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Abstract: Breast cancer (BC) is a lethal disease which causes the second largest number of deaths among women in the 
world. A diagnosis of biopsy tissue stained with hematoxylin & eosin, commonly named BC histopathological 
image, is a non-trivial task which requires a specialist to interpret. Recently, the advance in machine learning 
techniques driven by deep learning techniques and competition datasets has enabled the automation and pre-
diction of histopathological images interpretation. Each different competition dataset has its own state-of-the-
art technique; therefore, this paper explores an avenue of research by merging popular BC histopathological 
images research datasets and searching for the best performing models on the unified dataset. The merging 
process maintains similar classes among the datasets; consequently, the unified dataset has three classes and 
the prediction problem is cast into multi-class classification problem. We propose a combination of Vahadane 
preprocessing technique and training method using progressive resizing approach. Our approach demonstrates 
that both utilizing Vahadane image normalization and utilizing our progressive resizing technique achieve 
around 99% in F1 score , which is comparable among other state-of-the-art models. The unified dataset is also 
provided online for advancing research in histopathological images interpretation.  

1 INTRODUCTION 

Breast cancer (BC) is the cause of the second largest 
deaths among women (Spanhol et al., 2016; Bray et 
al., 2018; McKinney et al., 2020) in the world. Data 
Global Cancer Observatory 2018 from World Health 
Organization (WHO) showed that the most number of 
cancer cases in Indonesia is BC with 58,256 of 
348,809 patients or 16.7% (World Health 
Organization, 2018). However, cancer screening re- 
search encompassing imaging procedures, such as di- 
agnostic mammogram (X-rays), magnetic resonance 
imaging, ultrasound (sonography), and thermography 
has been conducted for more than four decades and 
deemed beneficial to likely lessen number of deaths 
caused by BC significantly (Stenkvist et al., 1978; 
Institute of Medicine and National Research Council, 
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2005; Tabar et al., 2011; Canadian Task Force on 
Preventive Health Care, 2011; Marmot et al., 2013).  

Furthermore, patients with suspected breast 
cancer need to have a biopsy which is frequently used 
to con- firm the diagnosis before treatment is planned 
(Millis, 1984). 

Generally, a biopsy is conducted by taking a 
sample of tissue from a suspicious area. Next, the 
sample is stained with hematoxylin and eosin  (H&E) 
substance used to differentiate a nucleus with a 
parenchyma. The difference can be observed through 
an optical microscope; moreover, the images seen 
through the microscope are captured as giga-pixel 
images and commonly named as whole-slide images 
(WSI) for further digital image processing, such as 
cancer cell segmentation or detection (Aresta et al., 
2019). 
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Biopsy diagnosis from histopathological images 
is considered a gold standard for determining al most 
all types of cancer, specifically BC International 
Agency for Research on Cancer, 2012; David 

 

Figure 1: An image of malignant cells. 

 

Figure 2: An image of benign cells. 

 

Figure 3: An image of normal cells. 

S. Strayer, 2014). Properties of the histo-
pathological images are analyzed by pathologists in 
order to find types of the breast cancers. Figure 1 and 
Figure 2 show malignant and benign cancer cells 
while Figure 3 shows normal cells. 

In developing countries, such as Indonesia, the 
ratio of physician to population is still lower than the 
WHO-recommended figure; moreover, ongoing geo- 
graphical disparities exist which exacerbate the short- 

age of physicians (Asia Pacific Observatory on 
Health Systems and Policies, 2017). With the advent 
of Artificial Intelligence (AI), particularly deep 
learning, there are vast opportunities to help classify 
types of BC with some degrees of automation.  

are datasets which charge the deep learning algo- 
rithms. Fortunately, international research organiza- 
tions such as Pathological Anatomy and Cytopathol- 
ogy (P&D) Laboratorium in Parana, Brazil Spanhol 
et al., 2016), the Institute of Molecular Pathology and 
Immunology of the University of Porto (IPA-
TIMUP) and the Institute for Research and 
Innovation in Health (i3S) in Porto, Portugal (Aresta 
et al., 2019), and Center for Bio-Image Informatics, 
University of California in Santa Barbara, USA 
(Gelasca et al., 2008) have released publicly available 
BC histopathological image datasets. 

Each publicly available dataset has its own char- 
acteristic; furthermore, combining these characteris- 
tics into a unified dataset will make a rich learning 
dataset for deep learning models. A deep learning 
model which learns from the unified dataset will be 
better in generalization on unseen data than the one 
learns from only one dataset (Geron, 2019). 
Therefore, firstly this paper also provides a unified 
dataset as a new publicly available dataset to help this 
research field progress. 

Secondly, the paper initializes a deep learning 
model which functions as a baseline on the new uni- 
fied dataset. After the Vahadane preprocessing tech- 
nique (Vahadane et al., 2016) is applied into our uni- 
fied dataset, we feed the preprocessed dataset into a 
model which employs a progressive resizing ap- 
proach (Howard and Gugger, 2020). Both the 
preprocessing technique and the resizing approach 
are suitable to our problem; hence, the performance 
of our model has soared and put the model among 
state-of-the-art models for BC histopathological 
image classification problem. 

In the remainder of this paper, we first explore 
related work which delves into various datasets and 
relevant BC histopathological image classification 
techniques. Next, we turn our attention to the 
Vahadane preprocessing technique and progressive 
resizing. Finally, we discuss our results and conclude 
with a few general observations and directions for 
future work 

2 RELATED WORK 

The related work of our paper discusses BC 
histopathological images datasets and relevant BC 
classification techniques. 
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2.1 Histopathological Image Datasets 

We have searched and found three publicly accessi- 
ble datasets on the Internet that are BreaKHis (Span- 
hol et al., 2016), BACH (Aresta et al., 2019), and 
UCSB benchmark dataset for bioimaging applica- 
tion (Gelasca et al., 2008). 

The BreaKHis consists of 7,909 BC 
histopathological images taken from 82 patients from 
January 2014 to December 2014 with different 
magnifying factors (40, 100, 200, and 400) (Spanhol 
et al., 2016). Moreover, the numbers of benign and 
malignant cases are 2,480 and 5,429 respectively. The 
benign category includes adenosis (A), fibroadenoma 
(F), phyllodes tumor (PT), and tubular adenoma 
(TA); additionally, the malignant category covers 
ductal carcinoma (DC), lobular carcinoma (LC), 
mucinous carcinoma (MC), and papillary carcinoma 
(PC). Laboratorium P&D (Pathological Anatomy and 
Cytopathology, Parana, Brazil) has published this 
dataset for research purposes. 

The BACH was released as a grand challenge on 
BC histopathological images which is a part of the 
15th International Conference on Image Analysis and 
Recognition (ICIAR 2018). The annotation for the 
dataset was done by pathologists from the Institute of 
Molecular Pathology and Immunology of the 
University of Porto (IPATIMUP) and the Institute for 
Research and Innovation in Health (i3S) (Aresta et 
al., 2019). The histopathological images were 
obtained from patients in Porto and Castelo Branco 
area, Portugal in year 2014, 2015, and 2017. The 
dataset consists of microscopy dataset and whole-
slide images dataset; specifically, the whole-side 
images dataset is used for an image segmentation task 
besides. Our research employs the microscopy dataset 
which categorizes BC cells into 1) benign, 2) 
malignant, 3) in situ carcinoma, and 4) invasive 
carcinoma. Furthermore, the dataset is composed of 
400 training images and 100 test images with equal 
number of images in each category. 

The third dataset is University of California, Santa 
Barbara (UCSB) benchmark dataset for bioimaging 
application (Gelasca et al., 2008). The dataset 
comprises of 58 histopathological images which are 
used for BC histopathological image classification 
task with associated ground truth data available. 

2.2 Histopathological Classification 
Techniques 

Prior work has established several techniques to solve 
BC histopathological images classification problem. 
An early BC histopathological classification 

technique begins with three extracted features from 
images, that are curvelet transform, statistical data 
from Gray Level Co-occurrence Matrix (GLCM), and 
Completed Local Binary Patterns (CLBP) (Zhang et 
al., 2011). Next, these three features construct an 
input layer for Random Subspace Ensemble 
(Skurichina and Duin, 2002). 

The Random Subspace Ensemble in their research 
comprises 20 multi-layer perceptron (MLP) whose 
number of hidden layers are random values in range 
between 30 and 50 inclusively. The accuracy of the 
model has achieved 95.22% on the 3-class (normal, in 
situ carcinoma, and invasive carcinoma) dataset 
released by the Computer Science department of Israel 
Institute of Technology which is, unfortunately, not 
publicly available. 

Other prior work employs a combination of Con- 
volutional Neural Network (CNN) and a Support 
Vector Machines classifier on BACH dataset (Araujo 
et al., 2017). This combination model achieves  
accuracies of 77.8% for four-class and 83.3% for 
carcinoma/non-carcinoma BC classification tasks and 
recall of 95.6%. Another work on BACH dataset 
comes from combining several deep neural networks 
and gradient boosted trees classifiers (Rakhlin et al., 
2018). The model gains 87.2% accuracy and 93.8% 
accuracy for 4-class classification and 2-class 
classification task respectively. Lastly, a work on 
BACH dataset fine-tunes Inception-v3 CNN with a 
strategy for image patches extraction (Golatkar et al., 
2018). The Inception-v3 model acquires accuracy of 
85%  over four classes and 93% for non-cancer 
(normal or benign) vs. malignant (in situ or invasive 
carcinoma). A current state-of-the-art technique, 
which outperforms the previous work by Araujo et 
al. (2017), Rakhlin et al. (2018), and Golatkar et al. 
(2018) forms a new hybrid convolutional and 
recurrent deep neural network enriched with 
multilevel feature representation of image patches 
(Yan et al., 2020). This technique combines the 
strengths of convolutional and recurrent neural 
networks and preserves the short-term and long-
term spatial correlations among the patches. The 
method achieves an average accuracy of  91.3% for 4-
class classification task. Unfortunately,  the dataset of 
this work is not available for outside of China. 

3 RESEARCH METHODOLOGY 

Our research methodology consists of merging the 
dataset, preprocessing the dataset, building the 
baseline, and constructing progressive resizing 
approach. 
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3.1 Merging the Dataset 

Three different datasets (Spanhol et al., 2016; Aresta 
et al., 2019; Gelasca et al., 2008) have different 
classes; therefore, in order to merge those different 
classes, those labels need adjusting. Firstly, the classes 
in BreaKHis dataset are benign and malig- nant. The 
benign class has subclasses: adenosis, fi- broadenoma, 
phyllodes tumor, and tubular adenoma, while the 
malignant class consists of adenosis, fi- broadenoma, 
phyllodes tumor, and tubular adenoma. Secondly, 
BACH dataset have four classes, such as normal, 
benign, in situ carcinoma, and invasive carci- noma. 
Lastly, UCSB benchmark dataset has benign and 
malignant classes. After considering the number of 
classes, we opt to choose three classes, that are 
normal, benign, and malignant. Specifically, both in 
situ carcinoma and invasive carcinoma of the BACH 
are joined into the malignant class of the new unified 
dataset. 

3.2 Color Normalization 

Next, the Vahadane technique which combines 
Sparse Non-negative Matrix Factorization (SNMF) 
and Structure-preserving Color Normalization 
(SPCN) (Vahadane et al., 2016) is applied into our 
images. Particularly, the Vahadane technique solves 
both stain separation and color normalization 
problems. The stain separation problem is cast into a 
non-negative matrix factorization (NMF) with an 
addition of a sparseness constraint. Moreover, the 
color basis of an image is substituted by the one 
of a pathologist-preferred target image. This is the 
algorithm of SPCN whose advantage is to maintain 
the image’s original stain concentrations. The way 
SPCN works is through replacing the color basis of a 
source image with those of a pathologist-preferred 
target image, while still maintaining its original stain 
concentrations. The flexibility to select a preferred 
target appearance in different scenarios as opposed to 
a fixed target color appearance model is another 
advantage of our technique over others such as 
Macenko et al. (2009). 

3.3 Building the Baseline 

ResNet-34 (He et al., 2016) is chosen to be the 
baseline for our experiment because ResNet 
architecture which relies on residual connections is the 
most widely used architecture and proven to be a 
strong baseline among CNN architectures; 
furthermore, recent development in image 
classification models is getting more and more on 

using the same trick of residual connections or 
tweaking the original ResNet architecture (Howard 
and Gugger, 2020). 

3.4 Constructing Progressive Resizing 
Approach 

Progressive resizing approach was one of the most 
important innovations when fast.ai and its team won 
the DAWNBench Competition in 2018 (Howard and 
Gugger, 2020). The idea is very simple, that is to start 
training using small images and finally end the 
training using large images. Training with small 
images for most of the epochs helps finishing the 
training much faster. Additionally, completing 
training with large images achieves a much higher 
final accuracy. Progressive resizing is also another 
strategy of data augmentation. Accordingly, better 
generalization of our models should be expected 
when they are  trained with progressive resizing. 

4 RESULTS 

4.1 The Unified Dataset 

The unified dataset has three classes such as normal, 
benign, and malignant. 

Table 1: Statistics of image sizes which consist of mean, 
standard deviation, minimum, Q1, Q2, Q3, and maximum 
(measurement unit: pixel). 

Statistics Width Height 

Count 8, 367.000 8, 367.000 

Mean 513.540 765.802 

Standard deviation 230.537 287.778 

Minimum 456.000 700.000 

Q1 460.000 700.000 

Q2 (median) 460.000 700.000 

Q3 460.000 700.000 

Maximum 1, 536.000 2, 048.000 
 

Table 1 shows the statistics of our unified dataset. 
Furthermore, 70% of the dataset is chosen randomly 
to be training set and the rest is determined as 
validation set. The code to unify the three datasets can 
be viewed in the github repository. 
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4.2 Normalizing Colors of Images 

We employ StainTools library to do the nor- 
malization. The library can be found at Peter 
Byfield’s github repositorye.  

 

Figure 4: An image before applying Vahadane normaliza- 
tion. 

Figure 4 and Figure 5 show an example of an im- 
age before and after normalization respectively. 
Briefly, normalization is a process of replacing the 
color basis of a source image with those of a 
pathologist-preferred target image, while still 
maintaining its original stain concentrations.  

 

Figure 5: An image after applying Vahadane normalization. 

4.3 Performance of the First Baseline 

ResNet-34 model as a baseline is created by employ- 
ing fast.ai library. Before the model is trained with the 
unified dataset, all images are resized into the mean of 
width and height of  the images that is 514 pixels by 766 
pixels respectively; specifically, the resizing 
technique does not preserve the aspect ratio of the 
images. In addition, the standard of one epoch is used 
to do a fine-tuning process on the pre-trained ResNet-
34 (Howard                  and Gugger, 2020). 
 
 
 

 
e https://github.com/Peter554/StainTools 

Table 2: The F1 scores of the the baseline by fine-tuning 
ResNet-34 pre-trained model (Train = train loss, Valid = 
validation loss; the higher the F1 score is, the better the 
performance of the baseline is). 

Epoch Train Valid F 1 score Time 

0 0.636 0.516 85.547% 19:06 

Epoch Train Valid F 1 score Time 

0 0.104 0.741 83.733% 05:13 

Table 2 displays the performance of ResNet-34 
model. We opt to use F1 score as our performance 
metric since the number of instances in each class 
of our dataset are imbalanced and F1 is the best choice 
for measuring performance on imbalanced datasets 
(Sokolova and Lapalme, 2009). 

4.4 Performance of the Progressive 
Resizing 

To assess the effect of progressive resizing, we con- 
struct another baseline (ResNet-50) based on a data 
augmentation technique, the so-called presizing trick. 
Firstly, we resize all images to dimensions that are 
significantly larger than the target training 
dimensions. Next, we arrange all common 
augmentation operations including a resize to the 
final target size into one big chuck of operation, and 
finally performing the operation on the GPU only 
once at the end of trick. 
The ResNet-50 enhanced with a presizing trick is 
quite a strong baseline (F1 score of 98.443%). How- 
ever, we can still improve the performance of the 
model by using the progressive resizing. Firstly, we 
normalize our input data (Z-normalization) so it has a 
mean of 0 and a standard deviation of 1 and verify the 
effect of Z-normalization on training the model. 

Table 3: The F1 scores of the the second baseline (ResNet- 
50) by using presizing trick (Train = train loss, Valid = 
validation loss; the higher the F1 score is, the better the 
performance of the baseline is). 

Epoch Train Valid F 1 score Time 

0 0.313 0.312 91.196% 03:40 

1 0.213 0.808 74.228% 03:39 

2 0.160 0.089 97.547% 03:38 

3 0.116 0.048 97.976% 03:38 

4 0.079 0.0315 98.443% 03:38 
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Table 4: F1 scores of the the third baseline (ResNet-50) by 
using presizing trick and Z-normalization (Train = train 
loss, Valid = validation loss; the higher the F1 score is, the 
better the performance of the baseline is). 

Epoch Train Valid F 1 score Time 

0 0.578 0.376 93.182% 03:40 

1 0.239 0.249 93.90% 03:40 

2 0.148 0.046 98.384% 03:38 

3 0.092 0.038 98.626% 03:39 

4 0.072 0.037 98.682% 03:38 

 
Table 4 shows utilizing Z-normalization improves 

F1 score a little; however, Z-normalization on input 
data becomes a standard when working with pre-
trained models. Next, we employ the progressive 
resizing approach by starting a training with small 
images (128 pixels by 128 pixels) and ending the 
training using large images (the original image size). 
This approach works because features learned by early 
layers of CNNs are not quite specific to the size of an 
image as the layers find curves and edges. Moreover, 
the subsequent layers may later find shapes such as 
cell shapes. Therefore, changing image size in the 
middle of the training does not mean that the 
parameters of the models are completely different; it 
just requires the models to learn a little bit differently, 
that is by using transfer learning, in other words, fine-
tuning. 

Table 5: F1 scores of finding an optimal learning rate by 
Cyclical Learning Rates method (Train = train loss, Valid 
= validation loss; the higher the F1 score is, the better the 
performance of the baseline is). 

Epoch Train Valid F 1 score Time 

0 0.931 0.963 78.857% 03:21 

1 0.397 0.109 95.593% 03:22 

2 0.198 0.053 97.787% 03:21 

3 0.115 0.042 98.426% 03:20 

 
Table 5 displays the process of finding an 

optimal learning rate by Cyclical Learning Rates 
(Smith, 2017). 

 
 
 
 
 
 
 
 
 

Table 6: F1 scores of fine-tuning ResNet-50 as a part of 
progressive resizing approach (Train = train loss, Valid = 
validation loss; the higher the F1 score is, the better the 
performance of the baseline is). 

Epoch Train Valid F 1 score Time 

0 0.109 0.049 97.117% 03:39 

Epoch Train Valid F 1 score Time 

0 0.081 0.044 98.501% 03:40 

1 0.097 0.033 98.861% 03:39 

2 0.076 0.025 98.981% 03:38 

3 0.060 0.025 98.924% 03:39 

4 0.050 0.022 99.102% 03:38 

 
Table 6 shows that utilizing progressive resizing 

approach achieves F1 score of 99.102%. Although our 
performance cannot be compared to the current state-
of-the-art (Yan et al., 2020) and other previous works 
because of different metrics (Araujo et al.,  2017; 
Rakhlin et al., 2018; Golatkar et al., 2018) and  dataset 
(Yan et al., 2020), to the best of our knowledge, the 
performance of our approach is among the highest BC 
classification model considering its nearly perfect F1 
score. Source codes of our approach are publicly 
available at our github repository. 

5 CONCLUSIONS 

We have created a unified dataset merged from three 
popular datasets and propose the dataset for 
advancing research in BC classification field. 
Moreover, in addition to the dataset contribution, we 
also provided a strong model using progressive 
resizing approach whose F1 score is 99.102%. We 
argue that our model is comparable among other state-
of-the-art models for the dataset. 
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