
Comparative Study of Convolutional Neural Networks-based 
Algorithm for Fine-grained Car Recognition 

Joseph Sanjaya a, Mewati Ayub b and Hapnes Toba c 
Faculty of Information Technology, Maranatha Christian University, Jl. Surya Sumantri 65, Bandung, Indonesia 

Keywords: Convolutional Neural Networks Model, Object Recognition, Vision Machines. 

Abstract: The use of the Deep-Learning model for object recognition in vision machines has been widely applied. 
Convolutional Neural Network (CNN) is one of the algorithms which has achieved a significant progress in 
object recognition task. An algorithm that has good accuracy and speed is required to recognize a car 
specification. This research presents a comparative study of several CNN models for car recognition. This 
study is a continuation of previous study about data augmentation in car image recognition using ResNet 
architecture. In this study, the CNN architectures which are used in comparison, are ResNet, SqueezeNet, and 
EfficientNet. The aim of this study is to find an architecture with optimal performance in car recognition. The 
dataset used is a Cars Dataset provided by Stanford University. The methods consist of data pre-processing, 
model training and hyper parameter tuning, inferences and comparison. The metrics which were used during 
the experiments are accuracy, model size, and speed. Training of each model was performed using computer 
with the same specification. The experimental results indicate that EfficientNet model gives the best result 
among other models in the context of accuracy, model size, and speed. 

1 INTRODUCTION 

The development of technology nowadays runs so 
fast, many vision machines have supported human 
life. Convolutional Neural Networks (CNNs) is an 
algorithm that has achieved significant progress for 
vision machine's tasks, which are image 
classification, objective detection, and semantic 
segmentation. CNN algorithm has a strong ability in 
feature extraction for an image. The algorithm is often 
used in object recognition task, including car model 
recognition.   

Using vision machines, smart transportation can be 
implemented in daily life. An intelligent 
transportation system is an implementation of IoT 
(Internet of Things) which is integrated with 
information technology and an automatic control 
system. This system can be implemented in the road 
traffic management system to control the traffic in 
real-time more accurately (Ke, Shi, Guo, & Chen, 
2019). An electronic police system is an 
implementation of smart transportation, which uses 

 
a  https://orcid.org/0000-0002-0574-9147 
b  https://orcid.org/0000-0003-2584-4317 
c  https://orcid.org/0000-0003-0586-8880 

technology to identify vehicle license plates. The 
identification of license plate can be used to recognize 
vehicle that violates traffic rules.  

In recognizing vehicles more accurately, the 
license plate identification is not enough, it should be 
equipped with a vehicle recognition system (Ke & 
Y.Zhang, Fine-grained vehicle type detection and 
recognition based on dense attention network, 2020). 
CNN model is required in object detection with good 
accuracy and fast speed. The model should still work 
in traffic disorderly conditions. Based on the 
requirements, in this study, some object recognition 
using CNN algorithms will be explored and evaluated 
according to the accuracy, speed, and model size of 
each algorithm. 

This research is a continuation of a previous study 
about data augmentation in car image recognition 
using ResNet architecture (Sanjaya & Ayub, 2020). 
The aim of this study is to obtain a method to 
implement CNN architectures in car recognition, and 
to compare the architectures based on accuracy, 
speed, and model size metrics. The CNN 
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architectures used in the comparison, are ResNet, 
SqueezeNet, and EfficientNet. 

The CNN architectures are chosen regarding the 
advantages of each architecture in object recognition. 
ResNet architecture has good stability and accuracy 
(Zhang & Schaeffer, 2020), SqueezeNet architecture 
has a small model size, so the architecture is suitable 
for use with IoT (Lee, Ullah, Wan, Gao, & Fang, 
2019). EfficientNet architecture has good accuracy 
and speed with efficient processing power (Tan & Le, 
2019).  

The dataset used is the same dataset used in a 
previous study (Sanjaya & Ayub, 2020), which is a 
Cars Dataset provided by Stanford University, which 
contains 16,185 images of 196 car classes. The 
composition of training data and test data is fifty-fifty. 
The result of this study is a CNN deep learning model 
for each architecture, that can classify a car model and 
performance analysis of each model. 

The initial hypothesis of each architecture in object 
recognition will be explained as follows. CNN model 
of ResNet 152 architecture has a deep layer, so it 
should recognize complex features properly (He, 
Zhang, Ren, & Sun, 2016). It can be assumed that a 
model based on this architecture would have better 
accuracy. Regarding the deep layer, this model would 
have less good speed and model size. 

CNN model of SqueezeNet architecture has a wide 
layer so it should recognize more features with not 
deep layers (Lee, Ullah, Wan, Gao, & Fang, 2019). It 
can be assumed that a model based on this 
architecture would have a good model size and speed 
training with trade-off accuracy.  

CNN model of EfficientNet architecture is 
obtained from neural network searching against 
efficiency and accuracy (Tan & Le, 2019). It can be 
assumed that a model based on this architecture 
would have good and efficient performance. 

2 METHODS  

2.1 Research Design 

The study uses data augmentation in the previous 
study (Sanjaya & Ayub, 2020) to analyze the three 
architectures. Performance of CNN model of three 
architectures would be measured based on model size, 
speed, and accuracy metrics. Figure 1 shows the 
stages of the methodology. The flow of the processes 
is input data, data preprocessing, training model, 
hyper parameter tuning, inferences and comparison. 

Data input to this study is car images from  
Stanford Cars Dataset (Krause, Stark, Deng, & Fei-

Fei, 2013). Data preprocessing is required to 
transform raw image data into prepared data. Data 
preprocessing is performed using data augmentation, 
that are random crop, rotate, and mixup (Sanjaya & 
Ayub, 2020). 

CNN model based on ResNet, SqueezeNet, dan 
EfficientNet architectures is used as a feature 
extraction process. The model will be optimized 
using hyper parameter tuning, which focused on the 
optimal learning rate parameter. Statistical analysis 
will be used in comparative analysis to determine the 
optimal model based on accuracy, speed, and model 
size metrics. 

Accuracy metric in classification is measured 
based on formula (1) (Han, Kamber, & Pei, 2012): 

 
accuracy = (TP + TN)/(P+N) (1)

 
Where: TP is the number of true positives; TN is the 
number of true negatives; P is the number of positives 
tuples, and N is the number of negative tuples.  

Speed metric is required to compare time 
efficiency and computation power for each CNN 
model (Ning, Guan, & Shen, 2019) . Speed metric is 
measured from the time needed for executions in 
minutes.  

Model size metric in deep learning can be 
measured based on the width and the depth of neural 
network. The metric is important, when model size 
increases caused of the expansion of input size. 
Adjustment of image data and model in memory 
between CPU and GPU causes the training time to 
increase. There is a trade-off between speed and 
model size (Deng, Li, Han, Shi, & Xie, 2020). 

2.2 Hardware Specification 

In order to give balanced results, hardware 
specification used in model training and execution 
should have the same strength, mainly GPU, CPU, 
and RAM. Table 1 shows the hardware specification. 

2.3 Model Training 

In order to give balanced results, hardware 
specification used in model training and execution 
should have the same strength, mainly GPU, CPU, 
and RAM. 

Hyper-parameter tuning will be explored in the 
beginning of experiments. Deep learning parameters 
which tuned are learning rate and batch size (Smith, 
2018). In contrast to learning rate, batch size will 
affect time of training model, because batch size is 
limited by hardware memory.  
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Figure 1: Research Design 

Smith recommended to using the largest batch size 
that could be accommodated by hardware memory. 
The recommendation allows to utilize larger learning 
rate (Smith, 2018). When training is executed on a 
server with several GPUs, batch size total is 
calculated as batch size on each GPU multiplied by 
the number of GPU.  

Based on the batch size, experiments are performed 
from the largest one until the smallest one, until Out-
of-Memory (OOM) error is not occurred. The 
experiments are executed from batch size 248 and 
decreased by 24 per step up to no OOM error. The 
results on ResNet 152 model can be seen on Table 2. 

From the Table 2, the hardware specification on 

Table 1 is only able to run the training with batch size 
32. This is caused by image resolution size (300px to 
1500px) and ResNet 152 architecture, which require 
large memory size. 

Underfitting is a condition when machine learning 
model cannot decrease error, both in training and 
testing phase. On the other side, overfitting is a 
condition when machine learning model is too strong, 
so generalization error increases (Smith, 2018). 
Figure 2 shows trade-off between underfitting and 
overfitting. If learning rate (LR) is too small, then 
overfitting will be happened. Large learning rate will 
support training regularization, but if learning rate is 
too large, training will be cluttered. 

The results of batch size hyper parameter tuning of 
SqueezeNet and EfficientNet model can be seen on 
Table 3. On the Table 3, the hardware specification 
on Table 1 is only able to run the training with batch 
size 56. ResNet 152 model are different from 
SqueezeNet model, which has a wide CNN 
architecture, so SqueezeNet can capture features with 
smaller memory. EfficientNet model has the same 
batch size as SqueezeNet.  

Table 1: Batch size hyper-parameter tuning of ResNet 152. 

# Batch size Status 
1 248 OOM 
2 224 OOM 
3 200 OOM 
4 176 OOM 
5 152 OOM 
6 128 OOM 
7 104 OOM 
8 80 OOM 
9 56 OOM 
10 32 Success 

 

 

Figure 2: Model Complexity (Smith, 2018). 
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Table 2: Hardware specification. 

Name of GPU GTX 1080 Max - Q
Memory Type Memory Capasity GPU Clock Memory Clock Boost Clock 

GDDR5X 8192MB 1297 MHz 1251 MHz 1436 MHz 
Name of CPU Intel Core i7 7700HQ

Lithography 
technology 

Clock Speed Cores Threads 

14 nm 2.80 GHz 4 8 
Name of RAM SAMSUNG 19FAC364

Type Channel Memory Capasity Maximum Bandwidth 
DDR4 Dual 16 GB 1200 MHz 

 
Table 3: Batch size hyper-parameter tuning of SqueezeNet 
and EfficientNet.  

#Exp. Batch size SqueezeNet EfficientNet 
1 248 OOM OOM 
2 224 OOM OOM
3 200 OOM OOM
4 176 OOM OOM
5 152 OOM OOM
6 128 OOM OOM
7 104 OOM OOM
8 80 OOM OOM
9 56 Success Success

10 32 Success Success 

3 RESULTS AND DISCUSSION 

At each batch, neural network would be trained with 
increased learning rate exponentially. Training batch 
was divided into two different experiments in order to 
obtain an optimal learning rate interval (Smith, 2017). 

Hyper parameter tuning experiment of learning 
rate on ResNet 152 model is executed using fast.ai 
package (function lr_find()). Figure 3 shows 
visualization between loss and learning rate from the 
first experiment. 

 

Figure 3: Learning rate of ResNet 152 model (first 
experiment). 

In Figure 3, an optimal learning rate interval 
happened when the loss function declined quickly, so 
the best learning rate resulted from the first 
experiment is an area that has small loss, that is, from 
1e-02 to 1e-01. The result of training using those 
learning rates can be seen on Table 4.  

Table 4: Experiment of training LR range for Resnet 152-
1. 

Epoch Train Loss Valid Loss Accuracy 

1 4.325618 3.377519 0.240172 

2 3.174334 3.768307 0.180590 

3 3.214476 3.275414 0.264128 

4 2.790483 2.558635 0.358722 

5 2.484006 2.819357 0.330467 

6 2.116244 2.070632 0.455774 

7 1.857780 1.635659 0.567568 

8 1.557437 1.435014 0.610565 

9 1.276098 1.072250 0.700246 

10 1.024269 0.921169 0.748157 

11 0.793735 0.812245 0.773956 

12 0.634392 0.745959 0.787469 

13 0.519093 0.704684 0.800983 

14 0.503253 0.703171 0.802211 

 
In Table 4, model training is performed until epoch 

14, because the result after epoch 14 trends to 
convergent. The training resulted good accuracy 
performance.  
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Figure 4: Learning rate of ResNet 152 model (second 
experiment). 

Figure 4 shows results from second experiment 
training of ResNet 152, with LR from 1e-7 to 1e-6. 
The result of training using those learning rate can be 
seen on Table 5, which shows better accuracy 
(82.55%). 

Table 5: Experiment of training LR range for Resnet 152-
2. 

Epoch Train Loss Valid Loss Accuracy
1 0.966993 1.169178 0.699017
2 1.463537 1.227771 0.680590
3 1.152164 0.982462 0.732187
4 0.871343 0.710956 0.798526
5 0.589137 0.630260 0.818796
6 0.456042 0.602334 0.825553

 
Model evaluation was conducted using Test Time 

Augmentation (TTA). TTA performed data 
augmentation as neural transfer style, flipping 
images, cropping to test dataset. After the model 
predicted class label of augmented test data, scores 
were collected to calculate final prediction of origin 
images (Nalepa, Myller, & Kawulok, 2020). The 
results can be seen in Table 6. 

For further observations, experiments were 
conducted on images which are top losses and most 
confused to the model. Classification results of top 
losses on ResNet 152 model can be seen in Figure 5. 

Table 6: Model evaluation of ResNet 152. 

Metrics Value
Accuracy (%) 82.95

Model size (MB) 208.06
Speed (Minutes) 24:45

 

 

Figure 5: Classification result of ResNet 152 top losses 
data. 

Figure 6 shows classification results of most 
confused of Resnet 152 model. In Figure 7, the best 
learning rate resulted from the first experiment of 
SquuezeNet model is an area that has small loss, that 
is from 1e-02 to 1e-01. The result of training using 
those learning rate can be seen on Table 7.  

In Table 7, model training is performed until epoch 
14, because the result after epoch 14 trends to 
convergent. The training resulted bad accuracy 
performance. The second experiment was executed to 
get better accuracy. Figure 8 shows the best learning 
rate resulted from the second experiment, which is an 
area that has small loss, that is from 1e-06 to 1e-05. 
The results of second experiment training can be seen 
on Table 8, which shows better accuracy (57.24%). 
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Figure 6. Classification result of ResNet 152 most confused 
data. 

Table 7: Experiment of training LR range for SqueezeNet-
1. 

Epoch Train Loss Valid Loss Accuracy
1 6.163468 4.424913 0.100737
2 4.999869 3.619730 0.191646
3 4.526335 3.339163 0.245086
4 4.119049 2.996984 0.306511
5 3.798199 2.778760 0.343980
6 3.601222 2.588148 0.378378
7 3.468006 2.527634 0.398034
8 3.342122 2.387317 0.426290
9 3.169286 2.298042 0.438575
10 3.010396 2.204117 0.472973
11 2.875496 2.100137 0.496314
12 2.724763 2.057748 0.507985
13 2.689825 2.023018 0.516585
14 2.626248 2.030500 0.511671

 

 

Figure 7: Learning rate of SqueezeNet model (first 
experiment). 

Table 8: Experiment of training LR range for SqueezeNet – 
2. 

Epoch Train Loss Valid Loss Accuracy
1 2.595495 1.943847 0.533784
2 2.469271 1.789647 0.562654
3 2.466382 1.779467 0.565725
4 2.489725 1.771083 0.567568
5 2.470081 1.776281 0.565111
6 2.469402 1.777249 0.572482

 

Figure 8: Learning rate of SqueezeNet model (second 
experiment). 

Table 9: Model evaluation of SqueezeNet. 

Metrics Value 
Accuracy (%) 57.22 

Model size (MB) 10.06 
Speed (minutes) 14:11 

Table 9 shows model evaluation result of SqueezeNet. 
In Figure 9, the best learning rate resulted from the 
first experiment of EfficientNet model is an area that 
has small loss, that is from 1e-03 to 1e-02. The result 
of training using those learning rate can be seen on 
Table 10.  
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Figure 9: Learning rate of EfficientNet model (first 
experiment). 

In Table 10, model training is performed until 
epoch 14, because the result after epoch 14 trends to 
convergent. The training resulted good accuracy 
performance. The second experiment was executed to 
get better accuracy.  

Figure 10 shows the best learning rate resulted 
from the second experiment, which is an area that has 
small loss, that is from 1e-06 to 1e-05. The results of 
second experiment training can be seen on Table 11, 
which shows better accuracy (88.57%). 

Table 10: Experiment of training LR range for EfficientNet-
1. 

Epoch Train Loss Valid Loss Accuracy
1 3.895927 2.443662 0.378378
2 3.164658 2.917843 0.336609
3 3.153092 3.931816 0.228501
4 3.112244 2.622782 0.362408
5 2.836884 2.377069 0.420147
6 2.558743 1.697689 0.560197
7 2.310468 1.386264 0.641892
8 2.102232 1.067460 0.730344
9 1.867059 0.899833 0.758600
10 1.693708 0.692391 0.818796
11 1.510015 0.599369 0.856265
12 1.378668 0.540748 0.872850
13 1.327494 0.506629 0.883907
14 1.297732 0.505953 0.885749

Table 11: Experiment of training LR range for EfficientNet-
2. 

Epoch Train Loss Valid Loss Accuracy
1 1.282915 0.509046 0.883907
2 1.274822 0.513583 0.884521
3 1.279225 0.506601 0.885135
4 1.275859 0.510035 0.884521
5 1.283290 0.505331 0.885749
6 1.270210 0.509779 0.884521

 

 

Figure 10: Learning rate of EfficientNet model (second 
experiment). 

Table 12 shows model evaluation result of EfficientNet. 
Table 13 shows the results of all experiments of three 
model. Table 13 indicates that SqueezeNet has the 
best result for two metrics, that are model size and 
speed. Architecture SqueezeNet is very suitable to be 
applied in real time application, which accuracy is not 
important. As an example, SqueezeNet can be 
implemented in IoT (Internet of Things) applications, 
which have a limited memory and processing power 
in classification tasks. 

Table 12: Model evaluation of EfficientNet. 

Metrics Value 
Accuracy (%) 84.88 

Model size (MB) 107.201 
Speed (minutes) 23:55 

Table 13: Results summary of experiments of each model. 

Metrics ResNet SqueezeNet EfficientNet
Accuracy 

(%)
82.95 57.22 84.88 

Model Size 
(MB)

208.06 10.06 107.201 

Speed 
(Minutes) 

24:45 14:11 23:55 

EfficientNet has better accuracy, model size, and 
speed compared to ResNet as shown in Table 13. The 
best performance is achieved by EfficientNet, this 
model is very suitable for classification tasks, which 
required high accuracy. 

4 CONCLUSIONS 

Implementation of three CNN models for car 
recognition task has been performed and evaluated 
using TTA. The experiment result shows that 
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accuracy of Resnet 152 model is 82.97%. The worst 
accuracy (57.22%) is obtained by SqueezeNet model 
and the best accuracy (84.88%) is achieved by 
EfficientNet model. CNN model of EfficientNet 
architecture achieved the optimal results, which can 
be seen from the accuracy, model size, and speed 
metrics. SqueezeNet obtained the best model size and 
speed, so SqueezeNet is suitable for real time 
implementation with trade-off accuracy. Further 
research is needed to explore the optimization of 
SqueezeNet to obtain better performance. 
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