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Abstract: In machine learning, there are enormous features that can affect learning performance. The problem is that 
not all the features are relevant or important. Feature selection is a vital first step in finding a smaller number 
of relevant features. The feature selection problem is categorised as an NP-hard problem, where the possible 
solution exponentially surges when the number of n-dimensional features increases. Previous research in 
feature selection has shifted from single-objective to multi-objective because there are two conflicting 
objectives: minimising the number of features and minimising classification errors. Bees Algorithm (BA) is 
one of the most popular metaheuristics for solving complex problems. However, none of the previous studies 
used BA in feature selection using a multi-objective approach. This paper aims to present the first study using 
the Multi-objective Bees Algorithm (MOBA) as a wrapper approach in feature selection. The MOBA 
developed for this study using basic combinatorial BA with combinatorial of swap, insertion and reversion as 
local operators with Non-Dominated Sorting and Crowding Distance to find the Pareto Optimal Solutions. 
The performance evaluation using nine Machine Learning classifiers shows that MOBA performs well in 
classification. Future work will improve the MOBA and use larger datasets. 

1 INTRODUCTION 

The main issue in machine learning and data mining 
is that there are immense features that are often 
redundant and unrelated that lead to poor 
performance of classification accuracy (Hammami et 
al., 2019; Al-Tashi et al., 2020a; Jha and Saha, 2021). 
The curse of dimensionality is a term coined by 
Gheyas and Smith (2010) to describe a large number 
of features (dimension) that leads to a large search 
space size even though not all of the features are 
relevant. To handle this problem, the researcher uses 
feature selection. Researchers emphasise the benefit 
of feature selections: reducing redundant data, 
improving accuracy, and reducing the complexity of 
the algorithm, thus increasing the algorithm training 
speed (Xue et al., 2015; Hancer et al., 2018; Al-Tashi 
et al., 2020a). Feature selection is known as an NP-
complete problem (Gheyas and Smith, 2010). 
Albrecht (2006) provide the mathematical proof of 
NP-complete of this feature selection problem. The 
possible feature subsets are 2n with n features, which 
is unrealistic to find the best subset using an 
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exhaustive search (Gheyas and Smith, 2010; Hancer 
et al., 2018).  

There are four known methods for feature 
selection: filter method, wrapper method, hybrid 
method, and embedded method (Jha and Saha, 2021). 
The most widely used methods are the filter and 
wrapper method. The difference between the filter 
and wrapper lies in evaluating feature subsets, where 
the wrapper uses classifiers in the evaluation process 
(Al-Tashi et al., 2020a). Xue et al. (2015) point out 
that the wrappers method is slower than filters but 
yields better classification performance. Similarly, 
other researchers also noted that the wrapper yields 
more promising results than the filter approach 
(Jimenez et al., 2017; Hancer et al., 2018; Hammami 
et al., 2019).  In addition, in their multi-objective 
feature selection systematic literature review, Al-
Tashi et al. (2020a) reports that 84% of the articles 
use the wrapper method, whereas 13% and 2% use the 
filter method and hybrid method, respectively. 
Adding to that, they also identify that the wrapper 
method is exceptionally preferred by the researchers 
because of the better performance compared to the 
filter method. 
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Initial research for feature selection uses a single-
objective (SO) approach; however, the multi-
objective (MO) approach has gained attention in 
recent years due to the ability to yield trade-off 
solutions between two objectives (Wang et al., 2020). 
In the literature review, the researcher has argued that 
feature selection has at least two conflicting 
objectives, for example, minimising the error rate of 
classification and minimising the number of features 
(Vignolo et al., 2013; Kozodoi et al., 2019; Al-Tashi 
et al., 2020b). The MO approach is different from SO 
because the best solution for one objective may not be 
the best solution for the other objectives. The MO 
approach gives different solutions that give trade-off 
that balance between the objectives. Xue et al. (2015) 
also compare the single-objective and multi-objective 
approaches and concludes that multi-objective is 
preferred over single-objective. 

As explained earlier, it is impractical to search for 
all possible solutions to find the best solution; the use 
of metaheuristic in feature selection has attracted the 
attention of researchers. Metaheuristics are well-
known for their ability to find a near-optimal solution 
in a shorter computational time, and they have been 
used in numerous studies. For example, Genetic 
Algorithm and Particle Swarm Optimisation and its 
MO version Non-dominated Sorting Genetic 
Algorithm (NSGA-II) and MO-PSO are popular 
metaheuristics used in feature selection. Regarding 
the metaheuristic technique, one of the population-
based metaheuristics with a robust solution in the 
continuous and combinatorial domain is Bees 
Algorithm (BA). BA, inspired by the foraging activity 
of honeybees to find nectar sources, was introduced 
by Pham et al. (2005) and gained popularity due to its 
ability to solve complex problems in faster 
computational time and wide application in 
engineering, business, bioinformatics (Yuce et al., 
2013; Hussein et al., 2017). 

BA was used to solve SO feature selection. From 
2007 to 2021, sixteen previous research articles are 
used single-objective BA for feature selection. The 
first research of single objective BA for feature 
selection is in semiconductor manufacturing by Pham 
et al. (2007), and the latest research in liver disease 
case study by Ramlie et al. (2020). However, to date, 
there is no single research using multi-objective BA 
for feature selection. Hancer et al. (2018) also point 
out in their study that multi-objective research for 
feature selection is still in its early stages. Similar to 
that, Kozodoi et al. (2019) said that the literature on 
MOFS is lacking. Al-Tashi et al. (2020) supported 
this view in their systematic literature review of 
multi-objective feature selection (MOFS); they 

provide 38 articles from 2012 to 2019. Further 
literature search to find new articles until April 2021 
shows that no previous studies use MOBA; thus, 
MOBA’s potential for MOFS has not been 
investigated. The previous studies in MOFS and the 
research position of this study are depicted in Table 
1. 

Initially, BA’s development is in the continuous 
domain and yields good results because of the balance 
between local and global search architecture; 
however, in the combinatorial domain, the approach 
is different due to different neighbourhood concepts; 
thus, it needs a different approach in the local search 
operator (Koc, 2010). Koc (2010) developed the 
combinatorial BA using simple-swap and insertion as 
local search operator with application in a single 
machine scheduling problem. Ismail et al. (2020) 
improve the local search operator using swap, 
reverse, and insertion with the Travelling Salesman 
Problem (TSP). The results show that the best local 
search operator uses a combination of those three 
operators (swap, reverse and insertion) rather than 
using single operators. This version developed by 
Ismail et al. (2020) is called basic combinatorial BA. 
The second application of basic combinatorial BA in 
Vehicle Routing Problem by Ismail et al. (2021). 
Zeybek et al. (2021) improved the combinatorial BA 
called VPBA-II using the Vantage Point (VP) 
strategy proposed by Zeybek and Koc (2015). The 
VPBA-II put the Vantage Point Tree (VPT) in the 
initial solution and global search while keeping the 
same local search operator with previous research by 
Ismail et al. (2020). The difference between the basic 
combinatorial BA and VPBA-II lies in the initial 
solution and global search architecture, where the 
former uses random permutation while the VPBA-II 
uses VPT. 

The current work is the first study using the Multi-
objective Bees Algorithm (MOBA) for feature 
selection. The aim is to use a wrapper method using 
MOBA for better classification with Pareto Optimal 
Solutions that reduces the number of features while 
minimising the error rate of classification. As 
aforementioned, the wrapper method and multi-
objective approach produce better results, and this 
study employs this approach in the development of 
BA. In addition, the MOBA uses the same local 
operators as basic combinatorial BA. As Al-Tashi et 
al. (2020a) point out, the MOFS is gaining traction in 
machine learning and data mining research due to its 
enormous number of features. They suggest that the 
area of MOFS still has a wide improvement 
possibility in the future regarding improvement  
of accuracy, reduced computational time, the search 
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Table 1: Previous Research and Research Position. 

 

mechanism, the number of objectives, and 
evaluation measure. Therefore, the contribution of 
this study is two-fold. First, the current work is the 
first study using MOBA for feature selection. 
Secondly, this study used more than three Machine 
Learning classifiers to measure the feature subsets' 
performance. 

2 METHODS (AND MATERIALS) 

As explained earlier, the objective of MOBA for 
feature selection in this study comprises of two 
objectives: minimise the number of features and 
minimise the error rate of classification. 

Author Search Technique Evaluation Dataset
Xue et al. (2012) NSBPSO & CMDBPSO Filter UCI

Vignolo et al.  (2013) MOGA Wrapper Essex Face Database
Mukhopadhyay and Maulik (2013) NSGA-II Wrapper Medical Dataset

Xue et al. (2013a) NSGA-II and SPEA2 Filter UCI
Xue et al. (2013b) MOPSO Wrapper UCI
Xia et al. (2014) MOUFSA Wrapper UCI

de la Hoz et al. (2014) NSGA-II Wrapper NSL-KDD 
Tan et al. (2014) MmGA Wrapper UCI

Khan and Baig (2015) NSGA-II Wrapper UCI
Wang et al. (2015) MECY-FS Filter UCI

Han and Ren (2015) MO-MIFS & NSGA-II Wrapper (Own) Real 
Kundu and Mitra (2015) NSGA-II Wrapper UCI
Kimovski et al. (2015) MOEA Wrapper BCI (Own)

Yong et al. (2016) MOPSO Wrapper UCI
Sahoo and Chandra (2017) MOGWO Wrapper (Own) Real 

Mlakar et al. (2017) MODE Wrapper CK, MMI, JAFFE
Zhu et al. (2017) I-NSGA-III Wrapper NSL-KDD

Peimankar et al. (2017) MOPSO Wrapper DGA 
Jiménez et al. (2017) ENORA Wrapper Kaggle

Sohrabi and Tajik (2017) NSGA-II & MOPSO Wrapper (Own) Real
Deniz et al. (2017) MOGA Wrapper UCI
Zhang et al. (2017) MOPSO Wrapper MULAN
Das and Das (2017) MOEA/D Wrapper UCI
Kizilos et al. (2018) MO-TLBO Wrapper UCI

Amoozegar and Minaei-Bidgoli (2018) MO-PSO Filter UCI
Hancer et al. (2018) MO-ABC Wrapper UCI

Dashtban et al. (2018) MO-Bat Wrapper Cancer Dataset
Lai (2018) MOSSO Hybrid Medical Dataset

Cheng et al. (2018) MOFSRank Wrapper LETOR 
Kozodoi et al. (2019) NSGA-II Wrapper Credit Scoring (Kaggle)
González et al. (2019) NSGA-II Wrapper BCI (Own)

Sharma and Rani (2019) MOSHO & SSA Wrapper Cancer Dataset
Zhang et al. (2020) MOFSBDE Wrapper UCI
Nayak et al. (2020) FAEMODE Filter UCI

Al-Tashi et al. (2020) Grey Wolf Wrapper UCI
Wang et al. (2020) MO ABC Wrapper UCI

Rostami et al. (2020) MO PSO Wrapper Medical Dataset
Rodrigues et al. (2020) ABO Wrapper UCI

Rathee and Ratnoo (2020) NSGA-II + CHC Wrapper UCI
Khammasi and Krichen (2020) NSGAII and LR Wrapper NSL-KDD, UNSW-NB15, CIC-IDS2017 

Kou et al. (2021)  NSGA-II Wrapper (Own) 
Karagoz et al. (2021)  NSGA-II Wrapper MIR-Flickr and WMS
Jha and Saha (2021) MO PSO Filter UCI
Hu and Zhang (2021) PSOMOFS Wrapper UCI & Real (Own)

Hu et al. (2021) Grey Wolf Wrapper IEEE CEC3014 
This paper MOBA Wrapper UCI
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The equation for multi-objective feature selection 
as follows: 

f(x) = min(f1(x),f2(x)) (1)
 
where 

f1 = Fs (2)
 
and 

f2 = (ωtrain.Ftrain) + [(1 − ωtrain).Fval] (3)
 

Fs denotes the Number of Feature Selected, ωtrain 
denotes the weighting factor for training set in cross-
validation. For this study, the ωtrain set at 0.8. The 
classification error on the training set is Ftrain, and 
Fval is the classification error on the validating set. 
The research steps for this study are depicted in 
Figure 1, followed by the description of each step.  

 
Figure 1: Research Steps in current work. 

As depicted in Table 1, 89% of previous MOFS 
studies use benchmark datasets, and only 11% use 
their own datasets. The most widely used benchmark 
datasets are the UCI Machine Learning Repository 
(University of California). Due to the fact that 
benchmark datasets are popular and concerning data 
availability, this study uses the UCI Machine 
Learning Repository, detailed in Table 2. The dataset 
has a balanced distribution of classes. 

 
 
 
 
 

Table 2: Benchmark Data Description. 

Dataset 
Number 

of 
Features 

Number 
of 

Instances 
Classes 

Pima Indian 
Diabetes 8 768 2 

Breastcancer 9 699 2 
Wine 13 178 3 
Sonar 60 208 2 

 
In this study, the MOBA for feature selection was 

developed using the best local operator from basic 
combinatorial BA. The combination of swap, 
insertion and reserve introduced by Ismail et al. 
(2020) was chosen for MOBA’s development. As a 
wrapper-based method, the MOBA needs a classifier 
to calculate the error of the classification. Al-Tashi et 
al. (2020b) point out that the Artificial Neural 
Network (ANN) is known as a superior classifier due 
to its speed in classification. Moreover, Baptista et al. 
(2013) suggest that one of the best ANN training 
algorithms is Levenberg-Marquardt (LM) 
backpropagation. The MOBA utilises ANN to 
calculate the classification error, which in this study 
uses LM backpropagation with 10 hidden layers and 
a 0.8 learning rate. The MOBA parameter for this 
study is as follows: 20 number of scout bees (n), 10 
number of elite bees (nep), 5 number of best bees 
(nsp), 1 number of elite sites (e) and 5 number of best 
sites (m), maximum iteration 50. The MOBA 
algorithm flowchart for this study is presented in 
Figure 2. 

The experiment runs 10 times using Matlab 2020a 
in the University of Birmingham’s BEAR Cloud 
service for each dataset. The results are Pareto 
Optimal Solutions in the form of a feature subset that 
balanced the two objectives. The performance 
measurement for feature subsets generated by 
MOBA, nine supervised Machine Learning (ML) 
Techniques, is used to compare the accuracy of the 
full features and the feature subsets. The ML 
techniques are Medium Tree (MT), Linear 
Discriminant (LD), Quadratic Discriminant (QD), 
Gaussian Naive Bayes (GNB), Kernel Naive Bayes 
(KNB), Linear Support Vector Machine (L-SVM), 
Quadratic SVM (Q-SVM), Medium KNN (M-KNN), 
and Cosine KNN (Co-KNN) with 10-fold cross-
validation. 
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Figure 2: MOBA flowchart for this study. 

3 RESULTS AND DISCUSSION 

The benefit of using the MO approach is that 
decision-makers will have more options to choose 
from the Pareto Frontier. For example, figure 3 
depicts the Pareto Optimal Solution from one of the 
experiments performed on Wine Datasets. As can be 
seen, the higher the number of features selected, the 
lower the classification error. As a result, the 
decision-maker could pick one subset for 
classification calculations, saving time on the 
experiments. 

Table 3 provides the average results from 10 runs 
for each dataset. It is apparent from this table that 
MOBA is able to reduce the number of features by 
more than 50%. The average ratio of selected features 
ranges from 0.38 to 0.45. The average error of the 
feature subset ranges from 0.05 to 0.17. Interestingly, 
the bigger dataset shows lower errors. 

As described in the previous section, the selected 
features trained using nine ML classifiers and Pima 
Indian Diabetes, Breastcancer, Wine and Sonar 
presented in Table 4, 5, 6, and 7, respectively. The 
MOBA feature subsets and the accuracy of the Pima 
Indian Diabetes Dataset can be seen in Table 4. It 
shows that most of the feature subsets generated by 
MOBA for this dataset yield the same or better 
accuracy (in bold) with a smaller number of features 
than the accuracy of full features for all nine ML 
training. The interesting finding in Table 5 is that 
accuracy using Medium Tree and Coarse KNN is 
higher than using all features. What stands out in 

Table 6 is that in the 9th run, the feature subsets with 
eight features (ratio equal to 0.6154) yield 100% 
classification accuracy when trained using QD. Table 
7 shows that the classification accuracy in each 
feature subset is all higher in Medium KNN. Thus, 
overall results from four benchmark datasets indicate 
that feature subsets generated by MOBA yield good 
performance for classification. 
 

 
Figure 3: Pareto Optimal Solution on Wine Dataset. 

Table 3: Average Size of Selected Features (f1), Average 
Error of the Selected Features (f2) and Average Ratio of 
Selected Features. 

Dataset Total 
Features

Mean 
f1 

Mean 
f2 

Mean 
Ratio

Pima Indian 
Diabetes 8 3.05 0.17 0.38 

Breastcancer 9 3.68 0.17 0.41
Wine 13 5.57 0.05 0.43
Sonar 60 26.95 0.09 0.45

 
This study confirms previous studies that not all 

the features are relevant for classification, and a 
reduced dimensionality can achieve similar or higher 
classification accuracy. Furthermore, results show 
that MOBA performs well in classification accuracy. 
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Table 4: MOBA result and classification accuracy on Pima Indian Diabetes Dataset. 

Run f1 f2 Feature 
subsets 

Accuracy 

MT LD QD GNB KNB L 
SVM

Q 
SVM 

M 
KNN 

Coarse 
KNN

1 

1 0.2193 F3 62.9% 65.1% 64.7% 64.7% 64.6% 65.1% 60.0% 59.5% 65.0% 
3 0.1569 F2, F4, F6 72.8% 76.6% 75.1% 76.0% 75.3% 76.2% 75.1% 71.9% 75.1% 
2 0.2081 F1, F4 66.3% 67.1% 67.3% 67.3% 66.4% 65.1% 66.9% 64.2% 68.0% 

5 0.1450 F1, F2, F5, 
F6, F8 73.6% 76.3% 75.4% 75.1% 74.0% 76.4% 76.7% 75.7% 75.9% 

2 

1 0.1996 F8 64.8% 65.6% 66.4% 66.4% 65.6% 65.0% 44.1% 62.5% 64.6% 

5 0.1531 F2, F3, F4, 
F7, F8 71.6% 76.7% 74.7% 77.0% 75.1% 76.3% 76.6% 72.8% 74.5% 

3 0.1599 F1, F2, F7 72.3% 76.2% 75.4% 75.7% 76.0% 76.3% 75.5% 75.4% 76.0% 
2 0.1929 F4, F8 65.5% 65.1% 66.1% 64.5% 67.3% 65.1% 64.5% 64.2% 67.2% 

3 

2 0.1934 F1, F8 66.5% 66.3% 65.8% 66.9% 66.9% 65.1% 64.6% 65.9% 66.8% 
3 0.1512 F2, F7, F8 70.7% 75.3% 74.9% 75.1% 75.3% 74.3% 75.4% 73.4% 76.4% 

6 0.1463 F1, F2, F4, 
F6, F7, F8 73.2% 77.3% 74.7% 76.3% 77.5% 77.1% 76.0% 75.7% 75.0% 

4 0.1470 F2, F6, F7, 
F8 73.3% 77.5% 76.4% 77.9% 77.3% 77.5% 77.7% 75.5% 77.6% 

4 

1 0.1997 F8 64.8% 65.6% 66.4% 66.4% 65.6% 65.0% 44.1% 62.5% 64.6% 
2 0.1701 F2, F4 71.9% 73.7% 74.7% 74.6% 74.6% 74.2% 71.1% 71.0% 74.7% 

5 0.1488 F1, F2, F4, 
F6, F7, F8 72.9% 76.8% 75.1% 75.8% 77.1% 77.2% 77.0% 75.7% 76.0% 

3 0.1531 F2, F6, F8 73.7% 76.8% 76.2% 77.0% 76.8% 76.7% 76.3% 74.7% 76.3% 

5 

2 0.2045 F1, F4 66.3% 67.1% 67.3% 67.3% 66.4% 65.1% 66.9% 64.2% 68.0% 
3 0.1540 F2, F5, F8 73.4% 73.3% 75.3% 73.2% 70.4% 74.1% 76.0% 72.7% 76.7% 

5 0.1449 F2, F3, F5, 
F6, F8 73.8% 77.3% 75.1% 76.2% 73.2% 77.2% 77.0% 75.5% 75.8% 

4 0.1497 F2, F5, F7, 
F8 70.3% 75.3% 74.1% 74.7% 72.7% 75.7% 76.7% 74.7% 75.9% 

6 

1 0.2201 F3 62.9% 65.1% 64.7% 64.7% 64.6% 65.1% 63.2% 59.5% 65.0% 

4 0.1512 F2, F3, F6, 
F8 73.6% 76.7% 75.9% 77.2% 75.8% 76.6% 77.7% 75.8% 76.0% 

3 0.1768 F5, F6, F8 70.3% 68.0% 69.7% 69.0% 70.6% 68.2% 69.7% 71.5% 68.0% 
2 0.1950 F1, F8 66.5% 66.3% 65.8% 66.9% 66.9% 65.1% 64.6% 65.9% 66.8% 

7 

1 0.2162 F7 64.8% 65.6% 66.4% 66.4% 65.6% 65.1% 41.9% 62.5% 64.6% 

4 0.1533 F1, F2, F7, 
F8 70.2% 75.8% 75.7% 74.7% 74.7% 75.7% 76.2% 76.4% 75.4% 

3 0.1889 F5, F7, F8 66.5% 65.9% 67.6% 67.8% 69.3% 65.1% 67.3% 66.5% 68.5% 
2 0.1893 F5, F6 66.1% 67.2% 68.8% 67.6% 67.4% 65.1% 55.6% 67.3% 65.1% 

8 

2 0.1936 F4, F8 65.5% 65.1% 66.1% 64.5% 67.3% 65.1% 64.5% 64.2% 67.2% 

4 0.1503 F2, F4, F6, 
F8 74.0% 76.7% 75.4% 76.8% 77.3% 77.2% 77.2% 75.5% 76.6% 

3 0.1620 F2, F3, F7 69.5% 74.2% 74.3% 75.4% 74.7% 74.1% 74.9% 73.7% 74.3% 

9 

1 0.1696 F2 71.2% 74.7% 75.0% 75.0% 74.2% 74.6% 47.0% 70.2% 74.0% 

5 0.1529 F1, F2, F3, 
F6, F8 74.2% 77.0% 75.7% 75.7% 76.0% 76.8% 78.0% 75.5% 75.1% 

3 0.1540 F2, F5, F6 72.1% 75.7% 74.9% 75.1% 71.1% 75.9% 75.5% 74.9% 75.0% 

10 

2 0.1584 F2, F6 72.8% 77.1% 76.0% 76.8% 75.5% 76.0% 74.2% 73.8% 75.0% 

6 0.1443 F1, F2, F3, 
F4, F6, F8 74.2% 77.0% 74.5% 76.2% 75.3% 76.4% 77.6% 77.1% 74.2% 

5 0.1527 F1, F2, F5, 
F6, F8 73.6% 76.3% 75.4% 75.1% 74.0% 76.4% 76.7% 75.7% 75.9% 

3 0.1555 F2, F3, F8 72.1% 74.2% 75.3% 74.6% 74.6% 75.0% 77.0% 74.2% 74.3% 
All 

features 8 - F1-F8 74.2% 77.5% 73.4% 75.3% 73.0% 77.1% 76.7% 72.9% 73.8% 
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Table 5: MOBA result and classification accuracy on Breastcancer Dataset. 

Run f1 f2 Feature 
subsets 

Accuracy

MT LD QD GNB KNB L-
SVM

Q-
SVM 

M-
KNN 

Co-
KNN

1 

2 0.1839 F3, F4 68.9% 70.3% 71.3% 71.7% 70.3% 71.3% 67.8% 69.2% 70.3% 

7 0.1560 
F1, F3, F4, 
F5, F6, F7, 
F8

67.5% 74.1% 72.0% 74.5% 70.6% 72.0% 75.5% 73.4% 70.3% 

4 0.1614 F1, F4, F5, 
F6 73.1% 74.8% 72.0% 72.7% 71.7% 72.4% 74.5% 74.5% 70.3% 

3 0.1770 F3, F6, F7 71.7% 71.7% 69.9% 70.3% 70.3% 70.3% 69.6% 70.3% 70.3% 

2 

1 0.2067 F8 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 68.5% 70.3% 
2 0.1758 F5, F6 75.2% 75.9% 71.0% 71.3% 70.3% 71.0% 76.2% 70.3% 70.3% 

6 0.1496 F1, F5, F6, 
F7, F8, F9 71.7% 73.8% 72.4% 71.7% 71.3% 71.0% 74.5% 75.2% 70.3% 

5 0.1581 F1, F3, F4, 
F5, F6 67.8% 73.1% 71.7% 73.4% 72.7% 72.0% 74.8% 73.4% 70.3% 

3 

2 0.1909 F3, F9 71.0% 67.5% 68.5% 69.2% 68.5% 70.3% 69.2% 67.5% 70.3% 

5 0.1569 F4, F5, F6, 
F7, F9 75.5% 75.2% 69.9% 72.7% 72.4% 72.0% 76.6% 72.0% 70.3% 

3 0.1698 F3, F4, F6 71.3% 73.4% 72.7% 72.7% 73.1% 71.7% 75.9% 72.7% 70.6% 

4 

2 0.2006 F2, F8 71.0% 70.3% 68.9% 70.3% 70.3% 70.3% 70.3% 65.0% 70.3% 

6 0.1421 F1, F3, F5, 
F6, F7, F9 72.0% 73.4% 71.3% 71.7% 71.7% 71.0% 74.5% 73.8% 70.3% 

5 0.1677 F4, F5, F6, 
F7, F8 73.4% 74.8% 74.1% 73.8% 73.4% 72.0% 74.5% 73.8% 70.3% 

3 0.1835 F1, F4, F9 67.1% 72.7% 69.9% 72.0% 72.0% 71.7% 67.5% 69.2% 70.3% 

5 

2 0.1833 F4, F5 69.6% 72.0% 72.0% 72.0% 71.7% 72.0% 69.9% 71.3% 70.3% 

5 0.1608 F2, F4, F5, 
F7, F9 72.4% 72.7% 69.2% 70.6% 71.3% 72.0% 73.4% 72.7% 70.3% 

3 0.1657 F3, F5, F6 76.2% 75.5% 70.3% 71.7% 71.0% 71.3% 76.2% 74.5% 70.3% 

6 

2 0.1862 F1, F6 72.7% 72.4% 69.2% 72.0% 71.0% 70.3% 72.0% 72.4% 70.3% 

6 0.1534 F1, F2, F3, 
F5, F6, F8 71.0% 75.2% 72.4% 71.3% 71.3% 71.3% 76.2% 72.0% 70.3% 

4 0.1630 F2, F4, F5, 
F6 73.8% 74.5% 73.8% 72.7% 73.4% 72.0% 75.2% 74.8% 70.3% 

3 0.1774 F4, F6, F7 73.8% 75.2% 74.5% 73.1% 73.1% 71.7% 75.2% 74.1% 70.3% 

7 

1 0.2085 F7 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 

6 0.1540 F2, F4, F5, 
F7, F8, F9 73.1% 72.4% 70.6% 71.0% 71.7% 72.0% 71.7% 73.1% 70.3% 

2 0.1709 F4, F6 74.8% 74.1% 73.4% 72.7% 73.4% 71.7% 75.5% 74.8% 71.7% 

4 0.1649 F4, F6, F7, 
F8 73.4% 74.8% 73.8% 73.8% 72.0% 71.7% 74.8% 74.5% 70.3% 

8 

1 0.2079 F8 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 70.3% 68.5% 70.3% 

5 0.1566 F1, F3, F5, 
F6, F9 72.0% 74.1% 71.7% 71.7% 72.7% 70.3% 75.5% 71.3% 70.3% 

3 0.1773 F2, F5, F6 74.1% 75.9% 71.3% 71.7% 70.3% 71.3% 76.2% 75.2% 70.3% 

4 0.1723 F2, F3, F4, 
F5 72.0% 71.0% 72.4% 72.0% 70.3% 72.0% 72.7% 68.2% 70.3% 

9 

3 0.1738 F1, F4, F7 74.8% 72.4% 71.7% 71.7% 70.6% 71.7% 74.5% 74.1% 70.3% 

5 0.1488 F3, F5, F6, 
F7, F8 72.0% 75.9% 72.4% 70.6% 72.0% 71.3% 75.2% 73.4% 70.3% 

4 0.1630 F2, F4, F6, 
F9 73.1% 73.8% 71.3% 73.1% 72.0% 71.7% 74.5% 72.7% 70.3% 

10 

2 0.1824 F3, F4 68.9% 70.3% 71.3% 71.7% 70.3% 71.3% 67.8% 69.2% 70.3% 

6 0.1506 F3, F4, F5, 
F6, F7, F9 70.3% 73.8% 69.9% 73.1% 72.7% 72.0% 76.6% 73.1% 70.3% 

5 0.1659 F3, F4, F5, 
F6, F8 71.7% 74.5% 73.1% 73.1% 72.4% 72.0% 75.5% 72.7% 70.3% 

4 0.1748 F4, F5, F7, 
F9 72.4% 72.4% 69.6% 70.6% 71.7% 72.0% 73.8% 70.3% 70.3% 

All 
features 9  F1 - F9 65.4% 74.1% 69.2% 72.0% 72.0% 72.0% 72.4% 72.7% 70.3% 
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Table 6: MOBA result and classification accuracy on Wine Dataset. 

Run f1 f2 Feature subsets 
Accuracy

MT LD QD GNB KNB L-SVM Q-SVM M-
KNN Co-KNN 

1 

2 0.071 F1, F12 88.2% 89.3% 88.2% 88.2% 88.8% 89.3% 87.6% 88.8% 85.4% 

7 0.022 F2, F3, F5, F6, 
F10, F11, F13 89.9% 94.4% 95.5% 94.9% 94.9% 96.1% 94.4% 93.8% 88.8% 

5 0.053 F3, F5, F6, F7, 
F11 91.0% 86.0% 93.3% 88.8% 90.4% 87.1% 93.3% 87.6% 77.5% 

2 

4 0.062 F2, F4, F6, F10 88.2% 88.8% 93.8% 88.2% 93.8% 89.9% 91.6% 90.4% 79.2%

7 0.015 F1, F6, F7, F9, 
F11, F12, F13 90.4% 93.8% 98.9% 94.9% 94.9% 95.5% 96.1% 94.9% 69.1% 

5 0.025 F2, F6, F7, 
F10, F13 92.7% 96.1% 97.2% 94.4% 97.2% 94.9% 97.2% 95.5% 78.7% 

6 0.019 F2, F5, F7, 
F10, F12, F13 91.6% 94.9% 96.6% 94.9% 95.5% 95.5% 96.1% 95.5% 82.6% 

3 

4 0.028 F7, F8, F10, 
F13 93.3% 93.8% 95.5% 93.8% 94.4% 93.8% 97.2% 93.8% 78.7% 

7 0.015 F1, F3, F4, F6, 
F7, F12, F13 91.6% 96.1% 97.8% 94.4% 95.5% 97.2% 95.5% 96.1% 77.0% 

6 0.027 F1, F3, F6, F7, 
F9, F13 89.3% 95.5% 98.3% 93.8% 93.3% 93.3% 94.9% 94.9% 80.9% 

4 

4 0.111 F2, F6, F9, F13 85.4% 87.1% 87.1% 87.1% 89.3% 87.1% 87.1% 88.8% 71.9%

8 0.015 
F1, F2, F3, F6, 
F7, F8, F11, 
F13

90.4% 95.5% 98.9% 94.9% 94.9% 94.9% 96.6% 94.9% 86.5% 

5 0.031 F1, F2, F4, 
F12, F13 92.7% 93.3% 93.3% 93.8% 96.1% 94.4% 94.4% 96.1% 84.8% 

5 

3 0.125 F7, F8, F12 75.3% 82.6% 86.5% 82.6% 83.1% 83.1% 83.7% 83.1% 56.2%
4 0.036 F1, F7, F8, F10 92.7% 92.1% 96.6% 93.3% 94.4% 92.1% 94.9% 93.8% 78.7%

9 0.016 
F1, F4, F6, F7, 
F8, F10, F11, 
F12, F13 

88.8% 96.6% 97.8% 97.2% 96.6% 97.2% 97.2% 96.1% 80.3% 

6 0.026 F2, F5, F10, 
F11, F12, F13 89.3% 93.8% 94.9% 95.5% 96.1% 94.9% 95.5% 95.5% 89.3% 

6 

2 0.080 F1, F12 88.2% 89.3% 88.2% 88.2% 88.8% 89.3% 87.6% 88.8% 85.4% 

7 0.015 F2, F3, F5, F6, 
F10, F11, F13 89.9% 94.4% 95.5% 94.9% 94.9% 96.1% 94.4% 93.8% 88.8% 

5 0.054 F3, F5, F6, F7, 
F11 91.0% 86.0% 93.3% 88.8% 90.4% 87.1% 93.3% 87.6% 77.5% 

7 

4 0.050 F2, F4, F6, F10 88.2% 88.8% 93.8% 88.2% 93.8% 89.9% 91.6% 90.4% 79.2%

6 0.018 F1, F3, F7, F8, 
F10, F12 92.1% 95.5% 97.2% 93.3% 94.9% 95.5% 95.5% 93.8% 89.3% 

9 0.002 
F1, F3, F4, F5, 
F6, F7, F8, 
F10, F13 

91.6% 98.3% 98.3% 97.8% 97.8% 97.8% 97.2% 97.2% 83.7% 

5 0.035 F2, F6, F7, 
F10, F13 92.7% 96.1% 97.2% 94.4% 97.2% 94.9% 97.2% 95.5% 78.7% 

8 

4 0.074 F1, F7, F10, 
F13 92.1% 96.6% 96.6% 96.1% 97.2% 94.9% 97.2% 96.1% 83.7% 

8 0.013 
F1, F3, F5, F8, 
F9, F11, F12, 
F13

89.3% 96.1% 97.8% 96.6% 96.6% 94.9% 97.2% 94.9% 88.8% 

5 0.030 F1, F3, F6, 
F12, F13 91.6% 94.9% 93.3% 93.3% 94.9% 93.8% 92.1% 94.9% 82.0% 

6 0.022 F4, F6, F8, F9, 
F10, F13 93.8% 91.0% 94.9% 93.8% 95.5% 92.7% 91.6% 91.6% 78.1% 

9 

5 0.026 F2, F6, F10, 
F12, F13 93.3% 94.9% 95.5% 93.8% 95.5% 96.1% 94.9% 95.5% 80.3% 

8 0.000 
F1, F3, F4, F7, 
F9, F11, F12, 
F13

91.0% 97.2% 100.0% 97.2% 97.8% 98.9% 98.9% 97.8% 82.0% 

7 0.018 F1, F4, F5, F9, 
F10, F11, F13 91.6% 95.5% 97.2% 98.3% 97.8% 96.1% 95.5% 94.9% 86.5% 

10 

3 0.111 F3, F11, F12 77.0% 75.3% 80.9% 78.1% 77.5% 72.5% 80.9% 77.5% 77.0%

4 0.031 F1, F3, F11, 
F12 91.6% 93.3% 95.5% 92.1% 95.5% 95.5% 95.5% 93.8% 91.0% 

9 0.006 
F2, F3, F4, F8, 
F9, F10, F11, 
F12, F13 

90.4% 98.3% 97.2% 97.2% 97.2% 98.9% 98.3% 94.9% 91.0% 

6 0.016 F2, F7, F9, 
F10, F11, F13 92.7% 96.1% 97.2% 95.5% 96.6% 96.1% 96.6% 95.5% 80.3% 

All 
Features 13 - F1 - F13 88.8% 98.9% 99.4% 97.2% 96.6% 98.3% 96.6% 97.2% 83.7% 
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Table 7: MOBA result and classification accuracy on Sonar Dataset. 

Run f1 f2 
Accuracy 

MT LD QD GNB KNB L-
SVM

Q-
SVM 

M-
KNN 

Co-
KNN

1 

24 0.099570351 74.5% 74.5% 80.8% 67.8% 77.4% 77.4% 82.7% 74.5% 70.2% 

28 0.065141175 76.9% 76.4% 83.2% 66.3% 74.5% 75.0% 88.9% 75.5% 67.8% 

26 0.082009824 75.0% 73.1% 73.1% 67.8% 76.9% 75.0% 86.1% 73.6% 65.4% 

25 0.087133333 69.7% 74.0% 84.6% 66.3% 73.1% 75.5% 80.8% 75.0% 70.2% 

2 

26 0.119605592 69.2% 69.7% 80.3% 71.2% 78.4% 73.6% 88.9% 78.8% 67.8% 

34 0.066256786 66.8% 76.4% 80.8% 63.5% 74.5% 75.0% 85.6% 72.6% 72.1% 

27 0.067409799 76.0% 73.6% 79.8% 66.3% 79.8% 75.5% 81.3% 77.4% 70.2% 

3 

22 0.082342043 67.8% 76.0% 86.5% 68.3% 76.0% 79.8% 83.2% 73.1% 69.2% 

30 0.061619488 72.1% 73.6% 77.9% 67.3% 74.5% 71.6% 79.3% 75.5% 69.7% 

25 0.073323144 68.8% 72.1% 79.3% 64.9% 75.0% 75.5% 82.2% 78.4% 68.3% 

28 0.069419249 77.4% 75.5% 80.8% 65.4% 73.1% 74.5% 81.7% 77.4% 70.2% 

4 

22 0.156447064 75.0% 74.5% 70.7% 63.9% 70.7% 72.6% 78.8% 74.0% 69.7% 

32 0.073525597 74.0% 75.0% 78.4% 65.9% 72.1% 77.9% 85.6% 73.6% 74.0% 

26 0.116298846 66.8% 73.1% 81.7% 67.8% 79.3% 76.9% 85.1% 77.4% 69.2% 

28 0.081887471 75.5% 75.0% 81.7% 65.4% 74.0% 75.0% 84.1% 75.0% 70.7% 

5 

22 0.114538244 70.2% 72.6% 73.6% 65.9% 75.0% 75.5% 74.0% 76.4% 71.6% 

31 0.062488966 72.6% 75.5% 82.2% 70.7% 76.0% 74.0% 84.1% 76.9% 71.6% 

30 0.092796008 70.2% 72.1% 82.2% 67.3% 77.9% 76.0% 82.7% 73.1% 71.6% 

26 0.095563806 73.1% 72.6% 81.7% 70.2% 74.0% 76.9% 86.5% 74.5% 66.8% 

6 

24 0.123323653 68.3% 73.1% 76.4% 72.1% 70.7% 73.6% 81.7% 73.1% 68.8% 

33 0.07257117 69.2% 75.0% 82.7% 68.8% 77.4% 77.4% 85.1% 75.0% 68.8% 

26 0.080773004 72.1% 73.1% 76.9% 65.4% 72.6% 76.9% 80.8% 73.1% 72.6% 

25 0.108421803 70.7% 76.4% 76.4% 70.7% 76.0% 78.8% 84.1% 73.6% 66.3% 

7 

25 0.106049107 73.1% 76.4% 81.3% 66.8% 79.3% 76.9% 87.0% 77.4% 70.2% 

32 0.069255874 72.6% 72.6% 76.0% 70.2% 76.4% 80.3% 86.1% 75.0% 68.3% 

29 0.086057013 71.2% 72.6% 78.4% 67.3% 73.1% 74.5% 80.8% 68.3% 66.8% 

26 0.098852021 76.9% 75.0% 81.7% 66.3% 75.5% 74.5% 80.8% 71.6% 70.2% 

8 

22 0.086423399 68.8% 70.7% 81.3% 67.8% 71.6% 72.1% 83.2% 76.0% 66.3% 

38 0.06712303 69.7% 73.1% 82.2% 66.8% 78.8% 76.4% 87.5% 73.6% 69.2% 

31 0.081604734 67.3% 75.0% 78.4% 67.3% 74.0% 75.5% 80.3% 77.9% 65.9% 

32 0.074393338 73.6% 75.0% 80.3% 65.4% 72.6% 72.1% 84.1% 76.4% 72.6% 

9 

22 0.08962364 73.6% 70.2% 78.4% 66.3% 76.0% 70.2% 79.3% 76.9% 66.3% 

30 0.062019176 72.1% 77.4% 79.3% 65.4% 75.5% 78.4% 83.7% 79.8% 69.2% 

23 0.089152606 68.3% 70.2% 78.4% 65.4% 73.1% 73.6% 80.8% 74.0% 67.8% 

10 

25 0.083410711 75.5% 72.1% 76.9% 67.3% 74.0% 75.0% 80.8% 78.8% 73.1% 

34 0.071585229 69.7% 74.5% 73.6% 66.8% 73.6% 75.0% 80.8% 75.0% 67.3% 

27 0.076225531 62.5% 73.6% 75.5% 70.7% 75.5% 75.0% 79.3% 75.5% 65.9% 

26 0.079361732 74.5% 77.4% 80.3% 64.9% 76.9% 80.3% 85.6% 74.0% 70.2% 
All 

features 60 - 72.6% 76.4% 74.5% 69.2% 76.4% 76.9% 87.0% 72.1% 72.1% 
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4 CONCLUSIONS 

The current work is a wrapper-based Multi-objective 
Bees Algorithm (MOBA) for feature selection. The 
study aim is to propose the first study of MOBA for 
feature selection. The results of four benchmark 
datasets confirm earlier research that feature selection 
is required to reduce dimensionality and yield 
equivalent or superior classification performance. 
However, there are limitations and room for 
improvement because this is the first MOBA study, 
and some issues were not addressed. To begin with, 
the optimal parameter for MOBA has not been 
considered in this study. Second, the largest feature in 
this study is 60 features; thus, this proposed algorithm 
has not been tested on larger datasets. 

Third, the development of MOBA using basic 
combinatorial BA can be improved, for example, 
adding the abandonment strategy, which is a strategy 
in the standard (continues) BA. Fourth, this study has 
not compared with other methods. Future works will 
overcome these four limitations. 
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