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Abstract: When the energy transition is unavoidable and artificial intelligence is omnipresent, renewable energies 
production prediction is becoming a popular concept, especially with the availability of big data sets and the 
crucial need to forecast these energies known to have a random nature. Thus, the critical goal of this paper is 
to compare the performance of two approaches, including traditional linear regression and non-linear 
regression analysis, for the forecasting of the power trends of photovoltaic panels, and thus determine the 
model giving the most reliable predictions. This study revealed that the non-linear approach provides the best 
prediction result since it achieved an R²=94% in the testing phase, and its root mean square error is the lowest 
value RMSE=0.51 Kw.

1 INTRODUCTION 

1.1 State of the Art 

The prediction of the photovoltaic (PV) power is an 
important factor for the correct decision-making in 
terms of funding and operations scheduling, 
economic dispatch of solar energy (Moslehi et al., 
2018) and maintenance operations (Kaaya et al., 
2020). However, PV power is often brutal to predict 
since various factors impact its value, including the 
local environment, technological advancements, and 
installation characteristics. (Jordan et al., 2017). 
Therefore, to meet all these challenges and needs, 
several advanced methods have been suggested by 
researchers.  

On one side, the application of physical models is 
a decisive and critical element in forecasting the PV 
power. In these models, mathematical equations 
incorporate the relationship and interaction between 
physical parameters, solar irradiation models and 
other components of the atmosphere (Sobri et al., 
2018). This approach encounters several constraints 
due to the continuous need for technical datasheets of 
PV systems (Maitanova et al., 2020), uncertainties 
that can come from environmental data and 
simplifications considered in models, which strongly 
affects the accuracy of forecasts. 
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On the other side, data-driven approaches use 
historical data to recognize the relationship between 
the explanatory (predictor) and explained (outcome) 
parameters. Complex systems employ these models, 
where the elaboration of physical models could be 
more complicated and expensive (Theocharides et al., 
2018)(Wang et al., 2017). They include statistical 
methods and machine learning techniques. 

For applications in the PV field, authors have 
conducted several surveys and elaborated different 
predictive models based on data interpretation and 
review to estimate the PV-produced power. For 
instance, Antonanzas et al. (Antonanzas et al., 2016) 
provided a comprehensive overview of the most up-
to-date techniques for PV power predictions such as 
k-nearest neighbour, random forest, and support 
vector regression. Ramli et al. (Ramli et al., 2019) 
used the k-nearest neighbour method and compared it 
to artificial neural networks. Golder et al. (Golder et 
al., 2019) explored three Data mining approaches for 
PV power prediction, including multi-layer 
perceptrons, support vector machines and long short-
term memory. Kayri  et al. (Kayri et al., 2017) 
employed random forest and artificial neural 
networks for PV power forecast. In this article, we 
investigated the performance of two machine learning 
methods for the hourly forecasting of the PV power. 
We evaluated the efficacy of the examined methods 
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using the most widely used performance metrics. 
Finally, we used residual analysis to visually test the 
predictive models. The rest of this work is structured 
as follows. Section 2 introduces the methods used in 
the study. Section 3 provides results analysis and, 
Section 4 provides the conclusion of this paper. 

1.2 Position of the Problem 

PV power forecasting is considered a difficult task 
due to the variability of meteorological conditions. 
Thus, the contribution of this work is to take 
advantage of the development of machine learning 
techniques to predict the power of solar PV panels as 
one of the keys to its integration in a diversified 
electrical network.  

In literature, several surveys exist on solar power 
predictions using machine learning approaches. 
However, the literature still lacks a comprehensive 
review of their performance. Most current studies 
employ datasets dependent on a specific time of the 
year, making it difficult to evaluate the final results. 
Moreover, only a few examinations have compared 
linear and non-linear models to identify the approach 
offering the best accuracy. 

This paper examined the use of multiple linear 
regression and multivariate adaptive regression 
splines, not widely employed in the field of solar 
energy forecast using the same set of data. 

2 MATERIALS AND METHODS 

2.1 Data Source and Description 

For the PV power prediction, we present the input 
data as follows: 

2.1.1 Meteorological Data 

We retrieved the meteorological inputs from the 
dataset modern age hindsight web service, which are: 
Relative Humidity (RH) %, Wind speed (WS) m/s, 
Wind direction (WD) deg, Short-wave irradiation 
(Irr) wh/m², Ambient Temperature (Tamb) °C and 
Pressure (P) hPa. 

2.1.2 Solar Radiation Data 

We collected the irradiation inputs from the 
Copernicus Atmosphere Monitoring Service (CAMS) 
(Gschwind et al., 2019). These inputs are Top of 
Atmosphere irradiation (TOA), Clear sky global 
irradiation on the horizontal plane (CSGHI), Clear 

sky beam irradiation on the horizontal plane 
(CSBHI), Clear sky diffuse irradiation on the 
horizontal plane (CSDHI), Clear sky beam irradiation 
on the mobile plane (CSBNI), Global irradiation on 
the horizontal plane (GHI), Beam irradiation on the 
horizontal plane (BHI), Diffuse irradiation on the 
horizontal plane (DHI) and Beam irradiation on the 
mobile plane (BNI). They are all expressed in wh/m². 

2.1.3 Additional Features 

In addition to the input data mentioned earlier, we 
employed PV cell temperature (Tcell) °C and panel 
efficiency (Eff) in our models. 

These data differ depending on the geographic 
area from one site to another. We present the location 
of our study site as follows: 

Table 1: Characteristics of the PV site. 

Study Site Latitude Longitude Total 
capacity

Amellal 31.49538 -5.09471 6 KW

2.2 Machine Learning Algorithms 

In this paper, models were developed in R (R Core 
Team, 2018)(CoreTeam, 2018). 

2.2.1 Multiple Linear Regression 

Multiple linear regression (MLR) correlates a 
dependent variable with one or more independent 
variables. In our study, these independent variables 
include solar irradiation data and meteorological data. 
The regression equation usually takes this form: 

𝑌
^

𝛽 𝛽 𝑋 𝛽 𝑋 . . . . . 𝛽 𝑋              (1)  

 
Where 𝛽  is a constant model, 𝑋 . . . . 𝑋  are the 

parameters of irradiation data and meteorological 
data, with their corresponding coefficients, 
represented by 𝛽 . . . 𝛽 . 

2.2.2 Multivariate Adaptive Regression 
Splines 

Multivariate Adaptive Regression Splines (MARS) is 
an extension or enhanced version of linear 
regressions, used to model complicated non-linear 
relationships using hinge functions. It builds a model 
of the form(Li et al., 2016): 

𝑌
^

𝛽 𝛽 ℎ 𝑋          (2) 
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Where 𝛽  is a constant model. 𝑌
^

 is the target 
Variable. X is the vector of predictors. K is the 
number of basis functions, and ℎ  is the kth basis 
function with its corresponding coefficient 𝛽 . 

2.3 Performance Metrics 

To assess the performance of our models, we used the 
coefficients  𝑅 , root means square error (RMSE) 
and mean absolute error (MAE). They can be 
described mathematically through equations: 
Equation. (3), Equation. (4) and Equation. (5)  (Kim 
et al., 2019) : 

𝑅 1
∑ 𝑌 𝑌
∑ 𝑌 𝑌

 (3) 

RMSE 
1
𝑛

𝑌 𝑌  (4) 

MAE
1
𝑛

𝑌 𝑌  (5) 

Where  𝑦  is the mean value of y and 𝑦  is the 
predicted value of y. 

3 RESULTS AND DISCUSSION 

3.1 Results  

3.1.1 Regression Models 

We present model equations as follows in Equation. 
(6) and Equation. (7): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Multiple linear regression:  
 
𝑃𝐴𝐶 1248 0,3356 𝑇𝑂𝐴  

28,67 𝐶𝑆𝐺𝐻𝐼
 28,26 𝐶𝑆𝐵𝐻𝐼
 27,83 𝐶𝑆𝐷𝐻𝐼

0,062 𝐶𝑆𝐵𝑁𝐼
 4,175 𝐺𝐻𝐼
 4,118 𝐵𝐻𝐼

3,932 𝐷𝐻𝐼
0.1887 𝐵𝑁𝐼
90,596 𝑇𝑎𝑚𝑏

 30,387 Eff
 5.963 𝑅𝐻

4,207 𝑊𝑆
 0,7075 𝑊𝐷

2,952 𝑃
0,02 𝐼𝑟𝑟
82,5372 Tcell  

(6) 

 
 Multivariate adaptive regression splines: 

 
𝑃𝐴𝐶 914,5

ℎ 33,2 𝑇𝑐𝑒𝑙𝑙
14,64

ℎ 𝑇𝑐𝑒𝑙𝑙 33,2
58,33

ℎ 𝐸𝑓𝑓 94,45
363,97

ℎ 98,79 𝐸𝑓𝑓
3.02

ℎ 𝐸𝑓𝑓 98,79
1869,48

 ℎ 15.68 𝑇𝑎𝑚𝑏
24,65

ℎ  𝑇𝑎𝑚𝑏
15.68 82,34
ℎ 5139,68 𝐼𝑟𝑟

0,04
ℎ 𝐼𝑟𝑟 5139.68

0,03
ℎ 1876.35 𝐷𝐻𝐼

0,74
ℎ 𝐷𝐻𝐼 1876.35

0,3
ℎ 𝐵𝑁𝐼 4145.63

0,27
ℎ 6051.5 𝐵𝑁𝐼

0,01 ℎ 𝐵𝑁𝐼
6051.5 0,09  
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3.1.2 Performance Metrics Comparison 

The precision of the investigated models was 
measured using the key performance metrics as seen 
in Table 2 and Table 3:  

Table 2: Performance metrics: Training period 

Machine 
learning 

algorithm 

Training phase (20%) 

𝑹𝟐 𝑹𝑴𝑺𝑬 𝑲𝑾  𝑴𝑨𝑬 𝑲𝑾  

MLR 0.8952 0.6852 0.5104 
MARS 0.9413 0.5127 0.3699

Table 3: Performance metrics: Testing period 

Machine 
learning 

algorithm 

Testing phase (80%) 

𝑹𝟐 𝑹𝑴𝑺𝑬 𝑲𝑾  𝑴𝑨𝑬 𝑲𝑾  

MLR 0.8987 0.6704 0.5054
MARS 0.9401 0.5155 0.3686

Figure 1: Predicted versus observed values plot – MLR 

Figure 2: Predicted versus observed values plot – MARS 

3.1.3 Residual Analysis 

The residual analysis aims to check the accuracy of 
regression models. Residuals, in general, represent 
the portion of the target that the model is unable to 

forecast. The following plot shows residual density 
for MLR and MARS algorithms.  

 
Figure 3: Residual density plot 

The second plot represents the distribution of 
residuals. 

 
Figure 4: Residual boxplot 

3.2 Discussion 

Based on the results obtained in Tables 2 and 3, the 
MARS approach demonstrated the best predictive 
accuracy in terms of R²=94,01%, RMSE=0,5155Kw, 
and MAE=0,3686Kw compared to MLR which 
obtained R²=89,87%, RMSE=0,6704Kw, and 
MAE=0,5054Kw in the testing phase. 

Non-Linear algorithms tend to be more promising 
than traditional regressions because they better 
incorporate the dynamics of data and capture the non-
linear correlations between input and output 
variables.  

Furthermore, linear regression models are 
incapable of capturing the non-linear structure of 
independent variables, unlike the MARS algorithm, 
which is considered as an advanced variant of 
standard linear regression models. 

 Finally, residual analysis carried out in our study 
shows that MARS surpasses MLR in predicting the 
power produced by PV panels as we get a normally 
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distributed residuals density that satisfies the 
normality assumption of the residuals (Figure.3) and 
residuals are close to zero (Figure.4) 

4 CONCLUSIONS 

In this article, we have used several input parameters 
collected from internationally recognized sources to 
predict the electrical power produced by PV panels. 
We concluded that the MARS method demonstrated 
superior accuracy than MLR in predicting the PV 
power. 

The results obtained also ensure the ability, with 
high precision, of machine learning techniques to 
forecast the PV power. In the likely future, these 
algorithms will have a significant position in PV 
remote management, where this technology will be 
highly prevalent in several territories worldwide. 
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