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Abstract: This work describes a comparative approach between the two back-propagation algorithms: the Levenberg-
Marquardt (LM) and the Broyden Fletcher Goldfarb Shanno (BFGS); For the prediction of Fluoride in the 
Inaouène basin, using artificial neural networks (ANN) of the multilayer perceptron type (MLP), from the 
concentrations of sixteen physicochemical parameters. We have developed several models based on the 
evolution of combinations of activation functions and neurons number in the hidden layer. The performance 
of the different ANN model training algorithms was evaluated using the mean square error (MSE) and the 
correlation coefficient (R). The evaluation shows that the LM training algorithms perform better than the 
BFGS training algorithm. The results obtained demonstrate the efficiency of the LM algorithm for the 
prediction of Fluoride compared to the BFGS algorithm by MLP type neural networks, as shown by the 
statistical indicators ({R = 0.99 and MSE = 0.135 for LM} and {R = 0.95 and MSE = 41.22 for BFGS}). 

1 INTRODUCTION 

The most popular learning algorithm is Back-
propagation (BP) (Rumelhart et al., 1986), and it is 
the most common and widely used supervised 
training algorithm for solving approximation 
problems, recognition of shapes, classifying and 
discovering patterns, and making predictions from 
data, and other well-known issues. Based on 
statistics, data mining, pattern recognition, and 
predictive analyzes. The BP algorithm(BPA)   is the 
most widely used example of supervised learning 
because of the media coverage of some spectacular 
applications, such as the demonstration of Sejnowski 
and Rosenberg (1987) and Adamson and 
Damper(1996), in which BPA is used in a system that 
learns to pronounce a text in English(Adamson & 
Damper, 1996; Sejnowski & Rosenberg, 1987). 
Another success was the prediction of stock market 
prices (Refenes & Azema-Barac, 1994) and, the 
Comparative study of different artificial neural 
network (ANN) training algorithms for atmospheric 
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temperature forecasting in Tabuk, Saudi Arabia 
(Perera et al., 2020) and, more recently, a study on 
cumulative hazards evaluation for the water 
environment(Shi et al., 2021). 

The gradient BP technique is a method that 
calculates the error gradient for each Neuron in the 
network, from the last layer to the first. The 
publication history shows that BPA has been 
discovered independently by different authors but 
under different names. The principle of BP can be 
described in three basic steps: routing information 
through the network; BP of sensitivities and 
calculation of the gradient; and adjust the parameters 
by the approximate gradient rule. It is important to 
note that BPA suffers from the inherent limitations of 
the gradient technique because of the risk of being 
trapped in a local minimum. If the gradients or their 
derivatives are zero, the network is trapped in a local 
minimum. Add to this the slowness of convergence, 
especially when dealing with large networks 
(Govindaraju, R. S., Rao, 2000) (i.e., for which the 
number of connection weights to be determined is 
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essential). To make the optimization more efficient, 
we can use second-order methods such as the so-
called Quasi-Newton or modified Newton methods. 

2 SECOND-DEGREE 
OPTIMIZATION METHOD 
(QUASI-NEWTONIAN 
METHODS) 

2.1 Levenberg-Marquardt  
Back-Propagation Method (LM) 

The LM algorithm is a variation of Newton's method 
(Basterrech et al., 2011), which was designed for 
minimizing functions that are sums of squares of non-
linear functions (Bishop, 2006; Dreyfus, 2005). This 
is very well suited to artificial neural network (ANN) 
training; this is known to be very efficient when 
applied to ANN (Ampazis & Perantonis, 2000; Hagan 
& Menhaj, 1994), where the root mean square error is 
the performance index. Newton's; update for 
optimizing a performance index F(x) is

1
1k k k kx x A g
   where 2 ( )

k
k x x

A F x


   and 

( )
k

k x x
g F x


    

  supposing that F(X) is a sum of the square function                   

                            (1) 
therefore the j th element of the gradient is

              (2) 
The gradient is written in matrix form  

                                        (3) 
where(Chen & Zhang, 2012) 

        (4) 
 
it is the Jacobian matrix. to determine the Hesse 
matrix, the element k, j of this matrix would be 
 

 
(5) 

 
 
The Hessian matrix can then be expressed in matrix 
form 

                 (6) 

Where:                   (7) 
If S(x) it is assumed to be minor, the Hessian matrix 
can be approximated as 

                        (8) 

Substituting (8) and (3) into 1
1k k k kx x A g
   , the 

Gauss-Newton method is obtained(Scales, 1985) 

    (9) 
   From this, the advantage of the Gauss-Newton 
method over Newton's standard method is that it does 
not require the calculation of second-order 
derivatives.  A problem with the Gauss-Newton 

method is that the matrix 
TH J J  may not be 

invertible. This can be overcome by using the 
following modification to the approximate Hessian 
matrix:  G H I    

   
To make this matrix invertible, we first assumed that 
the eigenvalues and the eigenvectors of H are 

respectively the following:  1 2, ,..., n   and 

 1 2, ,..., nz z z .  

Then 

𝑮𝒛௜ ൌ ሾ𝑯 ൅ 𝜇𝑰ሿ𝒛௜ ൌ 𝑯𝒖௜ ൅ 𝜇𝒛௜ 
ൌ 𝜆௜𝒛௜ ൅ 𝜇𝒛௜ ൌ ሺ𝜆௜ ൅ 𝜇ሻ𝒛௜                          (10) 

herefore, the eigenvectors of G are the same as the 
eigenvectors of H, and the eigenvalues of G are 

( ).j G   can be made positive definite by       

increasing   until ( ) 0j    for all is,  
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This algorithm has a helpful feature that as k  is 

increased, it approaches the steepest descent 
algorithm with a small learning rate. 

  (13) 

for large k and if k  is decreased to zero, the 

algorithm becomes Gauss-Newton.  

The algorithm begins with k  a set to some small 

value (e.g., 0.01k   ). If a step does not yield a 

smaller value for F(x) then the step is repeated with 

k  multiplied by some factor 1( . . 10)e g   . 

Eventually; F(x) should decrease, as a small step is 
taken in the direction of the steepest descent. If the 

step does produce a smaller value for F(x) then k  is 

divided by   for the next step, so that the algorithm 
will approach Gauss-Newton, which should provide 
faster convergence.  

2.2 Broyden-Fletcher-Goldfarb-Shanno 
Back- Propagation Method (BFGS) 

Newton's method is based on a quadratic 
approximation instead of a linear approximation of 
the function F(x). The following approximate 
solution is obtained at a point that minimizes the 
quadratic function: 

 (14) 

The sequence obtained is 1
1k k k kx x A g
     

The main advantage of Newton's method is that it has 
a quadratic convergence rate, while the steepest 
descent has a much slower, linear convergence rate. 
However, each step of Newton's method requires a 
large amount of computation. Assuming that the 

problem’s dimensionality is N an 3( )O N  the 

floating-point operation is needed to compute the 

search direction 
kd . A method that uses an 

approximate (Goldfarb, 1970) Hessian matrix in 
computing the search direction is the quasi-Newton 

method. Let kH , be an N*N symmetric matrix that 

approximates the Hessian matrix kA ; Then the 

search direction for the quasi-Newton method is 
obtained by minimizing the quadratic function: 

 (15) 

      If kH it is invertible, a descent direction can be 

obtained from the solution of the quadratic program: 

                    (16) 

As the matrix, kH  is to approximate the Hessian of 

the function F(x) at kx x  it needs to be updated 

from iteration to iteration by incorporating the most 
recent gradient information. 

The matrix kH  is updated according to the 

following equation(Battiti, 1992; Battiti & Masulli, 
1990): 

 1
k k k k k k

k k
k k k k k

y y H s s H
H H

y s s H s   
• •

• •          (17) 

Where 1 1;k k k k k ks x x y g g                  (18). 

2.3 Collection of Data 

TAZA is a city located in the northeast of Morocco in 
the Taza corridor, a pass where the Rif and Middle 
Atlas Mountains meet. Apart from the "corridor" 
formed by the valley of the Wadi Inaouen and the 
plain of Guercif, the rest of the province is dominated 
by mountains. Indeed, the province occupies the area 
which connects the Rif to the Middle Atlas, the two 
mountain ranges narrowing at the level of the 
Touaher pass (559 m above sea level). The Inaouen is 
a Moroccan river, that forms near the city of TAZA, 
by the confluence of the Boulejraf and Larbaâ wadis, 
and borrows from east to west the breach of Taza, 
which marks the limit between the Rif and the Middle 
Atlas. 

Our database consists of 100 surface water 
samples (notes) taken in the governorate of Taza (The 
Inaouen watershed), between the periods 2014 to 
2015, and the collection, transport, and storage of 
water samples refer to the protocol and procedures, it 
was required by the National Bureau of Drinking 
Water. Part of the analysis was carried out on-site 
(temperature, dissolved oxygen, etc.). The rest was 
done in the Regional University Interface Center 
(CURI), backed by the Sidi Mohamed Ben Abdellah 
University (USMBA) in Fez. 
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2.4 Reduction and Preprocessing of 
Data 

2.4.1 Selection of Inputs 

Use The independent (explanatory) variables are the 
physical-chemical characteristics determined in these 
samples, which are sixteen: Temperature (T ° C), pH, 
dissolved oxygen (DO), Conductivity (Cond), total 
dissolved solids (TDS) ), Bicarbonate (HCO3), Total 
Alkalinity (as CaCO3), Magnesium (Mg), Sodium 
(Na), Potassium (K), Chlorides (Cl), Calcium (Ca), 
Sulfates (SO4), Nitrate (NO3), Phosphorus (P) and 
Ammoniacal nitrogen (NH4), 

The dependent variable (to be predicted), it is 
Fluoride (F). 

The distribution of the database is as follows: 70% 
of the samples, chosen at random, from the totality of 
the samples, for the learning phase of a predictive 
model of the dependent variable. The remaining 30% 
samples were used to verify network performance and 
to avoid over-learning. This is to test the validity and 
performance of the prediction of these models (15% 
for the test and 15% for the validation). 

2.4.2 Data Formatting 

 Normalization is a method of preprocessing data that 
helps reduce the complexity of models. The input data 
(16 independent variables) are raw, untransformed 
values. They have very different orders of magnitude. 
In order to standardize the measurement scales, these 
data are converted into standardized variables. 
Indeed, the values of each independent variable (i) 
have been normalized with respect to its means and 
its standard deviation according to the relation:𝑋ሺ𝑣௜ሻ 
(Abdallaoui et al., 2015; Bayatzadeh Fard et al., 2017; 
Patro et al., 2015) 

Xୱሺ𝑣௜ሻ ൌ ቀ
ଡ଼ሺ௩೔ሻି௑തሺ௩೔ሻ

஢ሺ௩೔ሻ
ቁ                   (19) 

With:  
Xୱሺ𝑣௜ሻ: Standardized value relating to the variable i.  
Xሺ𝑣௜ሻ: Observed value relating to variable i. 
  𝑋തሺ𝑣௜ሻ: Average value relating to variable i. 

𝑋തሺ𝑣௜ሻ ൌ
ଵ

ଵ଴଴
∑ 𝑋௞ሺ𝑣௜ሻ

ଵ଴଴
௞ୀଵ                                       (20) 

σሺ𝑣௜ሻ: standard deviation relating to the variable i. 

σሺ𝑣௜ሻ ൌ ට ଵ

ଵ଴଴
∑ ሺ𝑋௞ሺ𝑣௜ሻ െ 𝑋തሺ𝑣௜ሻሻଶଵ଴଴

௞ୀଵ                  (21)                                          

The purpose of normalizing the values for all 
variables is to avoid very large or minimal 
exponential calculations and to limit the increase in 
variance with the mean. 
The values corresponding to the dependent variables 
were also normalized in the interval [0;1] to fit the 

requirements of the transfer function used by neural 
networks. This normalization was carried out 
according to the relation: 

𝐘୬ ൌ ቀ
ଢ଼ିଢ଼ౣ౟౤

ଢ଼ౣ౗౮ ିଢ଼ౣ౟౤
ቁ                                 (22)       

With: 
Y୬ : Standardized value;  
Y :    Original value; 
Y୫୧୬ : Minimum value; 
Y୫ୟ୶  : Maximum value. 

2.4.3 Neural Network Implementation with 
MATLAB 

The multilayer perceptron (MLP) type networks are 
much more potent than simple single-layer networks. 
The network used in this study consists of three 
layers: an input layer, a hidden layer, and an output 
layer. The number of neurons in the hidden layer is 
not fixed a priori. This is determined during learning. 
The neural network simulations were performed 
using MATLAB 2018 software. 

The implementation of multilayer neural 
networks has two parts of the design: determining the 
architecture of the network, and an optimization 
numerical calculation part. This calculation is the 
determination of the synaptic coefficients and the 
updating of these coefficients by a supervised 
learning algorithm. The algorithm chosen for our 
study is the LM and BFGS algorithm. These two 
algorithms seek to minimize, by non-linear 
optimization methods, a cost function (the mean 
squared error (MSE)) which constitutes a measure of 
the difference between the actual responses of the 
network and its desired responses. This optimization 
is done iteratively by modifying the weights as a 
function of the gradient of the cost function: the 
gradient is estimated by a specific method to neural 
networks, called the BP method. It is used by the 
algorithm optimization. The weights initialize 
randomly before learning. 

2.4.4 Evaluation of Performances 

 For the evaluation of the quality of our predictive 
model, and the judgment of these performances, 
MATLAB 2018 uses the function of cost, which is 
most often used in statistics, and called the least-
squares criterion, and consists of minimizing the sum 
of the squares of the residuals, in this case, the 
network will learn a discriminant function. The mean 
squared error (MSE) is simply given by the sum of 
the differences between the target values and the 
expected outputs defined for the training set. The 
result of the evaluation is expressed in two ways: by 

 1......16i 
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statistical indicators and by examining graphs. The 
indicators used in this study are the correlation 
coefficient (R) and the mean squared error (MSE), 
which are defined as follows: 
 The correlation coefficient: 

              (23) 
The mean squared error (MSE)  

                  (24) 

With obs
iY is the observed (actual) value of the 

studied metal, predi
iY   is the estimated value of the 

metal by the model at observation i, Y is the mean 

value. The best prediction is when R  on the one 

hand and SSE, on the other hand, tends towards 1 and 
0, respectively.  

3 RESULTS AND DISCUSSION 

 Tests have shown us that to improve the performance 
of a model established by MLP (Multilayer 
Perceptron) type neural networks, we must modify 
the architecture of the network, we change the 
number of hidden layers, or the number of hidden 
neurons and, or the number of training cycles 
(number of iterations). For this, we successively 
modified the number of hidden neurons (NHN = 1, 2, 
3, ..., 15). In this study, we used two learning 
algorithms, called high-performance algorithms LM 
and BFGS. For each learning algorithm, we changed 
the number of neurons in the hidden layer and the 
pairs of transfer functions. Performance was assessed 
using the mean square error (MSE) and the 
correlation coefficient (R). The algorithms are 
implemented and developed in a computer with the 
MATLAB 2018 platform. The processor of the 
computer is an Intel Core i5-7200U CPU 2.50GHZ 
processor, 4 GB RAM. 

3.1 Training ANN with LM   
Algorithm 

Table 1 represents the best performance found for the 
different combinations of transfer function pairs for 
the LM algorithm; they converge quickly and result in 

low values of the mean square error MSE and high 
values of the correlation coefficient R in a time of no 
more than a few seconds. 

Table1: Recap of the best architectures offered by Matlab 
for prediction fluoride with algorithm LM.   

Hidden
layer 

Output 
layer 

R MSE Architecture Number of 
iterations

Tansig Tansig 0,980 33.96 [16-3-1] 11 

Tansig Logsig 0,994 26.14 [16-4-1] 15 

Tansig Purelin 0,910 95.12 [16-5-1] 9 

Logsig Logsig 0,911 92.31 [16-6-1] 12 

Logsig Purelin 0,970 41.4 [16-7-1] 18 

Logsig Purelin 0,999 0.135 [16-8-1] 22 

 
From this table, we note that: 

* The [16-8-1] architecture, with a Logsig function for 
the input layer and a Purelin function for the output 
layer, gave the best performance for the LM 
algorithm: R=0.99 and MSE=0.135. 

 * The LM algorithm converges with the minimum 
number of iterations (22iterations) for all 
combinations of transfer functions; this algorithm is 
reputed to be very efficient in the approximation of 
functions, mainly when the network contains less than 
a hundredweight to be updated, which is the case here. 

The network reached overtraining after 22 iterations; 
it is interesting to keep learning until this stage for the 
test to reduce the gradient and improve our network 
(Figure.3). From the obtained results in Figure.2; 3, 
and 4, we note the different values of training 
parameters found in this study: 

• Maximum number of iterations (Epochs) = 22 

• coefficients of determination = 0.99 

• Mean square error (MSE) = 0.135 

• Rate of learning (Mu) = 0.0001 

• Gradient minimum = 0.875 
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Figure 1: Trend line showing the relationship between the 
observed values and values estimated by the MLP model 
with algorithm ML for fluoride for the training and test 
phase 

 

Figure 2: evolution of the error gradient, the learning rate 
and the validation error (for fluoride) as a function of the 
number of iterations. 

Figure.3 describes network training. It shows that at 
the end of the sixteenth iterations, the desired result is 
achieved. With eight hidden neurons, the three curves 
relating to the evolution of the mean square error of 
the three phases converge correctly to the minimum 
mean square error (MSE) 

 
Figure 3: the representative graph concerning the 
development of the mean square error for a network 
architecture [16-8-1].  

3.2 Training ANN with BFGS 
Algorithm 

Table 2 represents the best architecture found for the 
different combinations of transfer function pairs for 
the BFGS algorithm.  

Table 2: Recap of the best architectures offered by Matlab 
for prediction Fluoride with algorithm BFGS.   

Hidden 
layer 

Output 
layer 

R MSE Architecture Number of 
iterations 

Tansig Tansig 0,920 82.16 [16-3-1] 180 

Tansig Logsig 0,916 100.85 [16-4-1] 215 

Tansig Purelin 0,901 111.12 [16-5-1] 149 

Logsig Logsig 0,953 41.22 [16-6-1] 222 

Logsig Purelin 0,932 63.12 [16-7-1] 482 

Logsig Purelin 0,945 48.45 [16-8-1] 237 

 
From this table, we note that: 
- The [16-6-1] architecture, with a Logsig function for 
the input layer and a Purelin function for the output 
layer, gave the best performance for the Broyden-
Fletcher-Goldfarb-Shanno algorithm and her indicator 
statistical (R=0.95 and MSE=41.22) 

The network reached overtraining after 222 
iterations; it is interesting to keep learning until this 
stage for the test, to minimize the gradient and 
improve our network (Figure 6). According to the 
results obtained in Figures 5; 6 and 7, we note the 
different values of the training parameters found in 
this study: 

• Maximum number of iterations (Epochs) = 222 

• coefficients of determination = 0.95 

• Mean square error (MSE) = 41.22 
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• Gradient minimum = 66.96 

 

Figure 4: Trend line showing the relationship between the 
observed values and values estimated by the MLP model 
with algorithm BFGS for fluoride for the training and test 
phase. 

 

Figure 5: evolution of the error gradient, the learning rate 
and the validation error (for fluoride) as a function of the 
number of iterations. 

Fig.6 describes network training. It shows that at the 
end of the 216 iterations, the desired result is achieved. 
With six hidden neurons, the three curves relating to 
the evolution of the mean square error of the three 
phases converge correctly to the minimum mean 
square error (MSE=41.28). 

 

Figure 6: the representative graph concerning the 
development of the mean square error for a network 
architecture [16-6-1]. 

Figures 3 and 6 give the mean square error (MSE) 
values for LM algorithm of ANN. The LM algorithms 
showed a lowest MSE value at the point of 
convergence.  However, the BFGS algorithm took 
more epochs (216) to converge to the smallest MSE 
(41.22). compared to the LM algorithms training.   
Nevertheless, the LM algorithm took only 16 epochs 
to reach 0.135 MSE. 

4 CONCLUSIONS 

Artificial neural networks are potent tools for 
prediction. They can deal with non-linear problems. 
However, they have a significant drawback in the 
choice of network architecture, as this choice often 
belongs to the user. In our study, we have developed 
several models based on the two learning algorithms 
LM and BFGS, which are qualified as high-
performing. The results obtained show that the LM 
algorithm has the best performance in terms of 
statistical indicators (R=0.99 and MSE=0.135) and 
convergence speed (22 iterations). Indeed, the model 
established by the ML algorithm allows 
improvements of up to 4% in the explanation of the 
variance compared to that established by the BFGS 
algorithm. The evaluation shows that the LM training 
algorithms perform better than the BFGS training 
algorithm.  

Consequently, the analysis results demonstrate 
that the LM algorithm has a more efficient approach 
than the BFGS for prediction of the Fluoride in 
Inaouen basin.  However, the BFGS algorithm can be 
viewed as a best substitute method.  
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In perspective, we can continue in the 
development of this subject through the following 
suggestions: 

 Work on other types of networks such as 
recurring networks. 

 Use other activation function. 
 The results obtained prompt us to reflect 

subsequently on the method which makes it 
possible to improve the work accomplished 
so far. It would be very interesting for 
example to use other algorithms. 

 Moreover, the models are based on actual 
measured data.  As a result, they can also be 
used to predict future Fluoride 
concentrations as a function of 
physicochemical parameters. 

 Test another RNA architecture to see which 
architecture provides a better result. 
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