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Abstract: This paper contains a new method for EEG classification and specifically for baseline hand motor cortex 
recognition. This work is based on the determination of links between all electrodes when moving hands using 
covariance and correlation matrices, also the importance degree for every electrode from the best to the bad 
in the classification stage, and thus the application of differential evolution (DE) optimizer to increase the 
prediction accuracy of AdaBoost algorithm to the best state. The results obtained show that the prediction 
accuracy value for hand EEG motor cortex classification takes the value of 100% when using more than six 
electrodes without using feature extraction algorithms, knowing that the related work has a maximum average 
accuracy value of 99.1% using the PNN algorithm. Therefore, this work has a very important role in increasing 
the EEG signals prediction quality, either on the side of improving the classification algorithms or minimizing 
the number of acquisition channels needed.

1 INTRODUCTION 

The Brain-Computer Interface (BCI) transmits brain 
activity acquired from the human scalp to a computer 
for controlling external devices and assisting the 
handicapped in regaining organ abilities (Abenna et 
al., 2021a). It's almost research for the use of 
electroencephalogram (EEG) in the controls 
intelligent in robotic arms and other external devices. 
Compared to other signal types, EEG signals have 
several different direct communications between a 
human brain and a computer (Jin et al., 2015; Li et al., 
2016; Tang et al., 2020; Zhang et al., 2018). The 
collected brain signals vary depending on the 
structure of the human brain and the subject's mental 
state, and these brain activities of each subject are 
unique. EEG signals are not woody and non-stable, 
which means that the EEG signal properties change 
over time (Khosla et al., 2020; Tang et al., 2020; Yin 
and Zhang, 2017). Furthermore, the recorded EEG 
signals are frequently intermingled with noise, 
making analysis difficult. As a result, efficient steps 
to enhance the signal-to-noise ratio (SNR) of EEG 
data should be taken (Michelmann et al., 2018; Tang 
et al., 2020; Whitmore and Lin, 2016). EEG waves 
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convert brain waves, which means that it is a 
continuous record of the brain’s electrical activity by 
placing metal electrodes on the scalp (Jasper, 1958; 
Khosla et al., 2020; Patel et al., 2018). Neurons 
communicate spontaneously with each other by 
generating electrical currents and remain active at all 
times, even when a person is asleep or relaxed. Low 
cost, high time resolution, high flexibility, usability, 
non-invasive, portability, and safe nature make the 
EEG a powerful tool compared to other functional 
neuroimaging techniques such as magneto-
encephalogram (MEG), positron emission 
tomography (PET), functional magnetic resonance 
imagery (fMRI), and transcranial magnetic 
stimulation (TMS). This work is interested in 
developing a new method more efficient for the 
predicting system of EEG signals, in this sense, this 
work uses the covariance and correlation matrices to 
determine the acquisition system quality used and 
finds electrical leaks between all electrodes, thus 
optimization algorithms like DE used to maximize the 
quality of the results found, and ultimately the 
AdaBoost classification algorithm used to generate 
the prediction models (Abenna et al., 2021a), Fig. 1 
presents a basic architecture of the prediction system 
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Figure 1: Illustrate of EEG acquisition and processing. 

for an EEG signal. This method has been applied for 
hand EEG motor cortex, in such a way the prediction 
accuracy values are usually 100% using more than 6 
acquisition electrodes, compared to related work that 
has accuracy values less than 99.1% using PNN.  

The rest of the article is organized as follows: 
Section 2 presents all algorithms of classification and 
optimization proposed for the system. Results and 
discussion are presented in section 3, while section 4 
provides conclusions and an overview of the future 
work. 

2 METHODS 

2.1 Dataset 

'Projectbci-1D' dataset: The motive is a 21-year-old 
right arm with no known health condition. An EEG 
consists of a random movement of the actual left and 
right hands, such as the recorded is with closed eyes. 
The electrodes used in this work (FP1, FP2, F3, F4, 
C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, FZ, 
CZ, and PZ) are distributed as following the 
international system 10-20 as illustrated in Fig. 2.a. 
The recording sampling at 500 Hz with NeuroFax 
EEG device using 19 electrodes for acquisition. The 
data were exported with a common reference 
'eemagine-EEG', where the AC line operates at 50 Hz. 
Fig. 3 illustrates some of the EEG signals acquired by 
the NeuroFax device using 19 electrodes when eyes 
are closed and the left-hands move. We notice that the 
EEG signals are very noisy and misunderstood. 

2.2 Adaptive Boost 

Freund and Chapyle invented AdaBoost in 1996 as an 
iterative boost procedure. The primary goal of this 
recovery effort is to focus on situations that are 
difficult to categorize. First, each instance is assigned 
the same weight. Iteration increases all weights of 

(a) Location of all 
electrodes

(b) Nerve system between the 
left hand and the central lobe

Figure 2: Positioning of all electrodes used to acquire the 
EEG signals for the motor cortex of hands. 

 

Figure 3: A part of EEG signals acquired using NeuroFax 
device. 

lower-ranked instances and reduces correctly ranked 
instances, more details are in (Chatterjee et al., 2019). 
The AdaBoost is supported by the Algo. 1. Such as 
the 𝑥௜  and 𝑦௜  represent the feature set and the 
corresponding decision class label for the ith instance. 
It represents the variance vector with n size because 
there is a T iteration, and each instance starts with a 
distribution of 1/n. 𝐴௧ is calculated in the n training 
instance (Chatterjee et al., 2019). The weak learner is 
applied at each step, and AdaBoost employs the 
exponential loss function 𝑒𝑥𝑝ሺെ𝑎௧𝑦௧𝜙௧ሺ𝑥௜ሻሻ  to 
calculate a weighted error epsilon of 𝐴௧. 𝑎௧, 𝑦௜, and 
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Algorithm 1: Adaptive boosting. 

- Inputs: Given ሺ𝑥ଵ, 𝑦ଵሻ, . . . , ሺ𝑥௡, 𝑦௡ሻ , 
where n is the total number of 
training data instances, 𝑥௜ is the 
feature data and 𝑦௜  is the 
associated decision class, 𝑥௧𝑒𝑠𝑡 is 
the testing data; 
- Initialize: 𝐴௜ ൌ 1/n, where 𝑖 ൌ
 1, . . . , 𝑛; 
for each iteration t in T do 

Use distribution to train weak 
learners 𝐴௧; 
Choose: 𝑎௧ ൌ 12 ∗ 𝑙𝑜𝑔ሺ1 െ 𝜖௧/𝜖௧ሻ; 
Loss: 𝑒𝑥𝑝ሺെ𝑎௧𝑦௜𝜙௧ሺ𝑥௜ሻሻ;  
Update: 𝐴௧ ൅ 1ሺ𝑖ሻ ൌ ሺ𝐴௧ሺ𝑖ሻ ∗ 𝑙𝑜𝑠𝑠ሻ/𝑔௧, 
where 𝑔௧ is a new normalization 
factor; 
𝑔௧ ൌ ∑ 𝐴௧ሺ𝑖ሻ ∗ 𝑒𝑥𝑝ሺെ𝑎௧𝑦௧𝜙௧ሺ𝑥௜ሻሻ௡

௜ୀଵ ; 
End. 

Return 𝑓ሺ𝑥௧௘௦௧ሻ ← 𝑠𝑔𝑖𝑛ሺ∑ 𝑎௧𝜙௧ሺ𝑥௧௘௦௧ሻ்
௧ୀଵ ሻ; 

 
𝜙௧ሺ𝑥௜ሻ  denote an n-dimensional weight vector, a 
vector containing the actual decision class of n cases, 
and a vector containing the anticipated outcome for 
the ith instance, respectively. The weight 
combination sign of the lower classifier is calculated 
by the final classifier f (Chatterjee et al., 2019). 

2.3 Optimization 

The optimization advantage is to select a valid 
classifier and to reduce the functionality used in 
restricted classifications to increase the prediction 
accuracy. This process is further optimized by the DE 
algorithm to determine optimal synthesis conditions 
(Estimators number (NE), learning rate (LR), and 
random-state (RS)) to maximize reaction yield, more 
details are in (Abenna et al., 2021a; Rodrigues et al., 
2018). 

3 RESULTS AND DISCUSSION 

The experiments were conducted on the 2.4 GHz 
desktop and 6 GB of RAM with four Intel®Core 
(TM) i5 CPUs and 64 bit/Windows 10 operating 
system, and python.3.6 for programming. 

3.1 Analysis Results 

Fig. 4 illustrates the matrix of covariance between the 
19 acquisition electrodes in the state of the left hand 

(Fig. 4.a) and of the right-hand movement (Fig. 4.b). 
In this figure, we can observe easily the existence of 
more connection between all electrodes when the 
right-hand moves compared to the left hand, 
indicating a large change in the distribution of 
electrical signals in the brain between the two hands 
state, which also shows that has facilitated the 
classification of these signals. 

Table 1: Symbol and description. 

Symbol Description 
NE n-estimators
LR learning-rate
RS random-state
NEEG The number of electrodes 
AC Accuracy
ZOL Zero One Loss 
Tc Classification time 
Tp Prediction time 
To Optimization time 

 

(a) Left hand (b) Right hand

Figure 4: The covariance matrix for each moved hand. 

3.2 Feature Selection Results 

Fig. 5 shows a classification of electrodes according 
to their importance for the classification stage using 
the AdaBoost algorithm (Abenna et al., 2021b), 
knowing that each electrode has been represented by 
its degree of importance from 0 to 1, in this figure we 
notice that the best electrodes used are FP1, PZ, and 
FP2, knowing that the number of electrodes can be 
decreased up to 3 or 1 single electrode without a great 
degradation of the system accuracy. Fig. 5.b 
illustrates the correlation matrix between the 
electrodes signal to detect all links between them and 
avoid electrical leaks that degrade the quality of the 
acquired signals, such that we notice that all degrees 
are low except between some electrodes such as T5, 
O1, O2, CZ, and FP2, which implies the best quality 
of the acquisition system, and we are not needed to 
use any spatial filter to decrease the correlation 
between the channels (Whitmore and Lin, 2016). 
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(a) Channels selection using AB (b) Correlation matrix 

Figure 5: Channels selection and correlation matrix for EEG signals classification of hands moved. 

3.3 Evaluation Metrics 

Accuracy and Zero-One-Loss are typically metrics 
used to measure the performance of biomedical and 
complex data during classification. 

𝐴𝐶 ൌ
்௉ା்ே

்௉ା்ேାி௉ାிே
  (1) 

𝑍𝑂𝐿 ൌ FP ൅ FN  (2) 

Where True Positive (TP) refers to a circumstance 
in which an alarm is generated although the left hand 
has moved during testing. The term TN (True 
Negative) describes a circumstance in which the 
right-hand moves but no alarm is generated. When the 
left hand is employed, the alert is not raised, which is 
referred to as FP (False Positive). The term FN (False 
Negative) describes a circumstance in which the 
right-hand moves but no alarm is triggered (Abenna 
et al., 2021b). 

3.4 Classification Results 

Table 2 shows a main parameter optimization of 
AdaBoost to well improve the quality of prediction, 
as it can find during testing large combinations of 
AdaBoost parameters for that gives precision values 
of 100%, knowing that we can choose only those 
corresponding to a low value of NE, to guarantee a 
high speed of classification and prediction, thus a 
good quality of prediction. Table 3 shows a size 
improvement of the acquisition system without 
degradation of prediction performance, such that we 
do the recognition of EEG signals during testing 
using these AdaBoost parameters (NE = 257, LR = 
0.9969, and RS = 911), so we choose only the best 
NEEG-channel have been selected in Figure 5.a, and 

we notice that the accuracy value remains at the level 
of 100% when NEEG ≥ 6, we notice that the use of 
just two electrodes FP2 and PZ gives an accuracy of 
97%, indicating the possibility of developing new 
devices for the baseline hand EEG motor cortex 
prediction with a small size, as well as Tc and Tp, 
decreases when we decrease the NEEG. In table 4, the 
work of Hossain et al. (Hossain et al., 2015) who uses 
the BP and PNN algorithms for the EEG 
classification finds that the precision value cannot 
exceed 99.1% but at the work of this paper the 
accuracy value take 100% when using more than six 
acquisition electrodes. 

Table 2: AdaBoost parameters optimization using DE. 

AdaBoost parameters Optimization results 
NE LR RS AC (%) ZOL To (s) 
257 0.9969 911 100.0 0 97.73 
319 1.5301 559 100.0 0 124.94 

Table 3: Improving the number of channels used for hands 
EEG classification. 

 
NEEG 

Classification results 
AC (%) ZOL Tc(s) Tp(s) 

10 100.0 1 48.47 1.43 
6 100.0 0 33.39 1.17 
3 99.58 108 22.91 1.62 
2 97.00 771 18.40 1.00 
1 90.10 2547 15.03 1.00 

Table 4: Comparative results with related work. 

Work Accuracy Methods
Hossain et al. (2015) 88.9% BP 

99.1% PNN 
This work 100% AdaBoost
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4 CONCLUSIONS 

In conclusion, the method used in this work shows its 
efficiency in predicting the hand moved from the 
EEG signals without any mistake, such that this work 
uses the covariance matrices to show all changes in 
the distribution of the brain activities when moving 
every single hand (left or right), so the correlation 
matrix used to determine the electrical leaks between 
all electrodes, also the use of AdaBoost algorithm to 
classifying the EEG signals and the minimization of 
the number of channels (NEEG). Also, the use of the 
DE optimizer improves the classification 
performances, knowing that the accuracy value in this 
work takes the value of 100% when using more than 
six electrodes. We hope that this work will help other 
researchers to develop a good EEG signals prediction 
system. In future work, our team focuses on 
developing new and more efficient methods and 
instigating this work for real-time applications of the 
BCI systems. 
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