	70.6%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	0.2006	F2, F8	71.0%	/0.3%	68.9%	70.3%	/0.3%	70.3%	/0.3%	65.0%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	6	0.1421	F1, F3, F5, F6, F7, F9	72.0%	73.4%	71.3%	71.7%	71.7%	71.0%	74.5%	73.8%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5	0.1677	F4, F5, F6, F7, F8	73.4%	74.8%	74.1%	73.8%	73.4%	72.0%	74.5%	73.8%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	0.1835	F1, F4, F9	67.1%	72.7%	69.9%	72.0%	72.0%	71.7%	67.5%	69.2%	70.3%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	0.1833	F4, F5	69.6%	72.0%	72.0%	72.0%	71.7%	72.0%	69.9%	71.3%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	5	0.1608	F2, F4, F5, F7, F9	72.4%	72.7%	69.2%	70.6%	71.3%	72.0%	73.4%	72.7%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	0.1657	F3, F5, F6	76.2%	75.5%	70.3%	71.7%	71.0%	71.3%	76.2%	74.5%	70.3%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2	0.1862	F1, F6	72.7%	72.4%	69.2%	72.0%	71.0%	70.3%	72.0%	72.4%	70.3%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	6	0.1534	F1, F2, F3, F5, F6, F8	71.0%	75.2%	72.4%	71.3%	71.3%	71.3%	76.2%	72.0%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	4	0.1630	F2, F4, F5, F6	73.8%	74.5%	73.8%	72.7%	73.4%	72.0%	75.2%	74.8%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	0.1774	F4, F6, F7	73.8%	75.2%	74.5%	73.1%	73.1%	71.7%	75.2%	74.1%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	0.2085	F7	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	6	0.1540	F2, F4, F5, F7, F8, F9	73.1%	72.4%	70.6%	71.0%	71.7%	72.0%	71.7%	73.1%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	2	0.1709	F4, F6	74.8%	74.1%	73.4%	72.7%	73.4%	71.7%	75.5%	74.8%	71.7%	
$8 \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	0.1649	F4, F6, F7, F8	73.4%	74.8%	73.8%	73.8%	72.0%	71.7%	74.8%	74.5%	70.3%	
$8 \begin{bmatrix} 5 & 0.1566 & F1, F3, F5, F6, F9 & 72.0\% & 74.1\% & 71.7\% & 71.7\% & 72.7\% & 70.3\% & 75.5\% & 71.3\% & 70.3\% \\ \hline 3 & 0.1773 & F2, F5, F6 & 74.1\% & 75.9\% & 71.3\% & 71.7\% & 70.3\% & 75.5\% & 71.3\% & 70.3\% \\ \hline 4 & 0.1723 & F2, F3, F4, F5 & 72.0\% & 71.0\% & 72.4\% & 72.0\% & 70.3\% & 72.0\% & 72.7\% & 68.2\% & 70.3\% \\ \hline 4 & 0.1723 & F1, F4, F7 & 74.8\% & 72.4\% & 71.7\% & 71.7\% & 70.3\% & 72.0\% & 72.7\% & 68.2\% & 70.3\% \\ \hline 5 & 0.1488 & F3, F5, F6, F7, F8 & 72.0\% & 75.9\% & 72.4\% & 70.6\% & 71.7\% & 74.5\% & 74.1\% & 70.3\% \\ \hline 4 & 0.1630 & F2, F4, F6, F7, F8 & 72.0\% & 75.9\% & 72.4\% & 70.6\% & 72.0\% & 71.3\% & 75.2\% & 73.4\% & 70.3\% \\ \hline 4 & 0.1630 & F2, F4, F6, F9 & 73.1\% & 73.8\% & 71.3\% & 73.1\% & 72.0\% & 71.3\% & 75.2\% & 73.4\% & 70.3\% \\ \hline 10 & \hline 2 & 0.1824 & F3, F4 & 68.9\% & 70.3\% & 71.3\% & 71.7\% & 70.3\% & 71.3\% & 67.8\% & 69.2\% & 70.3\% \\ \hline 10 & \hline 5 & 0.1659 & F3, F4, F5, F7, F9 & 70.3\% & 73.1\% & 73.1\% & 72.7\% & 72.0\% & 76.6\% & 73.1\% & 70.3\% \\ \hline 10 & \hline 4 & 0.1748 & F4, F5, F7, F7 & 72.4\% & 72.4\% & 69.6\% & 70.6\% & 71.7\% & 72.0\% & 75.5\% & 72.7\% & 70.3\% \\ \hline 4 & 0.1748 & F4, F5, F7, F9 & 72.4\% & 72.4\% & 69.6\% & 70.6\% & 71.7\% & 72.0\% & 73.8\% & 70.3\% & 70.3\% \\ \hline 10 & \hline A & F1 - F9 & 65.4\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 5 & 0.1659 & F1 - F9 & 65.4\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 5 & 0.1659 & F1 - F9 & 65.4\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 5 & 0.1659 & F1 - F9 & 65.4\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 5 & 0.1659 & F1 - F9 & 65.4\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 7 & 0.174 & F1 - F9 & 65.4\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 7 & 0.174 & 74.5\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 7 & 0.174 & F1 - F9 & 65.4\% & 74.1\% & 69.2\% & 72.0\% & 72.0\% & 72.4\% & 72.7\% & 70.3\% \\ \hline 7 & 0.174 & 71 - F1 - F1 + F1 + F1 + F1 + F1 + F1 + F$		1	0.2079	F8	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	70.3%	68.5%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	5	0.1566	F1, F3, F5, F6, F9	72.0%	74.1%	71.7%	71.7%	72.7%	70.3%	75.5%	71.3%	70.3%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	3	0.1773	F2, F5, F6	74.1%	75.9%	71.3%	71.7%	70.3%	71.3%	76.2%	75.2%	70.3%	
$9 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	0.1723	F2, F3, F4, F5	72.0%	71.0%	72.4%	72.0%	70.3%	72.0%	72.7%	68.2%	70.3%	
$9 \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	0.1738	F1, F4, F7	74.8%	72.4%	71.7%	71.7%	70.6%	71.7%	74.5%	74.1%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	5	0.1488	F3, F5, F6, F7, F8	72.0%	75.9%	72.4%	70.6%	72.0%	71.3%	75.2%	73.4%	70.3%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	0.1630	F2, F4, F6,	73.1%	73.8%	71.3%	73.1%	72.0%	71.7%	74.5%	72.7%	70.3%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	0.1824	F3. F4	68.9%	70.3%	71.3%	71.7%	70.3%	71.3%	67.8%	69.2%	70.3%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		6	0.1506	F3, F4, F5,	70.3%	73.8%	69.9%	73.1%	72.7%	72.0%	76.6%	73.1%	70.3%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	5	0.1659	F3, F4, F5,	71.7%	74.5%	73.1%	73.1%	72.4%	72.0%	75.5%	72.7%	70.3%	
All 9 F1 - F9 65.4% 74.1% 69.2% 72.0% 72.0% 72.4% 72.7% 70.3%		4	0.1748	F0, F8 F4, F5, F7,	72.4%	72.4%	69.6%	70.6%	71.7%	72.0%	73.8%	70.3%	70.3%	
	All	9		F9 F1 - F9	65.4%	74.1%	69.2%	72.0%	72.0%	72.0%	72.4%	72.7%	70.3%	

Table 5: MOBA result and classification accuracy on Breastcancer Dataset.

			Accuracy											
Run	f1	f2	Feature subsets	MT	LD	QD	GNB	KNB	L-SVM	Q-SVM	M- KNN	Co-KNN		
	2	0.071	F1, F12	88.2%	89.3%	88.2%	88.2%	88.8%	89.3%	87.6%	88.8%	85.4%		
1	7	0.022	F2, F3, F5, F6, F10, F11, F13	89.9%	94.4%	95.5%	94.9%	94.9%	96.1%	94.4%	93.8%	88.8%		
	5	0.053	F3, F5, F6, F7, F11	91.0%	86.0%	93.3%	88.8%	90.4%	87.1%	93.3%	87.6%	77.5%		
	4	0.062	F2, F4, F6, F10	88.2%	88.8%	93.8%	88.2%	93.8%	89.9%	91.6%	90.4%	79.2%		
	7	0.015	F1, F6, F7, F9, F11, F12, F13	90.4%	93.8%	98.9%	94.9%	94.9%	95.5%	96.1%	94.9%	69.1%		
2	5	0.025	F2, F6, F7, F10, F13	92.7%	96.1%	97.2%	94.4%	97.2%	94.9%	97.2%	95.5%	78.7%		
	6	0.019	F2, F5, F7, F10, F12, F13	91.6%	94.9%	96.6%	94.9%	95.5%	95.5%	96.1%	95.5%	82.6%		
	4	0.028	F7, F8, F10, F13	93.3%	93.8%	95.5%	93.8%	94.4%	93.8%	97.2%	93.8%	78.7%		
3	7	0.015	F1, F3, F4, F6, F7, F12, F13	91.6%	96.1%	97.8%	94.4%	95.5%	97.2%	95.5%	96.1%	77.0%		
	6	0.027	F1, F3, F6, F7, F9, F13	89.3%	95.5%	98.3%	93.8%	93.3%	93.3%	94.9%	94.9%	80.9%		
	4	0.111	F2, F6, F9, F13	85.4%	87.1%	87.1%	87.1%	89.3%	87.1%	87.1%	88.8%	71.9%		
4	8	0.015	F1, F2, F3, F6, F7, F8, F11, F13	90.4%	95.5%	98.9%	94.9%	94.9%	94.9%	96.6%	94.9%	86.5%		
	5	0.031	F1, F2, F4, F12, F13	92.7%	93.3%	93.3%	93.8%	96.1%	94.4%	94.4%	96.1%	84.8%		
	3	0.125	F7, F8, F12	75.3%	82.6%	86.5%	82.6%	83.1%	83.1%	83.7%	83.1%	56.2%		
	4	0.036	F1, F7, F8, F10 F1 F4 F6 F7	92.7%	92.1%	96.6%	93.3%	94.4%	92.1%	94.9%	93.8%	/8./%		
5	9	0.016	F1, F4, F0, F7, F8, F10, F11, F12, F13	88.8%	96.6%	97.8%	97.2%	96.6%	97.2%	97.2%	96.1%	80.3%		
	6	0.026	F2, F5, F10, F11, F12, F13	89.3%	93.8%	94.9%	95.5%	96.1%	94.9%	95.5%	95.5%	89.3%		
	2	0.080	F1, F12 F2 F2 F5 F6	88.2%	89.3%	88.2%	88.2%	88.8%	89.3%	87.6%	88.8%	85.4%		
6	7	0.015	F10, F11, F13	89.9%	94.4%	95.5%	94.9%	94.9%	96.1%	94.4%	93.8%	88.8%		
	5	0.054	F3, F5, F6, F7, F11	91.0%	86.0%	93.3%	88.8%	90.4%	87.1%	93.3%	87.6%	77.5%		
	4	0.050	F2, F4, F6, F10	88.2%	88.8%	93.8%	88.2%	93.8%	89.9%	91.6%	90.4%	79.2%		
	6	0.018	F1, F3, F7, F8, F10, F12 F1 F3 F4 F5	92.1%	95.5%	97.2%	93.3%	94.9%	95.5%	95.5%	93.8%	89.3%		
	9	0.002	F6, F7, F8, F10, F13	91.6%	98.3%	98.3%	97.8%	97.8%	97.8%	97.2%	97.2%	83.7%		
	5	0.035	F2, F6, F7, F10, F13	92.7%	96.1%	97.2%	94.4%	97.2%	94.9%	97.2%	95.5%	78.7%		
	4	0.074	F1, F7, F10, F13	92.1%	96.6%	96.6%	96.1%	97.2%	94.9%	97.2%	96.1%	83.7%		
8	8	0.013	F1, F3, F5, F8, F9, F11, F12, F13	89.3%	96.1%	97.8%	96.6%	96.6%	94.9%	97.2%	94.9%	88.8%		
	5	0.030	F1, F3, F6, F12, F13	91.6%	94.9%	93.3%	93.3%	94.9%	93.8%	92.1%	94.9%	82.0%		
	6	0.022	F4, F6, F8, F9, F10, F13	93.8%	91.0%	94.9%	93.8%	95.5%	92.7%	91.6%	91.6%	78.1%		
	5	0.026	F2, F6, F10, F12, F13	93.3%	94.9%	95.5%	93.8%	95.5%	96.1%	94.9%	95.5%	80.3%		
9	8	0.000	F1, F3, F4, F7, F9, F11, F12, F13	91.0%	97.2%	100.0%	97.2%	97.8%	98.9%	98.9%	97.8%	82.0%		
	7	0.018	F1, F4, F5, F9, F10, F11, F13	91.6%	95.5%	97.2%	98.3%	97.8%	96.1%	95.5%	94.9%	86.5%		
	3	0.111	F3, F11, F12	77.0%	75.3%	80.9%	78.1%	77.5%	72.5%	80.9%	77.5%	77.0%		
	4	0.031	F1, F3, F11, F12 F2 F2 F4 F9	91.6%	93.3%	95.5%	92.1%	95.5%	95.5%	95.5%	93.8%	91.0%		
10	9	0.006	F2, F3, F4, F8, F9, F10, F11, F12, F13	90.4%	98.3%	97.2%	97.2%	97.2%	98.9%	98.3%	94.9%	91.0%		
	6	0.016	F2, F7, F9, F10, F11, F13	92.7%	96.1%	97.2%	95.5%	96.6%	96.1%	96.6%	95.5%	80.3%		
All Features	13	-	F1 - F13	88.8%	98.9%	99.4%	97.2%	96.6%	98.3%	96.6%	97.2%	83.7%		

Table 6: MOBA result and classification accuracy on Wine Dataset.

_		_	Accuracy								
Run	fl	f2	MT	LD	QD	GNB	KNB	L- SVM	Q- SVM	M- KNN	Co- KNN
	24	0.099570351	74.5%	74.5%	80.8%	67.8%	77.4%	77.4%	82.7%	74.5%	70.2%
1	28	0.065141175	76.9%	76.4%	83.2%	66.3%	74.5%	75.0%	88.9%	75.5%	67.8%
	26	0.082009824	75.0%	73.1%	73.1%	67.8%	76.9%	75.0%	86.1%	73.6%	65.4%
	25	0.087133333	69.7%	74.0%	84.6%	66.3%	73.1%	75.5%	80.8%	75.0%	70.2%
	26	0.119605592	69.2%	69.7%	80.3%	71.2%	78.4%	73.6%	88.9%	78.8%	67.8%
2	34	0.066256786	66.8%	76.4%	80.8%	63.5%	74.5%	75.0%	85.6%	72.6%	72.1%
	27	0.067409799	76.0%	73.6%	79.8%	66.3%	79.8%	75.5%	81.3%	77.4%	70.2%
	22	0.082342043	67.8%	76.0%	86.5%	68.3%	76.0%	79.8%	83.2%	73.1%	69.2%
2	30	0.061619488	72.1%	73.6%	77.9%	67.3%	74.5%	71.6%	79.3%	75.5%	69.7%
3	25	0.073323144	68.8%	72.1%	79.3%	64.9%	75.0%	75.5%	82.2%	78.4%	68.3%
	28	0.069419249	77.4%	75.5%	80.8%	65.4%	73.1%	74.5%	81.7%	77.4%	70.2%
	22	0.156447064	75.0%	74.5%	70.7%	63.9%	70.7%	72.6%	78.8%	74.0%	69.7%
4	32	0.073525597	74.0%	75.0%	78.4%	65.9%	72.1%	77.9%	85.6%	73.6%	74.0%
4	26	0.116298846	66.8%	73.1%	81.7%	67.8%	79.3%	76.9%	85.1%	77.4%	69.2%
	28	0.081887471	75.5%	75.0%	81.7%	65.4%	74.0%	75.0%	84.1%	75.0%	70.7%
	22	0.114538244	70.2%	72.6%	73.6%	65.9%	75.0%	75.5%	74.0%	76.4%	71.6%
F	31	0.062488966	72.6%	75.5%	82.2%	70.7%	76.0%	74.0%	84.1%	76.9%	71.6%
5	30	0.092796008	70.2%	72.1%	82.2%	67.3%	77.9%	76.0%	82.7%	73.1%	71.6%
	26	0.095563806	73.1%	72.6%	81.7%	70.2%	74.0%	76.9%	86.5%	74.5%	66.8%
	24	0.123323653	68.3%	73.1%	76.4%	72.1%	70.7%	73.6%	81.7%	73.1%	68.8%
(33	0.07257117	69.2%	75.0%	82.7%	68.8%	77.4%	77.4%	85.1%	75.0%	68.8%
	26	0.080773004	72.1%	73.1%	76.9%	65.4%	72.6%	76.9%	80.8%	73.1%	72.6%
	25	0.108421803	70.7%	76.4%	76.4%	70.7%	76.0%	78.8%	84.1%	73.6%	66.3%
	25	0.106049107	73.1%	76.4%	81.3%	66.8%	79.3%	76.9%	87.0%	77.4%	70.2%
7	32	0.069255874	72.6%	72.6%	76.0%	70.2%	76.4%	80.3%	86.1%	75.0%	68.3%
/	29	0.086057013	71.2%	72.6%	78.4%	67.3%	73.1%	74.5%	80.8%	68.3%	66.8%
	26	0.098852021	76.9%	75.0%	81.7%	66.3%	75.5%	74.5%	80.8%	71.6%	70.2%
	22	0.086423399	68.8%	70.7%	81.3%	67.8%	71.6%	72.1%	83.2%	76.0%	66.3%
0	38	0.06712303	69.7%	73.1%	82.2%	66.8%	78.8%	76.4%	87.5%	73.6%	69.2%
0	31	0.081604734	67.3%	75.0%	78.4%	67.3%	74.0%	75.5%	80.3%	77.9%	65.9%
	32	0.074393338	73.6%	75.0%	80.3%	65.4%	72.6%	72.1%	84.1%	76.4%	72.6%
	22	0.08962364	73.6%	70.2%	78.4%	66.3%	76.0%	70.2%	79.3%	76.9%	66.3%
9	30	0.062019176	72.1%	77.4%	79.3%	65.4%	75.5%	78.4%	83.7%	79.8%	69.2%
	23	0.089152606	68.3%	70.2%	78.4%	65.4%	73.1%	73.6%	80.8%	74.0%	67.8%
	25	0.083410711	75.5%	72.1%	76.9%	67.3%	74.0%	75.0%	80.8%	78.8%	73.1%
10	34	0.071585229	69.7%	74.5%	73.6%	66.8%	73.6%	75.0%	80.8%	75.0%	67.3%
10	27	0.076225531	62.5%	73.6%	75.5%	70.7%	75.5%	75.0%	79.3%	75.5%	65.9%
	26	0.079361732	74.5%	77.4%	80.3%	64.9%	76.9%	80.3%	85.6%	74.0%	70.2%
All	60	-	72.6%	76.4%	74.5%	69.2%	76.4%	76.9%	87.0%	72.1%	72.1%

Table 7: MOBA result and classification accuracy on Sonar Dataset.

4 CONCLUSIONS

The current work is a wrapper-based Multi-objective Bees Algorithm (MOBA) for feature selection. The study aim is to propose the first study of MOBA for feature selection. The results of four benchmark datasets confirm earlier research that feature selection is required to reduce dimensionality and yield equivalent or superior classification performance. However, there are limitations and room for improvement because this is the first MOBA study, and some issues were not addressed. To begin with, the optimal parameter for MOBA has not been considered in this study. Second, the largest feature in this study is 60 features; thus, this proposed algorithm has not been tested on larger datasets.

Third, the development of MOBA using basic combinatorial BA can be improved, for example, adding the abandonment strategy, which is a strategy in the standard (continues) BA. Fourth, this study has not compared with other methods. Future works will overcome these four limitations.

ACKNOWLEDGEMENTS

The author would like to acknowledge the generous support from the Indonesia Endowment Fund for Education (LPDP); Professor DT Pham; and Industrial Engineering University of Pelita Harapan.

Thank you to the University of Birmingham for providing flexible resources for intensive computational work to the University's research community through BEAR Cloud Service.

REFERENCES

- Albrecht, A. A. (2006). Stochastic local search for the feature set problem, with applications to microarray data. *Appl. Math. Comput.*, 183(2), 1148–1164.
- Al-Tashi, Q., Abdulkadir, S. J., Rais, H. M., Mirjalili, S., & Alhussian, H. (2020a). Approaches to multi-objective feature selection: A systematic literature review. *IEEE Access*, 8, 125076–125096.
- Al-Tashi, Q., Abdulkadir, S. J., Rais, H. M., Mirjalili, S., Alhussian, H., Ragab, M. G., & Alqushaibi, A. (2020b). Binary multi-objective grey wolf optimiser for feature selection in classification. *IEEE Access*, 8, 106247– 106263.
- Amoozegar, M., & Minaei-Bidgoli, B. (2018). Optimising multi-objective PSO based feature selection method using a feature elitism mechanism. *Expert Syst. Appl.*, 113, 499–514.

- Baptista, F. D., Rodrigues, S., & Morgado-Dias, F. (2013). Performance comparison of ANN training algorithms for classification. In 2013 IEEE 8th Int. Symp. Intel. signal processing (pp. 115–120).
- Cheng, F., Guo, W., & Zhang, X. (2018). Mofsrank: A multiobjective evolutionary algorithm for feature selection in learning to rank. *Complexity*, 2018.
- Das, A., & Das, S. (2017). Feature weighting and selection with a pareto-optimal trade-off between relevancy and redundancy. *Pattern Recogn. Lett.*, 88, 12–19.
- Dashtban, M., Balafar, M., & Suravajhala, P. (2018). Gene selection for tumor classification using a novel bioinspired multi-objective approach. *Genomics*, 110(1), 10–17.
- De la Hoz, E., De La Hoz, E., Ortiz, A., Ortega, J., & Martinez-Alvarez, A. (2014). Feature' selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps. *Knowledge-Based Systems*, 71, 322–338.
- Deniz, A., Kiziloz, H. E., Dokeroglu, T., & Cosar, A. (2017). Robust multiobjective evolutionary feature subset selection algorithm for binary classification using machine learning techniques. *Neurocomputing*, 241, 128–146.
- Gheyas, I. A., & Smith, L. S. (2010). Feature subset selection in large dimensionality domains. *Pattern Recogn.*, 43(1), 5–13.
- Gonzalez, J., Ortega, J., Damas, M., Martin-Smith, P., & Gan, J. Q. (2019). A new multiobjective wrapper method for feature selection–accuracy and stability analysis for bci. *Neurocomputing*, 333, 407–418.
- Hammami, M., Bechikh, S., Hung, C.-C., & Said, L. B. (2019). A multi-objective hybrid filter-wrapper evolutionary approach for feature selection. *Memet. Comput.*, 11(2), 193–208.
- Han, M., & Ren, W. (2015). Global mutual informationbased feature selection approach using single-objective and multi-objective optimisation. *Neurocomputing*, 168, 47–54.
- Hancer, E., Xue, B., Zhang, M., Karaboga, D., & Akay, B. (2018). Pareto front feature selection based on artificial bee colony optimisation. *Inform. Sciences*, 422, 462– 479.
- Hu, Y., Zhang, Y., & Gong, D. (2020). Multiobjective Particle Swarm Optimisation for feature selection with fuzzy cost. *IEEE T.Cybernetics*.
- Hussein, W. A., Sahran, S., & Abdullah, S. N. H. S. (2017). The variants of the Bees Algorithm (BA): A Survey. *Artif. Intell. Rev.*, 47(1), 67–121.
- Ismail, A. H., Hartono, N., Zeybek, S., Caterino, M., & Jiang, K. (2021). Combinatorial Bees Algorithm for Vehicle Routing Problem. In *Macromol. Sy.*, 396, 2000284.
- Ismail, A. H., Hartono, N., Zeybek, S., & Pham, D. T. (2020). Using the Bees Algorithm to solve Combinatorial Optimisation Problems for TSPLIB. In *IOP Conf. Ser-Mat SCI.*, 847, 012027.
- Jha, K., & Saha, S. (2021). Incorporation of multimodal multiobjective optimisation in designing a filter based

feature selection technique. Appl. Soft Comput., 98, 106823.

- Jimenez, F., S' anchez, G., Garcia, J. M., Sciavicco, G., & Miralles, L. (2017). Multi-objective evolutionary feature selection for online sales forecasting. *Neurocomputing*, 234, 75–92.
- Karagoz, G. N., Yazici, A., Dokeroglu, T., & Cosar, A. (2021). A new framework of multiobjective evolutionary algorithms for feature selection and multilabel classification of video data. *Int. J. Mach. Learn Cyb.*, 12(1), 53–71.
- Khammassi, C., & Krichen, S. (2020). A NSGA2-lr wrapper approach for feature selection in network intrusion detection. *Comput. Netw.*, 172, 107183.
- Khan, A., & Baig, A. R. (2015). Multi-objective feature subset selection using nondominated sorting genetic algorithm. J. Appl. Res Technol., 13(1), 145–159.
- Kimovski, D., Ortega, J., Ortiz, A., & Banos, R. (2015). Parallel alternatives for evolutionary multi-objective optimisation in unsupervised feature selection. *Expert Syst. Appl.*, 42(9), 4239–4252.
- Kiziloz, H. E., Deniz, A., Dokeroglu, T., & Cosar, A. (2018). Novel multiobjective TLBO algorithms for the feature subset selection problem. *Neurocomputing*, 306, 94–107.
- Koc, E. (2010). Bees Algorithm: theory, improvements and applications. Cardiff University.
- Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K., & Kou, S. (2021). Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. *Decis. Support Syst.*, 140, 113429.
- Kozodoi, N., Lessmann, S., Papakonstantinou, K., Gatsoulis, Y., & Baesens, B. (2019). A multi-objective approach for profit-driven feature selection in credit scoring. *Decis. Support Syst.*, 120, 106–117.
- Kundu, P. P., & Mitra, S. (2015). Multi-objective optimisation of shared nearest neighbor similarity for feature selection. *Appl. Soft Comput.*, 37, 751–762.
- Lai, C.-M. (2018). Multi-objective simplified swarm optimisation with weighting scheme for gene selection. *Appl. Soft Comput.*, 65, 58–68.
- Mlakar, U., Fister, I., Brest, J., & Potocnik, B. (2017). Multi-objective differential evolution for feature selection in facial expression recognition systems. *Expert Syst. Appl.*, 89, 129–137.
- Mukhopadhyay, A., & Maulik, U. (2013). An svm-wrapped multiobjective evolutionary feature selection approach for identifying cancer-microrna markers. *IEEE T. Nanobiosci.*, 12(4), 275–281.
- Nayak, S. K., Rout, P. K., Jagadev, A. K., & Swarnkar, T. (2020). Elitism based multiobjective differential evolution for feature selection: A filter approach with an efficient redundancy measure. *Journal of King Saud University-Computer and Information Sciences*, 32(2), 174–187.
- Peimankar, A., Weddell, S. J., Jalal, T., & Lapthorn, A. C. (2017). Evolutionary multiobjective fault diagnosis of power transformers. *Swarm Evol. Comput.*, 36, 62–75.

- Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The Bees Algorithm. Technical Note, Cardiff University, UK.
- Pham, D., Mahmuddin, M., Otri, S., & Al-Jabbouli, H. (2007). Application of the Bees Algorithm to the selection features for manufacturing data. In *International virtual conference on intelligent* production machines and systems (IPROMS 2007).
- Ramlie, F., Muhamad, W. Z. A. W., Jamaludin, K. R., Cudney, E., & Dollah, R. (2020). A significant feature selection in the mahalanobis taguchi system using modified-bees algorithm. *Int. J. Eng. Research and Technology*, 13(1), 117-136.
- Rathee, S., & Ratnoo, S. (2020). Feature selection using multi-objective CHC Genetic Algorithm. *Procedia Computer Science*, 167, 1656–1664.
- Rodrigues, D., de Albuquerque, V. H. C., & Papa, J. P. (2020). A multi-objective Artificial Butterfly Optimisation approach for feature selection. *Appl. Soft Comput.*, 94, 106442.
- Rostami, M., Forouzandeh, S., Berahmand, K., & Soltani, M. (2020). Integration of multiobjective PSO based feature selection and node centrality for medical datasets. *Genomics*, 112(6), 4370–4384.
- Sahoo, A., & Chandra, S. (2017). Multi-objective Grey Wolf optimiser for improved cervix lesion classification. *Appl. Soft Comput.*, 52, 64–80.
- Sharma, A., & Rani, R. (2019). C-HMOSHSSA: Gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods. *Comput. Meth. Prog. Bio.*, 178, 219–235.
- Sohrabi, M. K., & Tajik, A. (2017). Multi-objective feature selection for warfarin dose prediction. *Comput. Biol. Chem.*, 69, 126–133.
- Tan, C. J., Lim, C. P., & Cheah, Y.-N. (2014). A multiobjective evolutionary algorithmbased ensemble optimiser for feature selection and classification with neural network models. *Neurocomputing*, 125, 217– 228.
- Vignolo, L. D., Milone, D. H., & Scharcanski, J. (2013). Feature selection for face recognition based on multiobjective evolutionary wrappers. *Expert Syst. Appl.*, 40(13), 5077–5084.
- Wang, X.-h., Zhang, Y., Sun, X.-y., Wang, Y.-l., & Du, C.h. (2020). Multi-objective feature selection based on Artificial Bee Colony: An acceleration approach with variable sample size. *Appl. Soft Comput.*, 88, 106041.
- Wang, Z., Li, M., & Li, J. (2015). A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure. *Inform. Sciences*, 307, 73–88.
- Xia, H., Zhuang, J., & Yu, D. (2014). Multi-objective unsupervised feature selection algorithm utilising redundancy measure and negative epsilon-dominance for fault diagnosis. *Neurocomputing*, 146, 113–124.
- Xue, B., Cervante, L., Shang, L., Browne, W. N., & Zhang, M. (2012). A multi-objective Particle Swarm Optimisation for filter-based feature selection in classification problems. *Connect. Sci.*, 24(2-3), 91–116.

- Xue, B., Cervante, L., Shang, L., Browne, W. N., & Zhang, M. (2013a). Multi-objective evolutionary algorithms for filter based feature selection in classification. *Int. J. Artif. Intell. T.*, 22(04), 1350024.
- Xue, B., Zhang, M., & Browne, W. N. (2013b). Particle Swarm Optimisation for feature selection in classification: A multi-objective approach. *IEEE T. Cybernetics*, 43(6), 1656–1671.
- Xue, B., Zhang, M., & Browne, W. N. (2015). A comprehensive comparison on evolutionary feature selection approaches to classification. *Int. J. Comp. Int. Appl.*, 14(02), 1550008.
- Yong, Z., Dun-wei, G., & Wan-qiu, Z. (2016). Feature selection of unreliable data using an improved multiobjective PSO algorithm. *Neurocomputing*, 171, 1281– 1290.
- Yuce, B., Packianather, M. S., Mastrocinque, E., Pham, D. T., & Lambiase, A. (2013). Honey bees inspired optimisation method: The Bees Algorithm. *Insects*, 4(4), 646–662.
- Zeybek, S., Ismail, A. H., Hartono, N., Caterino, M., & Jiang, K. (2021). An Improved Vantage Point Bees Algorithm to solve Combinatorial Optimisation Problems from TSPLIB. In *Macromol. Sy.*, 396, 2000299.
- Zeybek, S., & Koc,, E. (2015). The Vantage Point Bees Algorithm. In 2015 7th International joint conference on computational intelligence (IJCCI) 1, 340–345.
- Zhang, Y., Gong, D.-w., Gao, X.-z., Tian, T., & Sun, X.-y. (2020). Binary differential evolution with self-learning for multi-objective feature selection. *Inform. Sciences*, 507, 67–85.
- Zhang, Y., Gong, D.-w., Sun, X.-y., & Guo, Y.-n. (2017). A PSO-based multi-objective multilabel feature selection method in classification. *Sci. Rep-UK*, 7(1), 1–12.
- Zhu, Y., Liang, J., Chen, J., & Ming, Z. (2017). An improved NSGA-III algorithm for feature selection used in intrusion detection. *Knowledge-Based Systems*, 116, 74–85.