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Abstract: Conventional hydrological models are based on a large number of readily accessible parameters. The use of 
models with a small number of variables, cabals to treat the nonlinearity of these parameters is necessary. 
With this in mind, we chose to develop a hydrological time series predictive model of flow based on the use 
of Deep Learning models, the approach based on an ANN Method with a multilayer network without feedback 
driven by the backpropagation algorithm errors. it is inspired by the principal mode of operation of the human 
neurons with a function that transforms the activation response of non-linear type. The developed, unlike the 
conventional statistical methods model, requires no assumptions on the variables used.

1 INTRODUCTION 

The prediction of time series is the subject of several 
studies in different fields and disciplines of research, 
for example in biology and medicine, physics, 
economics, and finance. 

Over the past two decades, artificial neural 
networks commonly used in applied physics have 
entered management science as a quantitative method 
of forecasting, alongside classical statistical methods 
or by using direct parameters models equations (El 
Mansouri and El Mezouary, 2015; El Mezouary, 
2016; El Mezouary, El Mansouri, and El 
Bouhaddioui, 2020; El Mezouary et al., 2015; El 
Mezouary, El Mansouri, Moumen, et al., 2020; EL 
MEZOUARY et al., 2016; Sadiki et al., 2019). They 
are, in particular, used in hydrology, but other fields 
of management are also concerned. There are 
undoubtedly two main reasons which have led 
researchers in Management Sciences to take an 
interest in this tool (Aguilera et al., 2001; Ben-Daoud, 
El Mahrad, et al., 2021; Ben-Daoud, Moumen, et al., 
2021; Huang et al., 2007).  
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The first is that, unlike classical statistical 
methods, artificial neural networks do not require any 
assumptions about the variables. The second is that 
they are quite suitable for dealing with complex 
unstructured problems, that is, problems on which it 
is a priori impossible to specify the form of the 
relationships between the variables used. It is through 
algorithms that these systems learn on their own the 
relationships between variables from a data set, much 
like the human brain would. Thus, the network sets 
itself up from the examples provided to it.  

In recent years, several articles dealing with the 
application of ANN to water resources management 
have been published. One of the first applications was 
that of forecasting water demand (Daniel and Chen, 
1991), then neural networks were used for forecasting 
water quality (Palani et al., 2008; Zhao et al., 2007) 
and forecasting flow (Atiya et al., 1999; El Mezouary, 
El Mansouri, and El Bouhaddioui, 2020). 

In this article, we will first recall the notion of 
hydrological forecasting and the models frequently 
used, as well as various terms used in the context of 
hydrological modeling. in the second place, we quote 
the basic concepts and the development procedure of 
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neural networks, their different structures, and their 
learning algorithms. Finally, an application for a 
hydrological forecast will present the characteristics 
of phenomena and the result of the application of the 
neural method to the forecasting of water river flows 
and the discussion of the results. 

2 PROBLEMS OF 
HYDROLOGICAL 
FORECASTING 

The purpose of hydrological forecasts is to allow 
more informed planning of interventions, as much for 
flood or low water situations as in more common 
hydrological conditions. Concerning the operation of 
dams, forecasts make it possible to plan the opening 
and closing of valves and spillways and thus help to 
reduce the negative impacts linked to climatological 
and hydrological hazards. 

The purpose of ensemble hydrological forecasting 
is to make available a set of forecasts at each time 
step, so that this set allows the user to assess the 
uncertainty of the forecast issued, depending on 
whether the set covers a narrow or wide range of 
values. When 𝑡  it means first run-through, the 
computation of the anticipated streamflow 𝑄 at time 
𝑡  1 is of the accompanying structure: 

𝑄 ௧ାଵ ൌ  𝑄௧ାଵ  �̂�௧ାଵ  ൌ
𝑓ሺ𝑄 ௧ାିଵ, 𝑋 ௧ାିଵ, 𝑒 ௧ାሻ                                     ( 1) 

 
Where  𝑄௧ାଵ is the conjecture after 𝑙 time venture 

forward, it compares to the measure of  𝑄 ௧ାଵ  
comparative with time 𝑡 , 𝑋 ௧ାିଵ  is the network of 
logical factors at time t  l െ 1, 𝑓   is the capacity 
function of the valuation of  𝑄 ௧ାଵ  and, �̂�௧ାଵ  is the 
assessment of the calculated error 𝑒 ௧ା. 

 
It can be noted that the characteristic elements of 

the forecast are: 
The variable to predict and the explanatory 

variables. 
The forecast horizon (e.g., 𝐿 ൌ1 hour, 1 day, a 

week, a month, a season, a year, return time ...). 
Methods of calculation or estimation (i.e., the 

nature of the function 𝑓ሺ. ሻ). 
The objective of the forecast (flood warning, 

planning of reservoir operation, irrigation, or 
navigation projects). 

The type of results desired (numeric values, 
graphs, or probability distribution). 

Taking all these elements into account in solving 
Equation 1 constitutes "the problem of hydrological 
forecasting", for medium and long-term forecasts, the 
non-linear components of hydrometeorological 
systems, and the number of explanatory variables 
take on more importance (Coulibaly et al., 1999). 

3 TIME-SERIES FORECASTING 

Time series forecasting is a problem encountered in 
several fields of application, such as finance 
(prediction of future yield), engineering electricity 
consumption), aeronautics (programming of 
automatic pilots), etc. In hydrology (forecasting river 
flows, forecasting of groundwater head, precipitation, 
forecasting water quality....), the time series is a series 
of ordered flow rates in time, where the instant 
corresponding to the most recent element is 
considered to be the present. 

The goal is to predict one or more future elements 
of the series. To achieve this, we must try to use as 
much as possible the relevant information contained 
in the time series itself, but also the information on 
the possible influence of other time series (as for us 
the one containing the precipitation data). Different 
ways of using this information give rise to different 
forecasting models. 

Prediction models can be models characterized by 
the degree of theoretical knowledge used regarding 
the phenomenon under consideration or models that 
use (almost) no theoretical knowledge. Models that 
are not built entirely based on theoretical knowledge 
are built from a learning set made up of observations 
from the system. This set is so called because it 
contains situations that the model can "learn" to 
predict. after this learning phase, the forecasting 
model has become capable of predicting situations 
absent in the learning set, we speak of learning with 
generalization. 

The principal idea of forecasting is, time series 
prediction models forecast values of a target data 𝑥,௧ 
for a specified entity 𝑖  at time 𝑡  (Lim and Zohren, 
2021), any unit signifies a logical class of transient 
data, example including measurements from 
individual weather stations in climatology, and can be 
observed at an equal time. inside the most effective 
case, one-step-ahead forecasting models take the 
form: 

𝑥ො,௧ାଵ ൌ  𝑓ሺ𝑥 ,௧ି:௧, 𝑦 ,௧ି:௧, 𝑝 ሻ                 ሺ2ሻ 

where 𝑥ො,௧ାଵ  is mean the hydrological model 

forecast, the 𝑥 ,௧ି:௧, 𝑦 ,௧ି:௧  are represent the 
target observations and exogenous inputs 
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respectively done a look-back case window 𝑘, 𝑝 𝑖 is 
stationary description data related to the entity, and 
𝑓ሺ. ሻ  is the estimate function learned by the time 
series model. Similar components can be prolonged 
to multivariate models (Lim and Zohren, 2021; 
Salinas et al., 2019; Sen et al., 2019). A series of non-
linear layers are used to construct intermediate feature 
representations (Bengio et al., 2013). 

𝑓ሺ𝑥 ,௧ି:௧, 𝑦 ,௧ି:௧, 𝑝 ሻ ൌ
ℎ ௗௗሺℎ ௗ൫𝑥 ,௧ି:௧, 𝑦 ,௧ି:௧, 𝑝 ൯ሻ               ሺ3ሻ 

This equation is a basic Building Blocks of Deep 
neural networks learn, were ℎ ௗ and ℎ ௗ are 
respectively the encoder and decoder functions. 

In Convolutional Neural Networks (CNNs), the 
architecture is utilizing multiple layers of causal 
convolutions (Bai et al., 2018; Borovykh et al., 2017) 
to predict the time series datasets, each fundamental 
convolutional filter takes the form of Equation 4 (Lim 
and Zohren, 2021) below for an intermediate feature 
at hidden layer 𝑙: 

ℎ௧
ାଵ ൌ 𝐴ሺ∑ 𝑊ሺ𝑙, 𝜏ሻ

ఛୀ ℎ௧ିఛ
 ሻ              ሺ4ሻ 

For this convolutional architecture, the ℎ௧
ାଵ is a 

transitional at layer number one at time t, 𝑊ሺ𝑙, 𝜏ሻ is a 
weight of filter on layer 𝑙 . Aሺ. ሻ is a function of 
activation, for example, sigmoid function, 
representing any building and architecture-specific 
non-linear processing. The recent modern 
architectures make use of dilated convolutional layers 
(Bai et al., 2018; Lim and Zohren, 2021), Equation 4 
extend as below (Figure 1a): 

ሺ𝑊 ∗ ℎሻሺ𝑙, 𝑡, 𝑑ሻ ൌ 𝐴ሺ∑ 𝑊ሺ𝑙, 𝜏ሻ/ௗ
ఛୀ ℎ௧ିௗఛ

 ሻ       ሺ5ሻ 

where 𝑑𝜏 represent a layer-specific dilation rate. 
The second architecture is Recurrent Neural 
Networks, which assumed the normal interpretation 
of time series data as inputs sequences data and 
targets data, numerous RNN-based models have been 
formed for transient estimating (Lim et al., 2019; Lim 
and Zohren, 2021; Salinas et al., 2020). RNN cells 
comprise an inward memory state which goes about 
as a minimized past data rundown. For Elman RNN 
(Elman, 1990), Figure 1b, the memory state is 
recursively refreshed with novel perceptions at each 
time project as displayed in the following condition: 

𝑧௧ ൌ 𝛾௭ሺ𝑊௭ଵ𝑧௧ିଵ  𝑊௭ଶ𝑦௧  𝑊௭ଷ𝑥௧ 

𝑊௭ସ𝑠  𝑏௭ሻ                               ሺ6ሻ 

Where 𝑧௧ ∈  𝑅ு  H is the RNN hidden internal 
state. W is the linear weights,  b is the biases of the 
network, γ௭ are network activation functions. 

The third architecture is Attention Mechanisms, 
attention layers total transient highlights utilizing 
progressively created weights displayed in Figure 1c, 
permitting the network to straightforwardly zero in on 
critical time steps before. Conceptually, attention is a 
mechanism for a key-value lookup based on a given 
query (Graves et al., 2014), taking the form below: 

ℎ௧ ൌ ∑ 𝛼ሺ𝑘௧, 𝑞ఛሻ
ఛୀ 𝑣௧ିఛሻ                       ሺ7ሻ 

Where intermediate features produced at different 
time steps by lower levels of the network are the key 
𝑘௧ , query 𝑞ఛ  and value 𝑣௧ିఛ  . For time series 
predicted, the attention gives two key advantages. 
Initially, networks through attention can 
straightforwardly go to any critical case that occurs. 
Besides, as displayed in (Lim et al., 2021; Lim and 
Zohren, 2021), attention-based networks can learn 
regime-specific successive dynamics by using 
separate attention weight designs for any regime. 

The fourth basic Building Blocks of Deep neural 
networks learn are Outputs and Loss Functions. In 
one-step-ahead prediction problems (Lim and 
Zohren, 2021). Forecasts can be further separated into 
two different groups point estimates and probabilistic 
predictions. 

For Point Estimates, A typical way to deal with 
estimating is to decide the normal worth of a future 
objective. This includes reformulating the issue to a 
characterization task for discrete outputs, and a 
regression task for consistent outputs utilizing the 
encoders portrayed previously (Lim and Zohren, 
2021). Networks are qualified using binary cross-
entropy and mean square error loss functions 
respectively in the case of one-step forward 
predictions of binary and continuous targets. The 
final layer of the decoder features a linear layer with 
a sigmoid activation function allowing the network to 
forecast the probability of event rate at a specified 
time step in case of the binary classification: 

𝑙 ൌ െ
ଵ

்
∑ 𝑦𝑙𝑜𝑔ሺ𝑦ො௧ሻ்

௧ୀ   

ሺ1 െ 𝑦ො௧ሻlog ሺ1 െ 𝑦ො௧ሻ                    ሺ8ሻ 

𝑙 ൌ െ
ଵ

்
∑ ሺ𝑦௧ െ 𝑦ො௧ሻଶ்

௧ୀ                  ሺ9ሻ 

Mathematical and Deep Learning Models Forecasting for Hydrological Time Series

251



where 𝑙, 𝑙௦ are the loss functions above are the most 
common across applications, (Wen et al., 2017). 

For Probabilistic Outputs, which use in some 
applications, such as hydrological events, In the 
presence of rare events, the full predictive distribution 
will allow decision-makers to optimize their actions. 
(Lim and Zohren, 2021). A common way to model 
uncertainties is to use deep neural networks to 
generate parameters of known distributions (Lim and 
Zohren, 2021; Wen and Torkkola, 2019). For 
forecasting problems with continuous targets, 
Gaussian distributions are typically used, variance 
parameters for the predictive distributions at each step 
and networks outputting means as below(Lim and 
Zohren, 2021): 

𝑦௧ାఛ~𝑁ሺ𝑊ఓℎ௧
 

𝑏ఓ, 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠൫𝑊∑  ℎ௧
  𝑏∑  ൯ሻ          ሺ10ሻ 

where the final layer of the network is represented by 
ℎ௧

, function Softplus(.) means an activation function 
to ensure that standard. 

 

Figure 1: Different encoder architectures with temporal 
information (Lim and Zohren, 2021) 

4 RAINFALL-RUNOFF TIME 
SERIES FORECASTING 
MODEL  

To proceed with the forecasting model, we start with 
a preparation of a sufficient number of data to 
constitute a representative base of the data likely to 
occur during the use phase of the neural system. The 
neural model is applied to daily rainfall (P) and flow 
(Q) data from the river, the measurements cover a 
period of 13 years. The average flow was of the order 
2.67 m3/s, the maximum flow was 148 m3/s and the 
minimum flow was 0.002 m3/s. Then the data was 
subdivided into three, one to perform training, one for 
validation, and another to test the resulting network.  
To predict the flow, we used the flow and rainfall 
values observed at previous times ሺt, t െ 1, t െ 2, t െ
3, . . . ሻ  at the entrance to the network (Figure 2). The 
network output represents the expected flow rate 
Qሺt  ∗ 1ሻ for time t   1. With this assumption, a 
structure of the RNN model can be expressed as: 

𝑄௧ାଵ ൌ 𝑅𝑁𝐴 ሾ𝑃௧ାଵ, 𝑃௧, 𝑃௧ିଵ, 𝑃௧ିଶ, 

 𝑄௧, 𝑄௧ିଵ, 𝑄௧ିଶሿ                                    ሺ11ሻ 

However, to determine the input parameters that 
participate and influence the output of the network, 
we propose to test the neural network under different 
scenarios. The calculation of the statistical parameters 
allowed us to choose the best modelሺASE ൌ 2ሻ.  

 

Figure 2: Model architecture 

To detect and limit the overfitting of the model, 
we will use the early stopping method. To select the 
appropriate number of neurons in the hidden layer, we 
vary the number of neurons in the hidden layer and at 
the same time, we calculate the mean error of the ASE 
squares of the test phase. 
The best performing model is obtained for several 
neurons equal to three in the hidden layer, which 
corresponds to the minimum error of ASE =2. 

𝐴𝑆𝐸 ൌ
ଵ

ே
∑ ሺ𝑸𝒊 െ 𝑸𝒊ሻ𝟐ே

ୀଵ ሿ                   ሺ12ሻ 

Where 𝑄 is the measured value of the flow, (𝑄) 
is the flow calculated by the model, N is the totality 
of data of the calibration set. 

 
Figure 3: calculated flows vs simulated flow rates 
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The model performance criteria for the learning 
phase (Possess 70% of all data), the test phase 
(Possess 15% of all data), and the validation phase 
(Possess 15% of all data) are 0.23 for the ASE, and 
0.83 for the 𝑅ଶ , which is the coefficient of the 
determination given by the below formula: 

𝑅2 ൌ 1 െ
∑ ሺ𝑄𝑖െ𝑄ෝ𝑖ሻ

2𝑁
𝑖ൌ1

∑ ሺ𝑄𝑖െ𝑄ഥ𝑖ሻ
2𝑁

𝑖ൌ1
                         ሺ13ሻ 

Where 𝑄ഥ𝑖 is the measured mean river flow. Figure 
3 shows the calculated and simulated flow. It can be 
seen that the flow values estimated by the network 
follow the observed values. However, there are some 
underestimations or overestimations, especially for 
large flow values. 

5 CONCLUSIONS 

These results clearly show that artificial neural 
networks can model the rainfall-discharge 
relationship without the need to use parameters other 
than precipitation and flow rate. 

Neural networks can represent hydrologic time 
series, even if they are complex and they are resistant 
to noise or unreliable data. But the absence of a 
systematic method allowing to define of the best 
topology of the network and the number of neurons 
to be placed in the hidden layers, the choice of the 
initial values of the network weights, and the 
adjustment of the learning step, which play an 
important role in the speed of convergence and the 
problem of overfitting remain the most important 
drawbacks. 
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