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Abstract: This paper presents an analytical solution for predicting the one-dimensional (1D) time-dependent 
groundwater flow profile in an unconfined system. This hydraulic charge prediction problem is modeled as a 
boundary value problem governed by the heat diffusion equations. The solution technic employs the 
separation of variables method, the results are compared to the numerical solution, and the solution displays 
a reasonable flow head during different periods. 

1 INTRODUCTION 

The groundwater equation governed through Darcy 
law and the continuity equation was the subject of a 
set of research. Among the first researchers 
concerned with this equation (Bansal and Das, 2011; 
Bear, 2013; Chapman, 1980; Childs, 1971; Glover, 
1960; Hantush, 1967; McDowell‐Boyer et al., 1986; 
Simmons et al., 2001; Verhoest and Troch, 2000; 
Wooding and Chapman, 1966). Initially, these 
researches focused on trying to understand the 
behavior of groundwater and its flow mechanisms in 
porous media. These researches have focused to find 
solutions to the groundwater equation, the researchers 
analyzed the mechanisms of evolution and regular 
groundwater flow regeneration in the aquifers. as a 
result, it has been proposed and developed a set of 
analytical solutions (Manglik et al., 1997; Pauwels et 
al., 2002; Rai and Manglik, 1999; Verhoest and 
Troch, 2000).  
In the same context, some recherche has focused on 
finding in obtaining analytical solutions to the linear 
Boussinesq equation by adopting the uniform 
recharge of the rainfall rate, therefore these solutions 
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are exploited to estimate the groundwater levels 
change and drainage flow (Pauwels et al., 2002; 
Serrano, 1995; Verhoest and Troch, 2000).  
Other research focused on researching analytical 
solutions for the same equation, taking into account 
the hypothesis of temporal variation of the level of 
rainfall (Dralle et al., 2014; Park and Parker, 2008; 
Pauwels et al., 2002; Ram and Chauhan, 1987; Su, 
1994; Thomas, 2013). 

Some other research has worked on the Laplace 
Transform method to develop an analytical solution 
to express the distribution of groundwater levels 
(Bansal and Das, 2011; Kim and Ann, 2001; Kumar 
et al., 2016; Pauwels et al., 2002; Sun et al., 2011).   

On the other hand, special studies have worked on 
the use of some numerical solutions as a mechanism 
for studying and developing models of groundwater 
flow equation (Draoui et al.; El Mansouri and El 
Mezouary, 2015; El Mezouary, 2016; El Mezouary, 
El Mansouri, and El Bouhaddioui, 2020; El Mezouary 
et al., 2015; El Mezouary, El Mansouri, Moumen, et 
al., 2020; EL MEZOUARY et al., 2016; Sadiki et al., 
2019) as a model of forecasting and simulating the 
dynamic behavior based on boundary conditions. 
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The present study focused on the method of 
Separation of Variables for solving the groundwater 
equation using Darcy’s law as a theoretical basis and 
applied the principle of mass conservation (the 
continuity equation) to govern the groundwater flow. 

2 GROUNDWATER FLOW 
EQUATION 

The general groundwater flow equation is deducted 
from Darcy’s law and the continuity equation. The net 
rate of penetration of a fluid in a control volume is 
exactly equal to the net rate of change of storage of 
the mass of fluid in the same control volume. 

We begin by examining the last groundwater flow 
phenomena (Diffusion), which are treated similarly 
with a linear diffusion partial differential equation. 

డడ௫ ൬𝐾௫ డడ௫ ℎ(𝑥, 𝑦, 𝑧, 𝑡)൰ + డడ௬ ቆ𝐾௬ డడ௬ ℎ(𝑥, 𝑦, 𝑧, 𝑡)ቇ +డడ௭ ൬𝐾௭ డడ௭ ℎ(𝑥, 𝑦, 𝑧, 𝑡)൰ = 𝑆௦ డడ௧ ℎ(𝑥, 𝑦, 𝑧, 𝑡)  −𝑞(𝑥, 𝑦, 𝑧, 𝑡)                                                         (1)  

Where 𝐾௫, 𝐾௬, 𝐾௭ are the hydraulic conductivity, 𝑆௦ is specific storage, ℎ is the piezometric head. 
 
We consider the equations in one dimension that 

the medium is uniform. which means that the 
coefficient of permeability 𝐾  is spatially invariant, 
we can write to them as simple constants. Then, 
equation 1 is simplified by: 

𝑘( 𝜕ଶ𝜕𝑥ଶ ℎ(𝑥, 𝑡)) = 𝜕ℎ(𝑥, 𝑡)𝜕𝑡  (2)
Where 𝑘 is the groundwater flow diffusivity or 

hydraulic diffusivity of the medium, are 𝐿ଶ/T: 

𝑘 = 𝐾𝑆௦ (3) 

3 ANALYTICAL SOLUTION 

In this level, we will proceed to solve the groundwater 
flow equation 2 by the variable separation method: 

We note that 𝑥 represents the position in the one-
dimensional medium (an aquifer) that we can identify 
with the interval [0, 𝐿]. The hydraulic height in this 
aquifer at time 𝑡 and location 𝑥 is ℎ(𝑥, 𝑡). 

 A typical problem is to consider that the 
distribution of the hydraulic height over the entire 
length of the aquifer is known at time 𝑡 = 0 (initial 
condition) and that the flow of groundwater through 
the ends 𝑥 = 0 and 𝑥 = 𝐿 are given values (boundary 
conditions). Therefore we can imagine that the 
hydraulic height is determined for 𝑥 ∈ (0, 𝐿) and 𝑡 >0. The conditions imposed on the ends are often of 
the form: 

- ℎ(0, 𝑡) = 0  or, డ௛(଴,௧)௫ = 0  or డ௛(଴,௧)௫ = 0 =𝑎ℎ(0, 𝑡)  

- ℎ(𝐿, 𝑡) = 0  or, డ௛(௅,௧)௫ = 0  or డ௛(௅,௧)௫ = 0 =−𝑎ℎ(𝐿, 𝑡)  

Where 𝑎 > 0  is also a physical constant. The 
solution of problem (2) given by the method of 
separation of variable it is as follows: 

ℎ(𝑥, 𝑡) = ∑ 𝑠𝑖𝑛ஶ௡ୀ଴ ൬൤ቀ|ఒ೙|௞ ቁଵ/ଶ 𝑥൨൰ 𝑄௡𝑒ఒ೙௧  (4) 

 
Since 𝜆௡ = −𝑘(𝑛 + ଵଶ)ଶ ቀగ௅ቁଶ

the equation can be 
written in this formula: 

ℎ(𝑥, 𝑡) = ෍ 𝑠𝑖𝑛ஶ
௡ୀ଴ (𝛼𝜋𝑥)𝑄௡𝑒ି௞[ఈగ]మ௧ (5) 

Where 𝛼 = (ଶ௡ାଵ)ଶ௅ , and the 𝑄௡is: 

𝑄௡ = ଶ௅ ׬ 𝑠𝑖𝑛௅଴ ൫ൣ(𝛽)ଵ/ଶ𝑥൧൯𝜑(𝑥)𝑑𝑥, ∀𝑛 ∈ ℕ (6) 

Where 𝛽 = |ఒ೙|௞ , 𝑄௡also can be written : 

𝑄௡ = ଶ௅ ׬ 𝑠𝑖𝑛௅଴ (𝛼𝜋𝑥)𝜑(𝑥)𝑑𝑥                          (7) 
4 SIMULATION OF SOLUTION 

Consider the case of a 1𝐷  flow problem on an 
unconfined aquifer that a river and a lake run parallel 
to each other (figure 1) with 𝐿 = 500𝑚 apart. They 
fully penetrate aquifer with a hydraulic conductivity 𝐾 = 400 𝑚/𝑑𝑎𝑦, and specific yield 𝑆௦ = 22%. To 
demonstrates the feasibility of the analytical solution 
given by method of separation of variable, we are 
compared it by a two numerical profile simulated 
using the CrankNicholson implicit method (8) 
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(Thomas, 2013) and the Forward Time Centered 
Space method (FTCS) (9) (Anderson et al., 1997). 

The CrankNicholson implicit method consists of 
replacing the second derivative డమ௛డ௫మ  in the equation (2) by the average of its discrete representations at 
times 𝑛 and 𝑛 + 1. 

ቂడమ௛డ௫మቃ௜௡ାଵ = ଵ௛మ ቂଵଶ (ℎ௜ାଵ௡ାଵ − 2ℎ௜௡ାଵ + ℎ௜ିଵ௡ାଵ) +ଵଶ (ℎ௜ାଵ௡ − 2ℎ௜௡ + ℎ௜ିଵ௡ )ቃ                                      (8) 

While  for the Forward Time Centered Space 
(FTCS) or forward/backward space method is an 
implicit single-stage finite difference method that can 
use for numerically solving the heat equation and 
similar parabolic partial differential equations.  

This scheme is unconditionally stable. then the 
equation (2)  can be represented by the flowing 
scheme: 

 ℎ௜௡ାଵ = ℎ௜௡ + 𝛼(ℎ௜ାଵ௡ − 2ℎ௜௡ + ℎ௜ିଵ௡ ) (9) 

With 𝛼 = ௞୼௧୼௫మ 

 
Figure 1: Groundwater flow conceptual model on 
unconfined, horizontal aquifer with dirichlet boundary 
condition . 

This solution example corresponds to the 
following mathematical problem with 
nonhomogeneous Dirichlet boundary conditions 
(Figure 2). 

⎩⎪⎪⎨
⎪⎪⎧ 𝑘 ൭ 𝜕ଶ𝜕𝑥ଶ ℎ(𝑥, 𝑡)൱ = 𝜕ℎ(𝑥, 𝑡)𝜕𝑡 , 0 ൑ 𝑥 ൑ 𝐿, 𝑎𝑛𝑑  0 ൑ 𝑡 ൑ 𝑇;ℎ(0, 𝑡) = 2, ℎ(𝐿, 𝑡) = 4.5, 0 ൑ 𝑡 ൑ 𝑇;ℎ(𝑥, 0) = (2 + 𝑥ଷ5 ൈ 10଻),  0 ൑ 𝑥 ൑ 𝐿

(10) 

 

Following the solution represented by equation 4, 
the simulation of the solution illustrate on problem (2) is shown in Figure 2, the figure show comparison 
of the evaluated exact solution with implicit numerical 
methods of CrankNicholson and FTCS, while Figure 3 
shows the evaluated exact solution at various times 𝑡 = 10, 𝑡 = 20, 𝑡 = 30, 𝑡 = 40. 

It should be remembered that this simulation took 
into account the imposed boundary conditions, based 
on the conceptual model shown in Figure 1, it is 
obvious that  the figure's results provide a good match 
solution at different times. 

 

 
Figure 2: Comparison of the evaluated exact solution with 
implicit numerical methods of CrankNicholson and FTCS. 

 
Figure 3: evaluated exact solution at various times. 
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5 DISCUSSION 

Analytical solution for the prediction of the one-
dimensional (1𝐷) time-dependent groundwater flow 
profile in an unconfined system evaluated for a 
setting corresponding case to  𝐿 = 500 𝑚 , K =400 m , k = 1818 𝑚ଶ/d , 𝑆௦ = 22% . The solution 
uses a uniform domain in different time step lengths. 
The simulation results obtained according to equation 4, the results showing note that the solution produced 
by the method of separation of the variable is 
acceptable, as well as that in all the cases in which the 
solution was applied, it was found that there is a 
match between the solution produced by the 
separation of variable method and with the other two 
numerical methods of CrankNicholson and FTCS 
method.  

The module can simulate the same solutions that 
were given by the CrankNicholson and FTCS 
methods. It can then be concluded that the solution is 
given by the separation of the variable method when 
applied in a homogeneous medium, taking into 
account the normal boundary conditions, the solution 
presented can reproduce the behavior of the 
groundwater in a very acceptable way. 

6 CONCLUSIONS 

The paper introduces an analytical solution of a one-
dimensional groundwater equation for a homogenous 
porous media. Using the method of separation of 
variables, this solution precisely reproduces the 
similar solution given from CrankNicholson and 
FTCS finite-difference methods. An example is used 
to verify the proposed solution, considering constant 
head in boundary conditions (Dirichlet conditions). 
The analytical solution has been compared with the 
CrankNicholson and FTCS numerical solutions, for a 
context with sand-gravel medium characteristics. The 
correlation is good within the example case. In 
consequence, the proposed method is valid for the 
homogenous horizontal unconfined aquifer, also for 
another similar physical or environmental problem. 
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