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Abstract: The paper considers a problem of generating all classification Good Maximally Redundant Tests (GMRTs) 
as the set of all maximal elements of the formal concept lattice generated over a classification context. The 
number of concepts is exponential in the size of input context and decomposing contexts is one of the methods 
to decrease the computational complexity of inferring GMRTs. Three kinds of sub-contexts are defined: 
attributive, object and object-attributive ones. The rules of reducing sub-contexts are given. The properties of 
the sub-contexts are analysed related to the fact that the set of all GMRTs in a classification context is a 
completely separating system. Some strategies are considered for choosing sub-contexts based on the 
definition of essential objects and attribute values. The rules of the decomposition proposed imply 
constructing some incremental procedures to construct GMRTs. Two methods of pre-processing the formal 
contexts greatly decreasing the computational complexity of inferring GMRTs are proposed: finding the 
number of subtasks to be solved (the number of essential values) and the initial content of the set of GMRTs. 
Some unsolved problems difficult for analytical investigations have been formulated. The decomposition 
proposed can be fruitful in processing big data based on machine learning algorithm. 

1 INTRODUCTION 

The paper considers a symbolic machine learning 
problem of generating all classification Good 
Maximally Redundant Tests (GMRTs) as the set of 
all maximal elements of the formal concept lattice 
generated over a classification context. GMRTs 
provides a basis for mining logical rules from data. 
The number of concepts is exponential in the size of 
input context and decomposing contexts is one of the 
methods to decrease the computational complexity of 
inferring GMRTs. 

Unfortunately, not enough attention has been paid 
to the methods of formal context decomposition due 
to its analytical difficulty and, at least in part, by the 
consideration that having good algorithm for lattice 
construction is more important than decomposing 
formal contexts in sub-contexts. 

Our attention has been attracted to the following 
methods of decomposing formal contexts described 
in literature. The first one has been developed by Ch. 
Mongush and V. Bykova, 2019. In this method, some 
fragments of the initial context are partitioned into the 
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so-called boxes. The division of context into boxes is 
“safety”, i. e. the formal concepts are not lost and new 
formal concepts do not arise during the 
decomposition. It is proved that the number of boxes 
arising at each iteration of the decomposition is equal 
to the number of unit elements of the 0,1-matrix 
representing the initial formal context. The number of 
boxes at each iteration can be reduced by constructing 
mutually disjoint chains of boxes. 

The second method of decomposition has been 
proposed by T. Qian, L. Wei, J.-J. Qi, 2017. This 
method is based on sub-contexts, closed relation and 
pairwise non-inclusion covering on the attribute set. 
The authors provide the method and algorithm of 
constructing the concept lattice based on a 
decomposition theory proposed. They also consider 
the similar decomposition theory based on the object  
set. Combining the above two decompositions is 
used. 

In our paper, three kinds of sub-contexts are 
defined: attributive, object and object-attributive 
ones. The rules of forming and reducing sub-contexts 
are given. The properties of the determined sub-
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contexts are analyzed related to considering all the 
GMRTs for a given formal context as a completely 
separating system of the subsets of a finite set 
(Dickson, 1969). The definition of GMRTs is given 
via two interrelated Sperner systems (Sperner, 1928): 
the family of test’s intents and the family of test’s 
extents. Some strategies are considered for choosing 
sub-contexts in inferring GMRTs based on the 
definition of essential object and value of attribute. 
We formulate, in conclusion, some very important but 
not yet investigated problems connected with the 
formal context decomposition considered in this 
paper. 

The paper is organized as follows: Section 2 
describes GMRT as a formal concept, Section 3 gives 
the rules of decomposing classification contexts, 
Section 4 gives the rules for reducing classification 
contexts, Section 5 represents some strategies for 
decomposing contexts. We complete with a short 
conclusion. 

2 DEFINITION OF GMRT 

A classification context is a set (G, M, I, AClass), 
where G is a set of objects, M is a set of attribute 
values (values, for short), I = GM is a binary relation 
between G and M, and AClass is a set of additional 
attributes by values of which the given set of objects 
is partitioned into disjoint classes. 
Denote a description of object g ∈ G by δ(g), and 
descriptions of positive and negative objects by D+ = 
{δ(g)| g ∈ G+} and D− = {δ(g)| g ∈ G−}, respectively. 
The Galois connection (Ore, 1944) between the 
ordered sets (2G, ⊆) and (2M, ⊆), is defined by the 
following mappings called derivation operators 
(Ganter & Wille, 1999): for A ⊆ G and B ⊆ M, val(A) 
= ⋂δ(g), g∈A, and obj(B) = {g|B ⊆ δ(g), g ∈ G}. 

In our approach, there are two closure operators: 
generalization_of(B) = val(obj(B)) and 
generalization_of(A) = obj(val(A)). A is closed if A 
= obj(val(A)) and B is closed if B = val(obj(B)). If 
(val(A) = B) & (obj(B) = A), then a pair (A, B) is 
called a formal concept (Ganter & Wille, 1999), 
subsets A and B of which are called concept extent 
and intent, respectively. According to the values of a 
goal attribute K from AClass, we get some possible 
forms of the formal contexts: Kϵ := (Gϵ, M, Iϵ ) and 
Iϵ := I ∩ (Gϵ × M), where ϵ ∈ rng(K), rng(K) = {+, 
−}. A classification context K± (G±, K, G± × K) is 
formed after adding the classification attribute. A 
context K± is illustrated by Table 1.  

Definition 1. A diagnostic test (DT) for K+ is a 
pair (A, B) such that B ⊆ M, A = obj(B) ̸= ∅, A ⊆ G+, 
and obj(B)∩G− = ∅.  

Table 1: An example of classification context 

No Height Color of 
hair

Color of 
Eyes 

K1 K2 

1 Small Blond Blue + +
2 Small Brown Blue − + 
3 Tall Brown Hazel − + 
4 Tall Blond Hazel − − 
5 Tall Brown Blue − − 
6 Small Blond Hazel − − 
7 Tall Red Blue + − 
8 Tall Blond Blue + − 

Definition 2. A diagnostic test (A, B) for K+ is 
said to be maximally redundant if obj(B ∪ m) ⊂ A for 
all m ∈ M \ B.  

Definition 3. A diagnostic test (A, B) for K+ is 
said to be good iff any extension A1 = A ∪ i, i ∈ G+ 
\ A, implies that (A1, val(A1)) is not a DT for K+.  

A maximally redundant DT which is 
simultaneously good is called a good maximally 
redundant DT. Any object description (g) is a 
maximally redundant collection of values because for 
any value m  (g), m  M, obj((g)  m) = . 

Definitions of tests (as well as other definitions), 
associated with K+, are applicable to K−. In general, 
a set B is not closed for DT (A, B), consequently, DT 
is not necessarily a formal concept. A GMRT can be 
regarded as a special type of formal concept 
[Naidenova, 2012].  

An example in Table 1: ({1, 8},{Blond, Blue}) is 
a GMRT for K1 = + (K1+), ({4, 6},{Blond, Hazel}) 
is a DT for K1 = − (K1−) but not a good one, and ({3, 
4, 6}, {Hazel}) is a GMRT for K1−.  

2.1 GMRT as a Sperner System  

It is clear that the set of intents of all diagnostic tests 
for K+ (call it ‘DT(+)) is the set of all the collections 
t of values for which the condition obj(t)  G+ is true. 
The set DT(+) is the ordered set w. r. t. inclusion 
relation. This consideration leads to the next 
definition of good diagnostic test. 

Definition 4. A diagnostic test (A, B) for K+ is 
said to be good iff obj(B)  G+ and, simultaneously, 
the condition obj(B)  obj(B*)  G+ is not satisfied 
for any B*, B* M, such that B*   B. 

This definition means that the family of the 
extents of all good tests for K+ is a family of maximal 
elements of DT(+) and it is therefore a Sperner system 
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(Sperner, 1928). On this basis, we can give the 
following definition for the GMRTs. 

Definition 5. To find all the GMRTs for a given 
K+ means to construct a family PS of subsets s1, s2, 
…, sj, …, snp of G+ such that: 

1) PS is a Sperner system;  
2) each sj is a maximal set in the sense that adding 

to it any object g such that g  sj, g  G+ implies that 
obj(val(sj  g)) ̸⊆ δ(g), ∀g ∈ G+. 

3) The set of all GMRTs is determined as follows: 
{(sj, val(sj)), sj  PS, j = 1, …, np}, where {val(sj)} 
is also a Sperner System. 

Some algorithms NIAGaRa and DIAGaRa to find 
all the GMRTs in a classification context are 
described in (Naidenova, 2006). The Diagnostic Test 
Machine (DTM) is given in (Naidenova & Shagalov, 
2009). The experiment conducted with the publicly 
available database (Schlimmer, 1987) of 8124 
mushrooms showed that the result of the DTM turned 
out to be 97,5% w.r.t. classification accuracy. 

3 RULES OF DECOMPOSING 
CLASSIFICATION CONTEXT 

To transform inferring GMRTs into an incremental 
process, we introduce three kinds of subtasks for K+ 
(K−), called subtasks of the first, second and third 
kind, respectively:  

1. Given a positive object g, find all GMRTs 
(obj(B), B) for K+ such that B is contained in δ(g). In 
the general case, instead of δ(g) we can consider any 
subset of values B1, such that B1 ⊆ M, obj(B1) ̸= ∅, 
B1 ̸⊆ δ(g), ∀g ∈ G−.  

2. Given a non-empty set of values B ⊆ M such 
that (obj(B), B) is not a DT for positive objects, find 
all GMRTs (obj(B1), B1) such that B ⊂ B1.  

3. Given a value m  M and object g  G+, find 
all the GMRTs (X, val(X)) such that X  obj(m), 
val(X)  (g). 

One can easily see that each subtask of the first, 
second or third kind is simpler than the initial one, 
because each object description contains only some 
subset of values from M and each subset B ⊆ M 
appears only in a part of the set of objects 
descriptions. 

Accordingly, we define three kinds of sub-
contexts of a given classification context called the 
object, attribute value and attribute value-object (or 
object-attribute value) projections, respectively. If 
(G, M, I) is a context and if N ⊆ G, and H ⊆ M, then 
(N, H, I ∩ N × H) is called a sub-context of (G, M, I). 

Definition 6 (Naidenova & Parkhomenko, 2020). 
The object projection ψ(K+, g) returns the sub- 
context (N, δ(g), J), where N = {n ∈ G+ | n satisfies 
(δ(n) ∩ δ(g) is the intent of a test for K+)}, J = I+ ∩ 
(N × δ(g)).  

Definition 7 (Naidenova & Parkhomenko, 2020). 
The attribute value projection ψ(K+, B) returns the 
sub-context (N, B, J), where N = {n ∈ G+ | n satisfies 
(B ⊆ δ(n))}, J = I+ ∩ (N × B).  

Definition 8. The attribute value-object 
projection ψ(K+, m, g) is the intersection of two 
projections: attribute value projection ψ(K+, m) and 
object projection ψ(K+, g). 

In the case of negative objects, symbol + is 
replaced by symbol − and vice versa.  

The decomposition of inferring GMRTs into the 
subtasks requires the following actions:  

1. Select an object, attribute value or a pair of 
attribute value - object to form a subtask.  

2. Form the subtask (projection). 
3. Reduce the subtask (projection). 
4. Solve the subtask. 
5. Reduce the parent classification context when 

the subtask is over. 

4 RULES OF REDUCING 
CLASSIFICATION CONTEXT 

It is essentially that the projection is simply a subset 
A* of objects defined on a certain restricted subset B* 
of values. 

Let objϵ(m) be a set of positive or negative objects 
{obj(m) ∩ Gϵ}, where ϵ ∈ rng(K). Then for any B ⊆ 
M objϵ(B) = ⋂m∈B objϵ(m), where ϵ ∈ rng(K). 

Let Sgood+ be the partially ordered set of 
obj+(m), m ∈ M satisfying the condition that 
(obj+(m), val(obj+(m))) is a current GMRT (in any 
algorithm of inferring GMRTs) for K+. Sgood− for 
K− is defined based on obj− (m). 

Essentially, the process of forming Sgood is an 
incremental procedure of finding all maximal 
elements of a partially ordered (by the inclusion 
relation) set. It is based on topological sorting of 
partially ordered sets. Thus, when the algorithm is 
over, Sgood contains the extents of all the GMRTs for 
K+ (for K−) and only them (Naidenova & 
Parkhomenko, 2020). The operation of inserting an 
element A∗ into Sgood (in the algorithm formSgood 
(Naidenova & Parkhomenko, 2020) under the 
lexicographical ordering of these sets is reduced to 
lexicographically sorting a sequence of k-element 
collections of integers. A sequence of n-collections 
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whose components are represented by integers from 
1 to |M|, is sorted in time of O(|M| + L), where L is 
the sum of lengths of all the collections of this 
sequence (Hopcroft et al., 1975). Consequently, if 
Lgood is the sum of lengths of all the collections A of 
Sgood, then the time complexity of inserting an 
element A∗ into Sgood is of order O(|M| + Lgood). 
The set Tgood of all the GMRTs is obtained as 
follows: Tgood = {t | t = (A, val(A)), A ∈ Sgood} 

It is useful to introduce the characteristic W(m), 
m  B* named by the weight of m in the projection: 
W(m) = obj+(m) or W(m) = obj− (m) is the 
number of positive (negative) examples of the 
projection containing m. Let WMIN be the minimal 
permissible value of the weight. 

The following reduction rules are determined: 
Rule 1. For each value m in the projection, the 

weight W(m) is determined and if the weight is less 
than WMIN, then the value m is deleted from the 
projection.  

Rule 2. We can delete the value m if W(m) is 
equal to WMIN and (obj+(m), val(obj+(m)) is not a 
test; in this case m will not appear in a GMRT with 
the weight of its intent equal to or greater than 
WMIN. 

Rule 3. The value m can be deleted from the 
projection if obj+(m)  s’ for some s’  Sgood+. 

Rule 4. If obj(val(obj+(A)) = obj+(A), then the 
value A is deleted from the projection and obj+(A) is 
stored in SGOOD+ if obj+(A) corresponds to a 
GMRT at the current step. 

Rule 5. If at least one value has been deleted from 
the projection, then the following its reduction is 
necessary. The reduction consists of deleting the 
elements of projection that do not correspond to tests 
(as a result of previous eliminating values). If, under 
reduction, at least one element has been deleted from 
the projection, then applying Rule 1 – Rule 5 are 
repeated. 

Algorithms for GMRTs inferring based on these 
rules have been described in (Naidenova, 2006; 
Naidenova & Parkhomenko, 2020]. 

Rule 1 is based on the following Theorem 1 
(Naidenova, 2006): 

THEOREM 1. 
Let m  M, (Y, X) be a maximally redundant test 

for G+ and obj(m)  obj(X) =Y. Then m does not 
belong to the intent of any maximally redundant good 
test for G+ different from X. 

Consider an example of reducing a sub-context 
for K−, where − is the value of K2 in Table 1. The 
result of the attribute value projection ψ(K−, Tall) is 
in Table 2. In Table 2, obj−(Blue) = {5, 7, 8}, but 
obj(Tall, Blue) = {5, 7, 8}, and, consequently, 

(obj(Tall, Blue),{Tall, Blue}) is a DT for K2 = −. We 
have also obj−(Brown) = {5} and obj−(Red) = {7}, 
but both {5} ⊂ {5, 7, 8} and {7} ⊂ {5, 7, 8}, and, 
consequently, there does not exist any good test 
which contains simultaneously the values ‘‘Tall’’ and 
‘‘Brown’’. ‘‘Red’’ is not a good test for K−. Then one 
can delete ‘‘Blue’’, ‘‘Red’’ and ‘‘Brown’’ from the 
sub-context. The result is shown in Table 3. Note, that 
the descriptions of objects 5 and 7 are included in the 
description of object 3 for K+ (see Table 1) and these 
objects are deleted. Objects 4 and 8 form the extent of 
a test for K− equal to (obj(Tall, Blond),{Tall, 
Blond}).  

Table 2: Attribute-value projection for K2 = − in Table 1. 

No Height Color of 
hair 

Color of 
Eyes

4 Tall Blond Hazel
5 Tall Brown Blue
7 Tall Red Blue
8 Tall Blond Blue

Table 3: The projection of Table 2 after reducing. 

No Height Color of 
hair 

Color of 
eyes

4 Tall Blond Hazel
5 Tall  
7 Tall  
8 Tall Blond 

5 STRATEGIES OF 
DECOMPOSING 

The advantage of a projection-forming operation is to 
increase the likelihood of finding all the GMRTs 
(contained in the projection) by only one passing of 
it. By limiting the number of tests contained in the 
projection, we increase the probability of their 
separation, that is, the probability of finding exactly 
those attributes (values) or objects that will enter only 
one test in the projection considered. Let's explain this 
idea. 

Any subset t1,…, ti, tj,.. , tk of GMRTs and 
corresponding to it subset val(t1), val(t2), …, val(ti), 
val(tj),...., val(tk),  where t1,…, ti, tj,.. , tk are intents 
of GMRTs are two systems of completely separating 
subsets. It means that for any pair (ti, tj) there is such 
a pair of values (mq, mf) that mq occurs in ti and does 
not occur in tj, and mf occurs in tj and is not found in 
ti. Analogously, for any pair of val(ti), val (tj), there 
is such a pair of objects (gq, gf), that gq is found in 
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val(ti) and is not found in val(tj), and gf is found in 
val(tj) and is not found in val(ti). 

The phenomenon of a completely separating 
system of GMRTS can be illustrated in a projection 
in Table 4 (this example is extracted from a real task). 

In this example, the projections t9, t12 of objects 
9 and 12 do not contain any intents of tests, we can 
delete the corresponding lines. The result is in Table 
5, where: 

Table 4: Example of a projection. 

t\A A
3 

A
6 

A
7 

A
* 

A
13

A
+ 

A
19 

A
20 

A
21

A
22

8 1 1 1 1 1 1 1 1 1 1
6 0 0 1 0 0 0 0 1 1 0
4 0 1 1 0 0 1 0 1 1 0
7 1 1 0 0 0 1 0 1 0 1
9 0 0 0 0 0 0 1 1 1 1
11 1 0 1 0 0 0 1 1 1 1
10 1 1 0 1 1 0 0 1 1 0
12 1 0 0 0 0 0 0 1 1 0

Obj+(m7) = {4,6,8,11}, val({4,6,8,11}) = {m7 
m20 m21 } corresponds to a test, 

Obj+(m22) = {7,8,11}, val({7,8,11}) = {m3 m20 
m22} corresponds to a test, 

obj(m13) = obj(A*)  = {8,10}, valt({8,10}) = {m3 
m6 m* m13 m20 m21 } corresponds to a test. 

Delete m22, m7, m13, and m* and reducing the 
projection. After reducing, this subtask is over. 

Table 5: The projection after reducing. 

t\A A
3 

A
6 

A
7 

A
* 

A
13

A
+ 

A
19 

A
20 

A
21

A
22

8 1 1 1 1 1 1 1 1 1 1
6 0 0 1 0 0 0 0 1 1 0
4 0 1 1 0 0 1 0 1 1 0
7 1 1 0 0 0 1 0 1 0 1
11 1 0 1 0 0 0 1 1 1 1
10 1 1 0 1 1 0 0 1 1 0

All the GMRTs in this projection have been 
revealed by only one passing. 

Before entering into the details of choosing 
projections when decomposing the classification 
contexts, we need the following definitions of 
essential value and essential object.  

Definition 9. Let B be a set of values such that 
(obj(B), B) is a DT for K+ (K−). The value m ∈ B, B 
⊆ M is essential in B if (obj(B \ m), (B \ m)) is not a 
DT for a given set of objects.  

Generally, we are interested in finding one of the 
maximal subsets sbmax(B) ⊂ B such that (obj(B), B) 
is a DT but (obj(sbmax(B)), sbmax(B)) is not a DT 
for a given set of positive (negative) objects. Then 

sbmin(B) = B \ sbmax(B) is one of minimal subsets 
of essential values in B.  

The number of subtasks of the second kind is 
determined by the number of essential values in M or 
its subsets. Let the set Lev be equal to sbmin(M). 

Proposition 1. Each essential value is included in 
at least one positive object description. 

Proof of Proposition 1. Assume that for an object 
description δ(g), g ∈ G+, we have δ(g) ∩ Lev = ∅. 
Then δ(g) ⊆ M \ Lev. But M \ Lev is included in at 
least one of the negative object descriptions and, 
consequently, δ(g) also possesses this property. But 
this contradicts the fact that δ(g) is the description of 
a positive object.  

Corollary 1 (of Proposition 1). If B ⊆ M and B ∩ 
Lev = ∅, then (obj(B), B) is not a test for K+.  

Corollary 2 (of Proposition 1). For finding all the 
GMRTs contained in K+, it is sufficient to find all the 
GMRTs only for sub-contexts associated with 
essential values in Lev for M. 

Definition 10. Let A ⊆ G+, assume that (A, 
val(A)) is not a DT for K+ (K−). The object g, g ∈ A 
is said to be an essential in A, if (A\g, val(A\g)) 
proves to be a DT for a given set of positive objects. 

Generally, we are interested in finding one of the 
maximal subsets sbmax(A) ⊂ A such that (A, val(A)) 
is not a DT but (sbmax(A), val(sbmax(A))) is a DT 
for K+. 

It is clear that if m enters into the intent of a test 
for K+, then its extent is in obj+(m). It is theoretically 
possible to find one of the maximal A* subsets of 
obj+(m), such that (A*, val(A*)) is a DT for K+ (K−). 
This operation allows to find the initial content of 
Sgood (Naidenova & Parkhomenko, 2020). 

The quasi-minimal subset of essential values in M 
and quasi-minimal subset of essential objects in 
obj+(m), for all mM can be found by a simple 
procedure described in (Naidenova & Parkhomenko, 
2020). This procedure is of linear computational 
complexity w.r.t. the cardinality of M.  

The process of using the decomposition of formal 
context based on choosing essential object or value to 
form the projections consists in the following steps:  

Choose an essential value (object) in a projection; 
forming the corresponding sub-projection; 

Find all the GMRTs in the sub-projection (sub-
context); 

Delete value (object) from the parental context;  
Reducing the parental context; 
Determine whether the procedure of finding all 

the GMRTs is over. 
Using the third decomposition based on selecting 

an essential object and an essential value 
simultaneously is effective when this value enters the 
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quasi-minimal set of essential values in the 
description of this selected object and this essential 
object enters the quasi-minimal set of essential 
objects for this selected value. 

If the essential value is the only one w.r.t. the 
selected object, then one can remove this object from 
consideration after the subtask is resolved. Similarly, 
if the essential object is the only one related to 
selected value, then one can remove this value from 
consideration after the subtask is over. These 
deletions result in a very effective reduction in the 
formal context considered. 

Another advantage of selecting essential values 
and objects simultaneously is the fact that this way 
greatly supports the property of the complete 
separating the families of extents and intents of 
GMRTs. 

It is important to formulate some unsolved and 
nontrivial problems related to the decomposition 
considered in this paper. These problems are: 

How to recognize a situation that current formal 
classification context contains only the GMRTs 
already obtained (current context does not contain 
any new GMRTs)? 

How to evaluate the number of recurrences 
necessary to resolve a subtask in inferring GMRTs? 
(if we use a recursive algorithm like DIAGARA)? 

How to evaluate the perspective of a selected sub-
context with respect to finding any new GMRT? 

These problems are interconnected and the 
subject of our further research. The effectiveness of 
the decomposition depends on the properties of the 
initial classification context (initial data). Now we 
can propose some characteristics of data (contexts 
and sub-contexts) useful for choosing a projection: 
the number of objects, the number of attribute values, 
the number of the GMRTs already obtained and 
covered by this projection. It may be expedient to 
select essential object with the smallest number of 
entering elements of Sgood and, simultaneously, with 
the largest number of entering obj+(m), mM. 

Our experiments show that the number of 
subtasks to be solved always proved to be smaller 
than the number of essential values. 

6 CONCLUSION 

In this paper, we considered one of the possible 
methods for decomposing classification contexts to 
find all GMRTs in them. We gave the definitions of 
three type of decomposing and, accordingly, three 
type of context projections and subtasks of inferring 
GMRTs. We revealed the role of finding essential 

attribute values and objects for choosing and 
resolving subtasks. Some ways to select the 
projections were given in this paper. Two methods of 
preprocessing the formal contexts (sub-contexts) 
greatly decreasing the computational complexity of 
inferring GMRTS are proposed: finding the number 
of subtasks to be solved (the number of essential 
values) and the initial content of the set Sgood. Some 
unsolved problems difficult for analytical 
investigations have been formulated. Currently, 
experimental studies of the decompositions’ 
computational effectiveness on various data sets are 
conducted. 
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