
Comparative Study of Convolutional Neural Networks-based
Algorithm for Fine-grained Car Recognition

Joseph Sanjaya a, Mewati Ayub b and Hapnes Toba c
Faculty of Information Technology, Maranatha Christian University, Jl. Surya Sumantri 65, Bandung, Indonesia

Keywords: Convolutional Neural Networks Model, Object Recognition, Vision Machines.

Abstract: The use of the Deep-Learning model for object recognition in vision machines has been widely applied.
Convolutional Neural Network (CNN) is one of the algorithms which has achieved a significant progress in
object recognition task. An algorithm that has good accuracy and speed is required to recognize a car
specification. This research presents a comparative study of several CNN models for car recognition. This
study is a continuation of previous study about data augmentation in car image recognition using ResNet
architecture. In this study, the CNN architectures which are used in comparison, are ResNet, SqueezeNet, and
EfficientNet. The aim of this study is to find an architecture with optimal performance in car recognition. The
dataset used is a Cars Dataset provided by Stanford University. The methods consist of data pre-processing,
model training and hyper parameter tuning, inferences and comparison. The metrics which were used during
the experiments are accuracy, model size, and speed. Training of each model was performed using computer
with the same specification. The experimental results indicate that EfficientNet model gives the best result
among other models in the context of accuracy, model size, and speed.

1 INTRODUCTION

The development of technology nowadays runs so
fast, many vision machines have supported human
life. Convolutional Neural Networks (CNNs) is an
algorithm that has achieved significant progress for
vision machine's tasks, which are image
classification, objective detection, and semantic
segmentation. CNN algorithm has a strong ability in
feature extraction for an image. The algorithm is often
used in object recognition task, including car model
recognition.

Using vision machines, smart transportation can be
implemented in daily life. An intelligent
transportation system is an implementation of IoT
(Internet of Things) which is integrated with
information technology and an automatic control
system. This system can be implemented in the road
traffic management system to control the traffic in
real-time more accurately (Ke, Shi, Guo, & Chen,
2019). An electronic police system is an
implementation of smart transportation, which uses

a https://orcid.org/0000-0002-0574-9147
b https://orcid.org/0000-0003-2584-4317
c https://orcid.org/0000-0003-0586-8880

technology to identify vehicle license plates. The
identification of license plate can be used to recognize
vehicle that violates traffic rules.

In recognizing vehicles more accurately, the
license plate identification is not enough, it should be
equipped with a vehicle recognition system (Ke &
Y.Zhang, Fine-grained vehicle type detection and
recognition based on dense attention network, 2020).
CNN model is required in object detection with good
accuracy and fast speed. The model should still work
in traffic disorderly conditions. Based on the
requirements, in this study, some object recognition
using CNN algorithms will be explored and evaluated
according to the accuracy, speed, and model size of
each algorithm.

This research is a continuation of a previous study
about data augmentation in car image recognition
using ResNet architecture (Sanjaya & Ayub, 2020).
The aim of this study is to obtain a method to
implement CNN architectures in car recognition, and
to compare the architectures based on accuracy,
speed, and model size metrics. The CNN

18
Sanjaya, J., Ayub, M. and Toba, H.
Comparative Study of Convolutional Neural Networks-based Algorithm for Fine-grained Car Recognition.
DOI: 10.5220/0010743800003113
In Proceedings of the 1st International Conference on Emerging Issues in Technology, Engineering and Science (ICE-TES 2021), pages 18-25
ISBN: 978-989-758-601-9
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

architectures used in the comparison, are ResNet,
SqueezeNet, and EfficientNet.

The CNN architectures are chosen regarding the
advantages of each architecture in object recognition.
ResNet architecture has good stability and accuracy
(Zhang & Schaeffer, 2020), SqueezeNet architecture
has a small model size, so the architecture is suitable
for use with IoT (Lee, Ullah, Wan, Gao, & Fang,
2019). EfficientNet architecture has good accuracy
and speed with efficient processing power (Tan & Le,
2019).

The dataset used is the same dataset used in a
previous study (Sanjaya & Ayub, 2020), which is a
Cars Dataset provided by Stanford University, which
contains 16,185 images of 196 car classes. The
composition of training data and test data is fifty-fifty.
The result of this study is a CNN deep learning model
for each architecture, that can classify a car model and
performance analysis of each model.

The initial hypothesis of each architecture in object
recognition will be explained as follows. CNN model
of ResNet 152 architecture has a deep layer, so it
should recognize complex features properly (He,
Zhang, Ren, & Sun, 2016). It can be assumed that a
model based on this architecture would have better
accuracy. Regarding the deep layer, this model would
have less good speed and model size.

CNN model of SqueezeNet architecture has a wide
layer so it should recognize more features with not
deep layers (Lee, Ullah, Wan, Gao, & Fang, 2019). It
can be assumed that a model based on this
architecture would have a good model size and speed
training with trade-off accuracy.

CNN model of EfficientNet architecture is
obtained from neural network searching against
efficiency and accuracy (Tan & Le, 2019). It can be
assumed that a model based on this architecture
would have good and efficient performance.

2 METHODS

2.1 Research Design

The study uses data augmentation in the previous
study (Sanjaya & Ayub, 2020) to analyze the three
architectures. Performance of CNN model of three
architectures would be measured based on model size,
speed, and accuracy metrics. Figure 1 shows the
stages of the methodology. The flow of the processes
is input data, data preprocessing, training model,
hyper parameter tuning, inferences and comparison.

Data input to this study is car images from
Stanford Cars Dataset (Krause, Stark, Deng, & Fei-

Fei, 2013). Data preprocessing is required to
transform raw image data into prepared data. Data
preprocessing is performed using data augmentation,
that are random crop, rotate, and mixup (Sanjaya &
Ayub, 2020).

CNN model based on ResNet, SqueezeNet, dan
EfficientNet architectures is used as a feature
extraction process. The model will be optimized
using hyper parameter tuning, which focused on the
optimal learning rate parameter. Statistical analysis
will be used in comparative analysis to determine the
optimal model based on accuracy, speed, and model
size metrics.

Accuracy metric in classification is measured
based on formula (1) (Han, Kamber, & Pei, 2012):

accuracy = (TP + TN)/(P+N) (1)

Where: TP is the number of true positives; TN is the
number of true negatives; P is the number of positives
tuples, and N is the number of negative tuples.

Speed metric is required to compare time
efficiency and computation power for each CNN
model (Ning, Guan, & Shen, 2019) . Speed metric is
measured from the time needed for executions in
minutes.

Model size metric in deep learning can be
measured based on the width and the depth of neural
network. The metric is important, when model size
increases caused of the expansion of input size.
Adjustment of image data and model in memory
between CPU and GPU causes the training time to
increase. There is a trade-off between speed and
model size (Deng, Li, Han, Shi, & Xie, 2020).

2.2 Hardware Specification

In order to give balanced results, hardware
specification used in model training and execution
should have the same strength, mainly GPU, CPU,
and RAM. Table 1 shows the hardware specification.

2.3 Model Training

In order to give balanced results, hardware
specification used in model training and execution
should have the same strength, mainly GPU, CPU,
and RAM.

Hyper-parameter tuning will be explored in the
beginning of experiments. Deep learning parameters
which tuned are learning rate and batch size (Smith,
2018). In contrast to learning rate, batch size will
affect time of training model, because batch size is
limited by hardware memory.

Comparative Study of Convolutional Neural Networks-based Algorithm for Fine-grained Car Recognition

19

Figure 1: Research Design

Smith recommended to using the largest batch size
that could be accommodated by hardware memory.
The recommendation allows to utilize larger learning
rate (Smith, 2018). When training is executed on a
server with several GPUs, batch size total is
calculated as batch size on each GPU multiplied by
the number of GPU.

Based on the batch size, experiments are performed
from the largest one until the smallest one, until Out-
of-Memory (OOM) error is not occurred. The
experiments are executed from batch size 248 and
decreased by 24 per step up to no OOM error. The
results on ResNet 152 model can be seen on Table 2.

From the Table 2, the hardware specification on

Table 1 is only able to run the training with batch size
32. This is caused by image resolution size (300px to
1500px) and ResNet 152 architecture, which require
large memory size.

Underfitting is a condition when machine learning
model cannot decrease error, both in training and
testing phase. On the other side, overfitting is a
condition when machine learning model is too strong,
so generalization error increases (Smith, 2018).
Figure 2 shows trade-off between underfitting and
overfitting. If learning rate (LR) is too small, then
overfitting will be happened. Large learning rate will
support training regularization, but if learning rate is
too large, training will be cluttered.

The results of batch size hyper parameter tuning of
SqueezeNet and EfficientNet model can be seen on
Table 3. On the Table 3, the hardware specification
on Table 1 is only able to run the training with batch
size 56. ResNet 152 model are different from
SqueezeNet model, which has a wide CNN
architecture, so SqueezeNet can capture features with
smaller memory. EfficientNet model has the same
batch size as SqueezeNet.

Table 1: Batch size hyper-parameter tuning of ResNet 152.

Batch size Status
1 248 OOM
2 224 OOM
3 200 OOM
4 176 OOM
5 152 OOM
6 128 OOM
7 104 OOM
8 80 OOM
9 56 OOM
10 32 Success

Figure 2: Model Complexity (Smith, 2018).

ICE-TES 2021 - International Conference on Emerging Issues in Technology, Engineering, and Science

20

Table 2: Hardware specification.

Name of GPU GTX 1080 Max - Q
Memory Type Memory Capasity GPU Clock Memory Clock Boost Clock

GDDR5X 8192MB 1297 MHz 1251 MHz 1436 MHz
Name of CPU Intel Core i7 7700HQ

Lithography
technology

Clock Speed Cores Threads

14 nm 2.80 GHz 4 8
Name of RAM SAMSUNG 19FAC364

Type Channel Memory Capasity Maximum Bandwidth
DDR4 Dual 16 GB 1200 MHz

Table 3: Batch size hyper-parameter tuning of SqueezeNet
and EfficientNet.

#Exp. Batch size SqueezeNet EfficientNet
1 248 OOM OOM
2 224 OOM OOM
3 200 OOM OOM
4 176 OOM OOM
5 152 OOM OOM
6 128 OOM OOM
7 104 OOM OOM
8 80 OOM OOM
9 56 Success Success

10 32 Success Success

3 RESULTS AND DISCUSSION

At each batch, neural network would be trained with
increased learning rate exponentially. Training batch
was divided into two different experiments in order to
obtain an optimal learning rate interval (Smith, 2017).

Hyper parameter tuning experiment of learning
rate on ResNet 152 model is executed using fast.ai
package (function lr_find()). Figure 3 shows
visualization between loss and learning rate from the
first experiment.

Figure 3: Learning rate of ResNet 152 model (first
experiment).

In Figure 3, an optimal learning rate interval
happened when the loss function declined quickly, so
the best learning rate resulted from the first
experiment is an area that has small loss, that is, from
1e-02 to 1e-01. The result of training using those
learning rates can be seen on Table 4.

Table 4: Experiment of training LR range for Resnet 152-
1.

Epoch Train Loss Valid Loss Accuracy

1 4.325618 3.377519 0.240172

2 3.174334 3.768307 0.180590

3 3.214476 3.275414 0.264128

4 2.790483 2.558635 0.358722

5 2.484006 2.819357 0.330467

6 2.116244 2.070632 0.455774

7 1.857780 1.635659 0.567568

8 1.557437 1.435014 0.610565

9 1.276098 1.072250 0.700246

10 1.024269 0.921169 0.748157

11 0.793735 0.812245 0.773956

12 0.634392 0.745959 0.787469

13 0.519093 0.704684 0.800983

14 0.503253 0.703171 0.802211

In Table 4, model training is performed until epoch

14, because the result after epoch 14 trends to
convergent. The training resulted good accuracy
performance.

Comparative Study of Convolutional Neural Networks-based Algorithm for Fine-grained Car Recognition

21

Figure 4: Learning rate of ResNet 152 model (second
experiment).

Figure 4 shows results from second experiment
training of ResNet 152, with LR from 1e-7 to 1e-6.
The result of training using those learning rate can be
seen on Table 5, which shows better accuracy
(82.55%).

Table 5: Experiment of training LR range for Resnet 152-
2.

Epoch Train Loss Valid Loss Accuracy
1 0.966993 1.169178 0.699017
2 1.463537 1.227771 0.680590
3 1.152164 0.982462 0.732187
4 0.871343 0.710956 0.798526
5 0.589137 0.630260 0.818796
6 0.456042 0.602334 0.825553

Model evaluation was conducted using Test Time

Augmentation (TTA). TTA performed data
augmentation as neural transfer style, flipping
images, cropping to test dataset. After the model
predicted class label of augmented test data, scores
were collected to calculate final prediction of origin
images (Nalepa, Myller, & Kawulok, 2020). The
results can be seen in Table 6.

For further observations, experiments were
conducted on images which are top losses and most
confused to the model. Classification results of top
losses on ResNet 152 model can be seen in Figure 5.

Table 6: Model evaluation of ResNet 152.

Metrics Value
Accuracy (%) 82.95

Model size (MB) 208.06
Speed (Minutes) 24:45

Figure 5: Classification result of ResNet 152 top losses
data.

Figure 6 shows classification results of most
confused of Resnet 152 model. In Figure 7, the best
learning rate resulted from the first experiment of
SquuezeNet model is an area that has small loss, that
is from 1e-02 to 1e-01. The result of training using
those learning rate can be seen on Table 7.

In Table 7, model training is performed until epoch
14, because the result after epoch 14 trends to
convergent. The training resulted bad accuracy
performance. The second experiment was executed to
get better accuracy. Figure 8 shows the best learning
rate resulted from the second experiment, which is an
area that has small loss, that is from 1e-06 to 1e-05.
The results of second experiment training can be seen
on Table 8, which shows better accuracy (57.24%).

ICE-TES 2021 - International Conference on Emerging Issues in Technology, Engineering, and Science

22

Figure 6. Classification result of ResNet 152 most confused
data.

Table 7: Experiment of training LR range for SqueezeNet-
1.

Epoch Train Loss Valid Loss Accuracy
1 6.163468 4.424913 0.100737
2 4.999869 3.619730 0.191646
3 4.526335 3.339163 0.245086
4 4.119049 2.996984 0.306511
5 3.798199 2.778760 0.343980
6 3.601222 2.588148 0.378378
7 3.468006 2.527634 0.398034
8 3.342122 2.387317 0.426290
9 3.169286 2.298042 0.438575
10 3.010396 2.204117 0.472973
11 2.875496 2.100137 0.496314
12 2.724763 2.057748 0.507985
13 2.689825 2.023018 0.516585
14 2.626248 2.030500 0.511671

Figure 7: Learning rate of SqueezeNet model (first
experiment).

Table 8: Experiment of training LR range for SqueezeNet –
2.

Epoch Train Loss Valid Loss Accuracy
1 2.595495 1.943847 0.533784
2 2.469271 1.789647 0.562654
3 2.466382 1.779467 0.565725
4 2.489725 1.771083 0.567568
5 2.470081 1.776281 0.565111
6 2.469402 1.777249 0.572482

Figure 8: Learning rate of SqueezeNet model (second
experiment).

Table 9: Model evaluation of SqueezeNet.

Metrics Value
Accuracy (%) 57.22

Model size (MB) 10.06
Speed (minutes) 14:11

Table 9 shows model evaluation result of SqueezeNet.
In Figure 9, the best learning rate resulted from the
first experiment of EfficientNet model is an area that
has small loss, that is from 1e-03 to 1e-02. The result
of training using those learning rate can be seen on
Table 10.

Comparative Study of Convolutional Neural Networks-based Algorithm for Fine-grained Car Recognition

23

Figure 9: Learning rate of EfficientNet model (first
experiment).

In Table 10, model training is performed until
epoch 14, because the result after epoch 14 trends to
convergent. The training resulted good accuracy
performance. The second experiment was executed to
get better accuracy.

Figure 10 shows the best learning rate resulted
from the second experiment, which is an area that has
small loss, that is from 1e-06 to 1e-05. The results of
second experiment training can be seen on Table 11,
which shows better accuracy (88.57%).

Table 10: Experiment of training LR range for EfficientNet-
1.

Epoch Train Loss Valid Loss Accuracy
1 3.895927 2.443662 0.378378
2 3.164658 2.917843 0.336609
3 3.153092 3.931816 0.228501
4 3.112244 2.622782 0.362408
5 2.836884 2.377069 0.420147
6 2.558743 1.697689 0.560197
7 2.310468 1.386264 0.641892
8 2.102232 1.067460 0.730344
9 1.867059 0.899833 0.758600
10 1.693708 0.692391 0.818796
11 1.510015 0.599369 0.856265
12 1.378668 0.540748 0.872850
13 1.327494 0.506629 0.883907
14 1.297732 0.505953 0.885749

Table 11: Experiment of training LR range for EfficientNet-
2.

Epoch Train Loss Valid Loss Accuracy
1 1.282915 0.509046 0.883907
2 1.274822 0.513583 0.884521
3 1.279225 0.506601 0.885135
4 1.275859 0.510035 0.884521
5 1.283290 0.505331 0.885749
6 1.270210 0.509779 0.884521

Figure 10: Learning rate of EfficientNet model (second
experiment).

Table 12 shows model evaluation result of EfficientNet.
Table 13 shows the results of all experiments of three
model. Table 13 indicates that SqueezeNet has the
best result for two metrics, that are model size and
speed. Architecture SqueezeNet is very suitable to be
applied in real time application, which accuracy is not
important. As an example, SqueezeNet can be
implemented in IoT (Internet of Things) applications,
which have a limited memory and processing power
in classification tasks.

Table 12: Model evaluation of EfficientNet.

Metrics Value
Accuracy (%) 84.88

Model size (MB) 107.201
Speed (minutes) 23:55

Table 13: Results summary of experiments of each model.

Metrics ResNet SqueezeNet EfficientNet
Accuracy

(%)
82.95 57.22 84.88

Model Size
(MB)

208.06 10.06 107.201

Speed
(Minutes)

24:45 14:11 23:55

EfficientNet has better accuracy, model size, and
speed compared to ResNet as shown in Table 13. The
best performance is achieved by EfficientNet, this
model is very suitable for classification tasks, which
required high accuracy.

4 CONCLUSIONS

Implementation of three CNN models for car
recognition task has been performed and evaluated
using TTA. The experiment result shows that

ICE-TES 2021 - International Conference on Emerging Issues in Technology, Engineering, and Science

24

accuracy of Resnet 152 model is 82.97%. The worst
accuracy (57.22%) is obtained by SqueezeNet model
and the best accuracy (84.88%) is achieved by
EfficientNet model. CNN model of EfficientNet
architecture achieved the optimal results, which can
be seen from the accuracy, model size, and speed
metrics. SqueezeNet obtained the best model size and
speed, so SqueezeNet is suitable for real time
implementation with trade-off accuracy. Further
research is needed to explore the optimization of
SqueezeNet to obtain better performance.

REFERENCES

Deng, B. L., Li, G., Han, S., Shi, L., & Xie, Y. (2020).
Model Compression and Hardware Acceleration for
Neural Networks: A Comprehensive Survey.
Proceedings of IEEE, 108(4), 485-532.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining
Concepts and Techniques. Waltham: Elsevier, Inc.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual
Learning for Image Recognition. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (pp.
770-778). Las Vegas: IEEE.

Ke, X., & Y.Zhang. (2020). Fine-grained vehicle type
detection and recognition based on dense attention
network. Neurocomputing, 399, 247-257.

Ke, X., Shi, L., Guo, W., & Chen, D. (2019). Multi-
Dimensional Traffic Congestion Detection Based on
Fusion of Visual Features and Convolutional Neural
Network. IEEE Transactions on Intelligent
Transportation Systems,, 20(6), 2157-2170.

Krause, J., Stark, M., Deng, J., & Fei-Fei, L. (2013). 3D
Object Representations for Fine-Grained
Categorization. IEEE International Conference on
Computer Vision Workshops (ICCVW) (pp. 554-561).
Sydney: IEEE.

Lee, H., Ullah, I., Wan, W., Gao, Y., & Fang, Z. (2019).
Real-Time Vehicle Make and Model Recognition with
the Residual SqueezeNet Architecture. Sensor, 19(5),
982.

Nalepa, J., Myller, M., & Kawulok, M. (2020). Training-
and Test-Time Data Augmentation for Hyperspectral
Image Segmentation. IEEE Geoscience and Remote
Sensing Letters, 17(2), 292-296.

Ning, L., Guan, H., & Shen, X. (2019). Adaptive Deep
Reuse: Accelerating CNN Training on the Fly. IEEE
35th International Conference on Data Engineering
(ICDE), (pp. 1538-1549). Macao.

Sanjaya, J., & Ayub, M. (2020). Augmentasi Data
Pengenalan Citra Mobil Menggunakan Pendekatan
Random Crop, Rotate, dan Mixup. Jurnal Teknik
Informatika dan Sistem Informasi, 6(2), 311-323.

Smith, L. N. (2017). Cyclical Learning Rates for Training
Neural Networks. IEEE Winter Conference on
Applications of Computer Vision (WACV) (pp. 464–
472). Santa Rosa: IEEE.

Smith, L. N. (2018). A disciplined approach to neural
network hyper-parameters: Part 1 -- learning rate,
batch size, momentum, and weight decay. Retrieved
from https://arxiv.org/abs/1803.09820

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.
Proceedings of the 36th International Conference on
Machine Learning (ICML), (pp. 6105-6114). Long
Beach.

Zhang, L., & Schaeffer, H. (2020). Forward Stability of
ResNet and Its Variants. Journal of Mathematical
Imaging and Vision, 62(3), 328-351.

Comparative Study of Convolutional Neural Networks-based Algorithm for Fine-grained Car Recognition

25

