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Abstract: Financial returns expose complex dynamics that are difficult to capture with classical econometric models, 
the most common feature in financial series is volatility clustering. We propose the Fuzzy HEAVY-r model 
for modelling and predicting returns of the CAC40 stock market index. This model has been developed by a 
combination of the fuzzy inference system and the HEAVY-r model. A Genetic Algorithm (GA) based 
parameters estimation algorithm is suggested to obtain the optimal solution for the fuzzy membership function 
and the HEAVY-r model. We apply these models to the high-frequency financial data regularly spaced in 
time (every minute) and (every five minutes), and we compared it with the Fuzzy GARCH model and the 
classical models. The results indicate that the Fuzzy HEAVY-r model outperforms other models in out of 
sample evaluation according to RMSE. 

1 INTRODUCTION 

In econometrics, volatility has been one of the most 
active research subjects. The autoregressive 
Conditional Heteroscedasticity Models (ARCH) 
introduced by Engle (1982) and their extensions 
GARCH (generalized ARCH) introduced by 
(Bollerslev, 1986) are essentially based on the 
concept of conditional variance and play an effective 
role in modelling the dynamic features of volatility. 
The GARCH family models are ineffective in cases 
where volatility changes rapidly to a new level. 

With the arrival of high-frequency data in the 
world of finance, a large number of studies have been 
recently published. Research on realized measures of 
volatility is becoming popular in studies, including 
realized variance introduced by Andersen et al. 
(2001a) and  Barndorff-Nielsen (2002), the realized 
kernel introduced by Barndorff‐Nielsen et al. (2008), 
and many related quantities. These measures are more 
precise and effective than the squared return in 
determining the current level of volatility. 

The HEAVY model (SHEPHARD & 
SHEPPARD, 2010) blends the intellectual lessons of 
the GARCH model with modern higher frequency 
data literature and shows that the HEAVY models are 
more resilient than traditional GARCH models to 

level breaks in the volatility that adjust much faster to 
the new level. 

Given that financial series present complex and 
nonlinear behaviours that make modelling difficult, 
various artificial intelligence techniques have been 
tested for prediction problems and have shown better 
performance. 

Artificial Neural networks (ANNs) have been 
used successfully, but the weak point is that the 
(ANNs) are black boxes, and it is not possible to 
explain the links between inputs and outputs. 

 In order to compensate for this weakness of 
(ANNs), studies insist on the interest of systems 
combining the aspect connectionist of (ANNs) to 
reasoning techniques. In this objective, neuro-fuzzy 
systems are particularly indicated. 

Current research on prediction problems of 
nonlinear time series shows that the neuro-fuzzy  
performs better than ANNs (Wang, Golnaraghi, & 
Ismail, 2004). 

Hung (2009b) proposed a hybrid Fuzzy-GARCH 
model. The model was combining a functional fuzzy 
inference system to analyze clustering  with a  
GARCH model using genetic algorithms to estimate 
the parameters. 

We propose the Fuzzy HEAVY-r model that 
combines the heavy model in order to capture 
conditional volatility and the fuzzy approach offers 
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the ability to simulate stock movements with 
volatility clustering. 
For the Fuzzy HEAVY-r model estimation problem, 
the GA method (Holland, 1984) aims to achieve an 
optimal solution. 

Our study will be based on daily financial 
returns 𝑟  and a sequence of daily realised variance 
(𝑅𝑉    𝑡 1,2 … 𝑁.    

The rest of this paper is organised into six 
sections. The HEAVY models are presented in 
section 2. The Fuzzy HEAVY-r  is presented in 
section 3. In section 4, the Genetic algorithm. In 
section 5, We have highlighted the properties 
observed empirically in high-frequency financial 
data, and we apply the Fuzzy HEAVY-r model to the 
real data. Concluding remarks are given in section 6. 

2 HEAVY MODELS  

The structure of the HEAVY models (SHEPHARD & 
SHEPPARD, 2010) is given by: 
 
Var(r /F  h α α h  β RM ,      (1) 
                            α 0, β ∈ 0,1 . 
E(RM /F μ γ α  μ β  RM ,    (2) 

α β ∈ 0,1  
 
Where r  denote the daily return, F  is the 
information set generated by high-frequency past 
data, and RMt, that is, the high-frequency volatility 
estimators. Note that (1) is called the HEAVY‐r   
model and (2) the HEAVY‐RM model. 

The volatility estimator that we adopt in our 
model is the realized volatility (Barndorff-Nielsen & 
Shephard, 2002) , as a realised measure: 

𝑅𝑉∆ log 𝑃 ∆ log 𝑃 ∆ , 

The intra-day time subscripted as i = 0, 1, 2, ..., N  and  
∆ is the frequency. Note that 𝑃 ∆  is the closing 
price at the i-th interval of day t. 

3 THE FUZZY HEAVY-R MODEL 

Neuro-fuzzy systems are suitable tools for solving the 
prediction problems of nonlinear time series. Since 
the most common feature in financial series is 
volatility clustering, we combine the HEAVY-r 
model and fuzzy systems to capture the accumulation 
of volatility. 

Fuzzy set theory is similar to human reasoning. 
The capacity of fuzzy logic to imitate human 
reasoning is one of the reasons why fuzzy systems are 
being considered in this study. 

The fuzzy inference system is a computational 
framework that is used to examine and evaluates the 
output of fuzzy systems in three steps: the 
fuzzification (i.e. partitioning of the input data to the 
antecedent of the fuzzy rules), then IF-THEN rules, 
and finally the defuzzification.                       

The use of language rules IF-THEN reflects 
knowledge about a system's dynamics, which makes 
creating prediction systems with fuzzy inference 
systems interesting. 
Fuzzy sets are defined through a membership 
function (denoted by 𝜑 ) which converts data into 
scale inputs ranging from 0 to 1. 

 
𝑅𝑢𝑙𝑒 :       IF     𝑟    is    𝜑      THEN: 

 
        r h ε  , 

h α α h β RM  

Such that: 𝑟  the previous value of the stock 
returns, 𝜑   is the fuzzy set for rule l (l = 1,2…L), with 
L the number of rules IF_THEN. 
The function that we adopt in our model is the 
Gaussian membership function: 

 φ r exp , 

With c is the center of the Gaussian function and σ is 
a positive constant determines the zone of influence 
of the cluster in question. 

The output y of the inference system is determined 
by taking a weighted average of the outputs of the 
different rules. 

𝑟 ℎ εt  ,    
 

h
∑ φ r  α ∑ α h ∑ β RM

∑ φ r
 

4 GENETIC ALGORITHM 

Genetic algorithms are a family of techniques draws 
on the Darwinian theory of evolution to solve 
optimization problems (Holland, 1984) based on 
three basic genetic operators: reproduction, crossover 
and mutation. 

Genetic algorithms belong to the family of 
evolutionary algorithms. They are used to optimize 
complex problems in order to find an optimal 
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solution. It is an effective approach for nonlinear 
functions (Zhou, Khotanzad, & Alireza, 2007).       

5 EMPIRICAL STUDY  

This paper focus on daily financial returns (𝑟 ) of 
CAC40 obtained by taking the logarithmic difference 
of the daily price and multiplying it by 100, the 
resulting stock return: r(t) = (log P(t) –log P(t-1)) 
*100, where P(t) is the closing price for day t 
over the period from 01/11/2017  through 09/10/2020 
and a sequence of daily realised variance 𝑅𝑉 obtained 
by the sum of the N intra-day squared returns at 
frequency 1 min for the first series and 5 min for the 
second series. Where the intra-day time subscripted 
as i = 0, 1, 2…N. 

The first series is uniformly sampled at 1-minute 
scales. This series includes exactly 388,074 
observations of 01/11/2017 09: 00 until 09/10/2020 
18: 00 or 520 points per day. 

The second series is uniformly sampled at 5-
minute scales. This series includes exactly 77,657 
observations of 01/11/2017 09: 00 until 09/10/2020 
18: 00 or 105 points per day. 

 

Figure 1: The intraday return at frequency 1 min 

 
Figure 2: The intraday return at frequency 5 min 

 

Figure 3: The daily return 

The graphics (figures 1, 2, 3) represent the Time 
series plots of the intraday returns and daily returns. 
We can notice that the returns appear to be stationary 
around a constant. The evolution of returns indicates 
that the series is highly volatile. 

Figures 4 and 6 below, presented the realized 
variance 𝑅𝑉  of high-frequency logarithmic returns.  

We observe the clustering of volatilities of the 
realized variance obtained by the sum of the N intra-
day squared returns. 

The correlograms (figures 5, 7) show the presence 
of a significant correlation between the 𝑅𝑉  and 
𝑅𝑉 . 

 
Figure 4: Realized volatility (RV) at frequency 1 min. 

 

Figure 5: correlogram of RV at frequency 1min. 
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Figure 6: Realized volatility (RV) at frequency 5 min 

 
Figure 7: correlogram of RV at frequency 5 min 

The data sample was subdivided into two sets, the 
first set contains 700 observations for the training 
model, and the second set contains 44 observations 
for the testing model.      
Using the K-means algorithm, the number of rules 
was specified using the "gap" method for estimating 
the optimal number of clusters. 

 

Figure 8: Gap curve 

Our system has three inference rules, and the 
membership function chosen is the Gaussian 
function.  

𝑅𝑢𝑙𝑒 :  IF   𝑟   is   𝜑     THEN 
ℎ 𝛼 𝛼  ℎ 𝛽  𝑅𝑉  , l = 1, 2, 3. 

The parameters are significant at a 0.05 significance 
level. 

In order to evaluate the performance of models in 
forecasting returns, a loss function is considered: 
Root mean square error (RMSE):                   𝑅𝑀𝑆𝐸

   ∑ 𝑟  𝑟         

 
 
 
 

Table1: Parameters estimation of Fuzzy HEAVY-r using GA. 

     Parameters 𝑐
𝑐
𝑐

 

𝜎
𝜎
𝜎

 
𝛼
𝛼
𝛼

 

𝛼
𝛼
𝛼

 

𝛽
𝛽
𝛽

 

Fuzzy HEAVY-r 
(RV at frequency 
1min) 

0.014
0.012
0.007

 
0.032
0.002
0.013

 
0.005
0.003
0.04

 
0.058
0.02

0.024
 

0.043
0.058
0.025

 

Fuzzy HEAVY-r 
(RV at frequency 
 5 min) 

0.024
0.030
0.046

 
0.004
0.02
0.05

 
0.04
0.05

0.008
 

0.019
0.018
0.057

 
0.022
0.035
0.051

 

Fuzzy GARCH(1,1) 0.027
0.001

0.038
 

0.015
0.023
0.043

 
0.043
0.015
0.017

 
0.041
0.047
0.044

 
0.021
0.016
0.051
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Table2: The results of forecasting returns in out‐of‐sample evaluation. 

Loss 
function 

Fuzzy HEAVY-r 
(at frequency 1min) 

Fuzzy HEAVY-r 
(at frequency 5min)

Fuzzy GARCH(1,1)  GARCH(1,1) 

RMSE 1.33 1.32 1.44 1.34 

 

 

Figure 9: Predicted return by the Fuzzy HEAVY-r model 
(RV at frequency 1min) 

 

Figure 10: Predicted return by the Fuzzy HEAVY-r model 
(RV at frequency 5min) 

 

Figure 11: Predicted return by the FUZZY GARCH model. 

6 CONCLUSION 

We found that the correlation and the clustering of 
volatilities observed empirically better captured by   
the Fuzzy HEAVY-r model. 

The result shows that the Fuzzy HEAVY-r models 
outperform the Fuzzy GARCH model and GARCH 
model in out‐of‐sample evaluation according to 
RMSE. 
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