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Abstract: The graph-coloring problem has a long and illustrious history, and it is one of the most famous problems in 
the field of graph theory which consists of determining the minimum number necessary to color the vertices 
of any graph such that no two adjacent vertices have the same color. In this context, a set of metaheuristics 
are proposed to restrict the search for a solution. In this study, a new swarm intelligence optimization 
algorithm called fireworks algorithm FWA will be applied to graph coloring problems to speed up the 
optimization process, reduce the time, and improve overall performance. 

1 INTRODUCTION 

The mathematician Leonhard Euler starts coloring 
theory specifically in 1736 with the seven bridges of 
the Königsberg problem.  The problem was a famous 
puzzle that concerns the possibility to walk in the 
Königsberg by crossing all bridges exactly once. 
Then the problem of the four colors always raises the 
question of whether four colors are sufficient to draw 
any map so that neighboring regions do not have the 
same color. Many types of research on the problem 
have focused on theoretical aspects such as planar 
graphs, triangle-free graphs, and random graphs. 

The problem of the coloring of graphs has been 
studied by many authors and has developed in various 
disciplines like chemistry, biology, social sciences 
also in the field of operation research, such as register 
allocation (Chaitin;2004), frequency assignment 
(Aardel, Hoesel, Koster, Mannino & Sassano;2002), 
school and university timetabling (Burke &Newall 
;1999) but also for its theoretical aspects. The GCP is 
closely associated with a classical NP-hard 
combinatorial optimization problem (Garey & 
Johnson; 1979). 

Many algorithms have been proposed for this 
problem. The DSATUR algorithm (Brélaz, 1979) is 
one of the most well-known algorithms due to its 
efficiency and simplicity. Leighton proposed another 
popular algorithm in the same year. The Recursive 
Largest First (RLF) algorithm also the Bruch and-cut 

algorithm (Méndez-Diaz & Zabala; 2006). These 
methods can only resolve the small size. The 
optimization algorithms has become necessary used 
for large problems to find an approximate solution in 
a reasonable time.  Heuristics generally make it 
possible to find acceptable solutions in a reasonable 
time. However, they do not offer any guarantee as to 
the optimality of the best solution found. 

 For this reason, the researchers are interested in 
heuristic approaches. Several metaheuristic methods 
had been applied to solve the GCP who seems the 
most promising way in finding exciting solutions. 
The most efficient heuristic approaches are local 
search methods like variable neighborhood search 
(Avanthay, Hertz& Zufferey; 2003), tabu search 
(Hertz & de Werra; 1987), and variable space search 
(Hertz, Plumettaz, and Zufferey; 2008). As well as 
hybrid population-based methods such as Genetic and 
hybrid algorithms (Fleurent & Ferland, 1996) and 
Hybrid evolutionary algorithms (Galinier & Hao, 
1999). 

 Advised Fireworks algorithm has been 
increasingly popular in the blind optimization 
algorithms. This algorithm can be used to solve 
complex optimization problems. In this paper, we 
proposed the new swarm algorithm called fireworks.  

FWA is a newly developed in swarm intelligence 
optimization algorithm based on the phenomenon of 
fireworks explosions in the sky at night. Y. Tan and 
Y. Zhu was proposed FWA in 2010 as an 
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optimization technique. Then it has been successfully 
applied in many fields and solving partial 
optimization problems, such as multi-satellite control 
resource scheduling, hardware/software partitioning, 
also, it has resolved image identification and spam 
detection, etc.... 

We organize this paper as follows: In section 2, 
we present a mathematical formulation of the graph-
coloring problem. In section 3, an overview of the 
fireworks algorithm. Then in section 4, we describe 
our proposed method for GCP. In the end, we 
conclude and give some perspectives. 

2 GRAPH COLORING PROBLEM   

Let 𝐺 ൌ  ሺ𝑉, 𝐸ሻ be a graph with a set of vertices V 
connected by a set of edges E. Given a positive 
integer k. A  k െ coloring  of G is a partition of V 
into k sets ሼ𝑉1, … , 𝑉𝑘ሽ , which called colors 
(i.e.,𝑐: 𝑣െ൐  ሼ1, . . . , 𝑘ሽ), the graph coloring problem 
seeks to assign each vertex 𝑣 ∈ 𝑉 such that no two 
vertices in the same set are adjacent. 

If two adjacent vertices u and v have the same 
color, we say they called conflicting vertices, and the 
edge (u; v) ∈ E called a conflicting edge. The k െ
coloring called legal if there are no conflicting edges 
else, it is illegal. 

Suppose that f is the objective function that 
associates with each coloring the number of 
conflicting edges. We can formulate the graph 
coloring problem as: 

𝑋ሺ𝐺ሻ ൌ min
௫ఢ௑

ሼ𝑓ሺ𝑥ሻ ∶ 𝑥𝜖𝑆ሽ     (1) 
 

𝑋: The set of coloring of the vertices  𝑥𝜖𝑋  can be 
uncolored vertices. 

𝑆: The set of realizable or legal coloring. 
𝑓: Number of colors of the coloring 𝑥𝜖𝑋. 
We note 𝐴ሺ𝑖, 𝑗ሻ the matrix of conflict, and c (i): 

the associated color with a vertex 𝑖. 

Aሺ𝑖, 𝑗ሻ ൌ  ቄ1 if  cሺ𝑖ሻ ൌ cሺ𝑗 ሻ𝑎𝑛𝑑 ሼ𝑖, 𝑗ሽ𝜖𝐸
0 o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (2) 

3 FIREWORKS ALGORITHM 

When a fireworks display detonated. A shower of 
sparks will fill the local space. This explosion process 
is seen as a search in the local space around a specific 
point, and when we want to find a point 𝑋௝ 
satisfying 𝑓 ሺ𝑥௝ሻ  ൌ  𝑦, we can continue to set off the 
fireworks in the search space until the optimal 
solution reached. .For each fireworks display, an 

explosion process is initiated and a shower of sparks 
fills the local space that surrounds it. The fireworks 
as well as the new sparks generated represent 
potential solutions in the research space. 

We can describe the FWA algorithm as setting off 
N fireworks at N different locations, then we will 
evaluate the locations of the sparks obtained, the 
algorithm ends when the optimal location found. 
Otherwise, we will choose another N location and 
fireworks for the next generation. Many extensions of 
this algorithm saw the light. In 2013, a new method 
was presented to calculate the number of explosion 
sparks and the magnitude of the explosion of a 
firework display (J. Liu, S. Zheng, and Y. Tan, 2013), 
and an improved fireworks algorithm was proposed 
with five significant improvements. Later in 2014, an 
extension of the FWA was presented as the fireworks 
algorithm dynamic (Dynamic search in fireworks 
algorithm, 2014). 

In order to ensure diversity and to balance global 
and local research, the explosion magnitude and 
population is generated among the new fireworks. 

3.1 Explosion 

After generating N fireworks randomly, then the 
fireworks, N generates sparks in the feasible space. 
The explosion operator is a key factor in the algorithm 
and plays a very important role. Indeed, the latter 
includes the explosion force, the explosion amplitude 
and the displacement operation 
The number of explosion sparks of each firework is 
calculated as follows: 

𝑆௜ ൌ 𝑚.
௒೘ೌೣି௙ሺ௫೔ሻାఌ

∑  ሺ௒೘ೌೣି௙ሺ௫೔ሻሻାఌ೙
೔సభ

           (3) 

Where m is a parameter that controls the overall 
number of sparks. 

f(x) is an objective function, and xmin and xmax 
denote the limits of the potential space 

𝑌௠௔௫  Is the maximum (worst) value of the 
objective function among the 𝑛 fireworks. 

 𝜀 Indicates the smallest constant in the computer, 
and it used to prevent the denominator from 
becoming zero. 

The solution is good (many sparks will be 
generated) if the difference between the best and the 
bad is within a smaller amplitude. To avoid the 
overwhelming effects of fireworks, limits on the 
number of sparks 𝑆መ௜  are defined, as shown in the 
following equation 

𝑆መ ൌ ቐ
𝑟𝑜𝑢𝑛𝑑ሺ𝑎. 𝑚ሻ 
𝑟𝑜𝑢𝑛𝑑ሺ𝑏. 𝑚ሻ

𝑟𝑜𝑢𝑛𝑑ሺ𝑆௜ሻ
  𝑖𝑓 𝑆௜ ൐ 𝑏𝑚          (4) 
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Where 𝑎 𝑎𝑛𝑑 𝑏 are constant. 
After the number of sparks is determined, we will 

calculate the amplitude of a particular explosion to 
present the best fitness values as follows:  

      𝐴௜ ൌ 𝐴መ.
௙ሺ௫೔ሻି௒೘೔೙ାఌ

∑  ሺ௙ሺ௫೔ሻି௒೘೔೙ሻାఌ೙
೔సభ

   ሺ5ሻ 

𝐴መ : Denotes the maximum explosion amplitude. 
𝑌௠௜௡ = min ሺf ሺxiሻሻ ሺi ൌ 1, 2, . . . , nሻ  is the 

minimum (best) value of the objective function 
among the N fireworks. 

ε: has the same meaning. 
Then, it is necessary to determine the sparks 
displacement in the explosion amplitude. 
Displacement operation is to make displacement on 
each dimension of a firework. Through the explosion 
operator, each firework generates a shower of sparks, 
helping to find the global optimal of an optimization 
function. 

Algorithm 1: Generate a Gaussian spark 

1. Calculate the fitness value f (xi) for each  
firework. 

2. Select randomly z dimensions 
z = round (d. rand (0,1)) 

3. Calculate the coefficient of Gaussian 
explosion g = N (1, 1). 

4. For each dimension 𝑥௞
௝ ∈ {pre-selected z 

dimensions of 𝑥௞
௝} do 

𝑥௞
௝ ൌ 𝑥௞

௜ . 𝑔 

5.  if 𝑥௞
௝ ൏ 𝑥௞

௠௜௡  𝑜𝑟 𝑥௞
௝ ൏ 𝑥௞

௠௔௫    then 

6. 𝑥௞
௝ ൌ 𝑥௞

௠௜௡ ൅ െห𝑥௞
௝ห%ሺ𝑥௞

௠௔௫ െ 𝑥௞
௠௜௡ሻ 

7.  End if  
8. End for  

To improve the diversity of the solutions and the 
local search ability; the Gaussian sparks strategy is 
introduced to produce sparks. The mapping rule will 
be carried out to map the spark to a new location 
within the feasible space. The sparks of the Gaussian 
explosion are shown in Algorithm 1. 

3.2 Selection 

After generating a shower of sparks, including 
explosion sparks and Gaussian sparks. Some of the 
generated sparks need to be selected and passed down 
to the next generation. In the selection strategy, we 
use the measurement of distance. Noted that the best 
spark is always kept for the next generation. Then, the 
other individuals are selected as: 

𝑃ሺ𝑥௜ሻ ൌ
ோሺ௫೔ሻ

∑ ோሺ௫೑ሻೕ∈ೖ
 (6) 

Where 𝑅ሺ𝑥௜ሻ ൌ ∑ 𝑑൫𝑥௜, 𝑥௝൯ ൌ ∑ ฮ𝑥௜ െ 𝑥௝ฮ௝∈௞௝∈௞  
The distance between 𝑖௧௛ solution and all of the other 
solutions.  

K represents all of the solution’s locations. 
j∈ K means the position j belongs to set K. 
 

Algorithm 2: The pseudo-code of the proposed algorithm 

1. Randomly select N fireworks at N 
location 

2. While terminal criteria = false, do 
3. For all firework𝑥௜∈ n do 
4. Calculate the number and amplitude of 

sparks to be generated from the 
firework 𝑥௜; using Eq. (3), (5). 

5. End for  
6. For k=1 

// 𝒎ෝ  is the number of sparks generated by 
Gaussian mutation 

7.  Randomly selects firework that is not in 
n set; 

8. Explode Gaussian spark (Algorithm 1) 
9. End for   
10. Select the best sparks from the next  

         explosion generation; 
11. Select the other sparks from both 

explosions using based on Eq.6. 
12. End While 

4 FIREWORKS ALGORITHM 
FOR GRAPH COLORING 
PROBLEM 

For the correspondence with the fireworks algorithm, 
we have chosen as the representation of the explosion 
space the environment of the graph coloring problems 
while the fireworks and the sparks correspond to the 
different solutions from the coloration step. 

The affinity between a fireworks display and the 
sparks generated by the fireworks display measures 
the degree of compatibility between them. Affinity is 
generally related to distance. However, for the 
coloring problem, a cost function is used also 
evaluation functions appropriate to the problem. This 
function has great importance because it allows 
examining if the solution is satisfactory or not. 

In general, the cost functions have a combination 
of one of the following four components: space, 
execution time, communication. In our context, we 
consider the following parameters: execution time 
and occupied space. 
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4.1 The Implementation of the 
Fireworks Algorithm 

There are several implementations of the fireworks 
algorithm. Each one is characterized by its 
adaptability to the problem to be solved. In this paper, 
we will implement the standard fireworks algorithm. 

Several researchers have implemented the 
standard fireworks algorithm in several programming 
languages (Matlab, C, C ++, JAVA and python). 

The algorithm we have proposed is an adaptation 
of the standard fireworks algorithm for the graph 
coloring problem. The application of this algorithm to 
an optimization problem is as follows: Fireworks and 
sparks represent the different solutions and the search 
space is the environment for graph-coloring problem. 

We have proposed the fireworks algorithm to 
solve the problem of the coloring of graphs. The 
process proceeds as follows: We generate a random 
set of N fireworks FW constituting the initial 
population (The number of colors equal to k). Then 
calculate the cost of each FW using a cost function 
(objective function). Select the N best FW with 
respect to their cost function. The explosion of the 
best FW for a temporary population. Each time a 
better solution is found (A valid k-coloring is found) 
the population is updated. The Gaussian operation 
improves the generated population. Select the best 
fireworks from the temporary population then 
replaces the N fireworks by the improved FW. The 
algorithm stops when the fixed number of iterations 
that was carried out and the k-coloring is obtained. 

The algorithm that we have proposed requires the 
choice of certain parameters, which are as follows: 

4.1.1 Generation of the Initial Population 

The fireworks algorithm generates an initial 
population that represents the set of possible 
solutions. The population is generated by the number 
of colors k. A vector of integers represents the initial 
population whose length is the vertex number. 
 

1 2 3 4 5 6
Figure 1: Generation of the initial population 

4.1.2 Objective Function (Fitness) 

The Objective function or the adaptation function 
assigns each spark to a numerical value. This method 
ensures that the best individuals will be kept while the 
others are eliminated from the population. In our case, 
we try to minimize the number of conflicts (objective 
function) by modifying the color of a vertex. 

4.1.3 Selection Operator 

Selection operator is an operator that consists in 
choosing the best sparks and fireworks depends on 
the objective function to give birth to a new 
generation to apply the processes of explosion and 
mutation to them. We have limited our selection to a 
random choice of individuals that is done randomly, 
uniformly and without the intervention of the fit 
value. Each individual therefore has a uniform 
probability of being selected. 

4.1.4 Mutation Operator 

The mutation strategy allows reaching most of the 
points of the feasible domain to create new solutions. 
We introduce the Gaussian mutation to improve the 
diversity of a population. It consists of changing an 
invalid coloring 𝛼𝜖ሼ1, … , 𝑘ሽ for a vertex 𝑖by another 
different color. The mutation operator will evolve the 
new generation obtained. In the case of binary coding, 
it consists of inverting a random bit in a chromosome. 
A value bit at 1 takes the value 0 and vice versa. 

1 0 0 1 1 1
 

1 1 0 1 1 1

Figure 2: Principle of mutation operation for binary coding 

4.1.5 Replacement Operator 

After the mutation step, a replacement method is used 
to generate a new population so that the size of that 
population remains constant. We keep at least the 
individual with the best performance from the next 
generation. The new generation is made up of the N/2 
better and N/2 bad mutated fireworks. While taking 
into account the component memory. 

After the replacement, some fireworks are 
eliminated and replaced by new ones generated 
randomly in order to diversify the population. The 
lower the affinity of fire, the greater its chance of 
being replaced. 

The approach used is similar to that of classical 
evolutionary algorithms. In the context of 
combinatorial optimization problems, we can 
consider fireworks algorithms as evolutionary 
algorithms presenting particular operators (explosion, 
diversification). 

Several stopping criteria can be chosen such as the 
execution time, the minimum fitness value, the 
number of generations. In our study, the chosen 
stopping criterion is the number of generations fixed 
in advance. 
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5 CONCLUSIONS 

Graph coloring is a classic problem in graph theory 
and has attracted the attention of many researchers 
because of its multiple practical applications and the 
complexity of its resolution. It is difficult to say that 
there is a better algorithm for graph coloring; this is 
why our choice forced between the simplicity of 
execution. In this paper, we have proposed a 
Fireworks algorithm to solve the graph coloring 
problem. The objective is to have a minimum number 
of colors required to color a graph. In our approach, 
we have introduced a new feature, although it is 
similar to the principles of the algorithm. We found 
that the fireworks algorithm is influenced by factors 
such as population size, number of iterations. 
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