
A Review of Open-source Systems on Chip, Case of LiteX, RubyRTL,
and PyMTL

Hasna Elmaaradi1 a, Abdelhakim Alali2, Mohammed Khaldoun1 and Mohamed Sadik1
1Research and Engineering Laboratory, National High School for Electricity and Mechanics,

Hassan II University of Casablanca, Casablanca, Morocco

2Laboratory of Information Processing, Faculty of Sciences Ben M’Sick, Hassan II University of Casablanca,
Casablanca, Morocco

Keywords: SoC, DSL, Open-source, Python, HDL, FPGA.

Abstract: FPGA-based SoCs have become popular daily compared with traditional solutions and expanding application
areas to new areas. Intellectuals Properties sharing and reuse are a practical process for electronics designers
to reduce the design complexity of SoC. However, open-source hardware has become a compelling concept
for improving design productivity. In this article, we present platforms, aiming to make hardware design
easier and flexible. They ensure a very high level of abstraction. We expose the aspects of similarity and
difference between LiteX, RubyRTL, and PyMTL to highlight the progress that LiteX has made as an open-
source framework that has accelerated RD (research and development) in EDA (electronic design automation).
LiteX has helped emphasize the concept of codesign and provide engineers and researchers with highly
developed and reliable tools.

1 INTRODUCTION

Flow design of semiconductor devices has
experienced exponential development in recent years.
Therefore, we have many and different HDL
(Hardwar Description Language). However, VHDL
and Verilog, created in 1980, still being present in
their structure; eventually, EDA relies on those two
languages. They can describe all the electronic
devices with a high abstraction at different levels. It
facilitates relatively the work of designing engineers
and makes process design more flexible. There are
new challenges becomes with micro and
nanoelectronics, so new HDL spring. The first one is
System Verilog, standardized as IEEE 1800. It
provides tools to describe, verify, simulate, test, and
implement electronic systems. The second language
is SystemC. It contributes to improving abstraction
and modelling levels. (Black and Keist, Python
2009).

The DSLs (Domain Specific Languages) renewal
EDA and give birth to "high-level language"
(recognized programming language) that embedded
a DSL. That is why these languages are called

a https://orcid.org/0000-0002-6557-0990

Embedded DSLs. In this context, we have
Chisel/SpinalHDL (high-level language is Scala),
HardCamel (high-level language is Scala), Haskell,
and Lava. What is familiar to these DSLs is the ease
of learning, access to libraries of language hosts, and
the aim of developing complex devices and
improving time to market.

In addition, MyHDL (J.Decaluwe, 2004), based
on Python, contributes to improving the RTL
(Register Transfer Language) circuits design.
Python is a very high-level language; consequently,
scientific research heads towards developing other
Frameworks based in Python, such as LiteX
platform (Migen), PyMTL, and RubyRTL.

In this paper, we present a comparative study
between three open-source LiteX, PyMTL, and
RubyRTL. It is organized as follows. The next
section makes a short review of Migen Python DSL.
The third section presents RubyRTL. Section 4 will
present PyMTL. In section 5, we expose the
principal difference between these DSLs, then a
discussion is giving in section 6. We complete the
article with the conclusion in section 7.

Elmaaradi, H., Alali, A., Khaldoun, M. and Sadik, M.
A Review of Open-source Systems on Chip, Case of LiteX, RubyRTL, and PyMTL.
DOI: 10.5220/0010729500003101
In Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning (BML 2021), pages 119-124
ISBN: 978-989-758-559-3
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

119

2 MIGEN STRENGTHENS RTL
DESIGN: LITEX PLATFORM

Migen FHDL (Florent Kermarrec and Badier, 2020)
(Fragmented Hardware Description Language) is
founded on Python but includes Abstract Syntax Tree
(AST). It provides a Verilog language for circuit
design. Python language presents different
advantages such as being object-oriented
programming, support essential elements like
functions and generators, operators, and libraries, to
build well Hardwar designs embedded. In
cooperation with “ENJOY DIGITAL” (Digital,
2021), they established the LiteX platform:

-Provides ten open-source IPs (intellectual
property), for instance: LiteDRAM, LiteEth,
LiteUSB, etc.

- supports four softcore (LM32, PicoRV32,
VEXRiscV, Mor1Kx).

-Support 21 Boards (statistics of 2018).

-Extends Migen based on FHDL.

-Allows building different structures: Xilinx,

Altera, Lattice, Microsemi, and yosys.

-Building SoC: NeTV2

3 RUBYRTL NEW DSL RTL

RubyRTL (LE LANN and Florent, 2020) bases on an
object oriented and multi-free paradigm named Ruby.
The new DSL RTL ensures the efficiency of Hardwar
design. Even if RubyRTL is also relying on MyHDL
and Migen Python. It generates a VHDL code and can
give an AST viewing (Graphviz dot file), the tool that
drawing graphs.

The Sexpir compiler interprets an IP address
described in Migen to Ruby RTL. Then, it generates
VHDL code to ensure communication between them.
These three tools (Migen, Sexpir, and RubyRTL)
results in a platform that can be strong in handling
complex electronics systems.

However, Sexpir is not yet checked and verified
on the hardware level. It is under development, and
we are waiting for the full version in future works.

4 PYMTL: UNIFIED
FRAMEWORK FOR
HARDWARE DESIGNING

PyMTL (Shunning Jiang and Batten, 2018) is a
Hardware generation, simulation, and verification
framework. Based on Python and completed by HGFs
(Hardware generation frameworks), it is a DSL
significantly developing and describes different
levels of abstraction design.

The PyMTL workflow starts from the functional
level (FL) programmed in Python, using different
functions: Py.test, coverage.py, and hypothesis. After
getting the PyMTL RTL model with the help of cycle
level (CL), you can generate Verilog format. A test
bench (TB) gives the possibility to co-simulate/
simulate the achievements.

This framework uses the new methodology named
modelling towards layout (MTL) (Derek Lockhart
and Batten, 2014) for multi-level modelling (FL, CL,
RTL, PL: physical level), different types of testing
(Test Harness: Unit tester, Integration tester, PBRT
tester Property-based random test), and Evaluating
(simulation, generation, characterization) On-Chip
Networks.

Currently, we have a recent version: PyMTL3
(Cheng Tan and Batten, 2019), which comes with
updates to bring that framework as an open-source
Hard- war ecosystem.

5 LITEX, RUBYRTL, PYMTL:
REFLECTION RESULTING

5.1 High-Level Language

In general (although RubyRTL also includes the
Ruby language), the three frameworks are based on
the Python language. So, a question arises, why this
one exactly?

In previous years, in the field of electronic system
design, two leading players have been involved in
circuit designing: hardware and software engineers.
Each takes care of a part that the other cannot do
because it is not their speciality.

The field of computer science has developed
considerably; indeed, several programming
languages were paired. Researchers have thought of
exploiting these languages to facilitate the work of
hardware engineers and immigrated to what is called
Codesign. They will not need the intervention of

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

120

software engineers; a hardware designer alone can
perform the same tasks.

The choice was Python; first of all, it is the easiest
to learn, and it is the most crucial criterion for
designers. The understanding of the instructions is
easy since the syntax is quite clear.

Secondly, it is a high-level language used in
almost all scientific fields due to its flexibility and in-
interpretation.

Thirdly, it is less complicated in terms of
programming. In only a few lines, you can create
functions. Besides, Python has many modules and
scripts ready for use. Last but not least, it is an open-
source language and runs on various existing
operating systems (OS).

5.2 Generated Language HDL

Figure 1: languages generating from different HDLs
studies.

As shown in Figure 1 (Florent Kermarrec and Badier,
2020) (LE LANN and Florent, 2020) (JIANG
Shunning and al, 2020), each platform generates
either HDL: VHDL, Verilog, or SystemVerilog.
These languages are similar in terms of functionality
but have very different syntaxes. Some frameworks
convert in both directions.

The two HDLs Verilog/VHDL were the first
languages to allow better abstraction at the RTL level.
System-Verilog is a fusion of Verilog and HVL
(Hardware verification languages) to verify the
circuits designed on HDL.

5.3 Toolbox

As shown in Figure 2, RubyRTL uses the
functionality of the RUBY language but also takes
advantage of the libraries indirectly offered by
Migen. The Sexpir compiler handles the exchange
between Migen and RubyRTL to generate the VHDL
code.

LiteX is also based on Migen. It also uses MiSoC
for exploitation purposes of this platform (SoC
design). PyMTL develops its toolbox based on the
Python language. In addition to (Shunning Jiang and
Batten, 2018) (Derek Lockhart and Batten, 2014).

Figure 2: Description of Tools uses in different Framework
studies (Florent Kermarrec and Badier, 2020) (LE LANN
and Florent, 2020) (Derek Lockhart and Batten, 2014)

Simulator Tool, Translator Tool, and User Tool, the
packages Py.Test (testing Framework), coverage.py
(code coverage), and hypothesis (PBRT property-
Based Random Testing) are part of the processing
chain to build the Python simulator and PyMTL RTL.

5.4 Simulation Performance

In this part, the comparison is between Migen,
Verilator, and Python simulators. Indeed, RubyRTL
uses Migen Simulator, LiteX uses LiteXSim based on
Verilator, and PyMTL uses Python simulator.

5.4.1 LiteXSim SoC simulator

LiteXSim Soc inspires from Verilator (Florent
Kermarrec and Badier, 2020). It (Veripool, 2021)
compiles code synthesized in Verilog / System
Verilog into C++ or SystemC. It makes it the fastest
tool compared to other interpreted simulators.

LiteX takes advantage of these multiple
functionalities to build (Piotr Binkowski, 2021) a
‘Litex.build.sim’ library, of which two main classes
‘SimPlatform’ and ‘SimConfig’. The first one creates
the platform for simulating. The second one defines
its modules via different functions such as ‘add.
Module’ and ‘add. Clocker’. The builder class
emulates the defined system on chip SoC.

5.4.2 Migen Simulator

Migen. Sim (Sebastien Bourdeauducq, 2021) the
library that provides you with several simulation and
testbench (TB) functions, such as ‘run simulation’. It
starts the simulation of either FHDL or TB. The
simultaneous stimulation of FHDL and TB ensures
via four processes: Read, Write, Clocking, and
Composition. They offer flexible handling of the
simulator according to the designer’s needs.

A Review of Open-source Systems on Chip, Case of LiteX, RubyRTL, and PyMTL

121

5.4.3 PyMTL Simulator

The simulation leverages the functionalities of
Python via the PyPy system and Mamba HGSF
(S.Jiang and al., 2018) (Hardware Generation and
Simulation Frameworks). It (Shunning Jiang and
Batten, 2018) is carried out according to modelling
level (FL, CL, TB) and generated Verilog.

The latest PyMTL3 (JIANG Shunning and al,
2020) version, launched in 2020, is similar to the
LLVM (formerly called Low-Level Virtual Machine)
in its overall structure. The PyMTL3 DSL (JIANG
Shunning and al, 2020) provides the PyMTL3 IMIR
(In Memory Intermediate Representation), the
hardware model to be processed by the analysis,
instrumentation, and transformation pass. These
passes aim to improve the hardware model. they
introduce modifications to the PyMTL3 IMIR on
several levels. In a simulation (JIANG Shunning and
al, 2020), for example, EventDrivenPass, list updates
for the blocks of the pure-RTL model created by it.
Besides, StaticSchedulingPass applies an execution
methodology for each cycle.

5.5 Experiments and Synthesis

The figure below illustrates the various experiments
and completed projects developed with the platforms
highlighted in this review.

According to this listing, RubyRTL is recently
launched (in 2020). However, it developed a
toolchain to verify the reliability of IP interchange by
using an IP URAT. The results are encouraging for
further research in the future. While LiteX and
PyMTL have made significant progress. PyMTL
contributed to the prototyping of devices (TORNG
Christopher and al., 2016) Computer Architecture
Test Chips, i.e., Celerity, BRGTC1, and BRTC2.
They are chips based on transistors in the CRAFT
program (Circuit Realization at Faster Timescales).

In addition, PyMTL has not handled SoCs. So far,
it is intended for the FPGA and ASIC. However,
LiteX is generalized (FPGA, and SoC). It is one of the
reasons why this platform has become an essential
part of the global environment for the hardware
design of complex systems.

Figure 3: the achievements of each platform.

Several and different projects have been realized
with the LiteX platform, such as the one marketed by
the company ‘Enjoy-digital’, and also offers
cooperation with other open sources (Florent
Kermarrec and Badier, 2020):

-NeTV2 tests/validation: video processing
development platform.

-SoC based on Lattice ECP5 FPGA.

-HDMI2USB.

-Fupy: FPGA MicroPython.

-Axiom SDI model.

-PCIe Screamer: FPGA PCI.

6 DISCUSSION

These three open sources aim to provide designers
with a very high-performance DSL, even if they differ
from the methodology adopted to achieve it.

At the level of the design language, they agreed
on the reliability of Python. However, RubyRTL uses
the Ruby language, knowing for its flexibility and
ease in web development. The first feature is shared

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

122

with Python. Nevertheless, the second has not
brought much added value (in terms of performance)
to the hardware co-design.

Verilog, VHDL, and System Verilog being
synthesis languages, allow the implementing of the
source code in an electronic system. VHDL
guaranteed the behavioural description of the circuits
and the verification of the simulated model safely. If
we are looking for speed in design, we need to call
Verilog. System Verilog tries to combine both
performances and provide the best synthesis tool.
These HDLs develop and adapt to high technology,
making it very complicated to compare and choose
between them. Hence the existence of the conversion
from one to the other.

Since Sexpir is not yet implemented, we limit our
study to Migen and PyMTL tools. The platform’s
toolbox is based on Python, but each uses it
differently from the other. In Migen, we have libraries
that provide the software description resources.

In addition, they organize the design flow and
provide the infrastructure necessary for the synthesis
of SoCs. PyMTL consists of dividing the tools into
modules. It ensures independence between the stages
of the co-design and the mastery of each abstraction
level.

The performances of the simulators used in the
present ecosystems are demonstrated and tested.
Effectively, LiteXSim, MigenSim, and PyMTL
simulators are characterized by the speed in the
compilation. They are easy to handle by the designer
via the functionalities of Python (the simple functions
to launch the simulation).

No one cannot deny that the synthesis and
implementation of a model in an electronic circuit is
an indisputable criterion that assesses the cohesion
and pragmatics of the framework. As a result, we
favour LiteX, which has marked a significant
progression on this path. Also, the prospects for
future work promise improvements and updates that
will make this platform more global (including the
different structures) and suitable for the most
complex systems.

7 CONCLUSION

In this review, we have compared three Python-based
open sources. Several aspects have been discussed:
the high-level language, toolbox, simulation
performance, experiments, and synthesis. RubyRTL,
PyMTL, and other platforms which are not covered in
this paper (PyRTL (John Clow and Sherwood, 2017),
SysPy (Evangelos Logaras and Manolakos, 2014),

Open ESP (Paolo Mantovani and P.Carloni, 2020))
compete with LiteX, which is ahead of them, given its
use and handling in the co-design of SoCs.

We highlighted the generality, maturity, and
ability of the LiteX platform. It designs complex
components for applications that are the future of
intelligent systems. LiteX makes us confident in
future work for its ability to design synthesizable
SoCs based on custom FPGAs that can hold very
complex algorithms (Embedded computing, cloud
solutions, Computational Intelligence….).

REFERENCES

Black, D.C, D. J. B. B. and Keist, A. (2009). SystemC:
From the ground up. In (Vol.71). Springer Science
Business Media.

Cheng Tan, Yanghui Ou, S. J. P. P. C. T. S. A. and Batten,
C. (2019). Pyocn: A unified framework for modelling,

testing, and evaluating on-chip networks. 37th
International Conference on Computer Design (ICCD).

Derek Lockhart, G. Z. and Batten, C. (2014). PyMTL: A
unified framework for vertically integrated computer
architecture research. 47th Annual IEEE/ACM
International Symposium on Microarchitecture.

Digital, E. (18/02/2021). Various projects powered by
LiteX. http://www.enjoy-digital.fr.

Evangelos Logaras, O. G. H. and Manolakos, E. S.
(February 2014). Python to accelerate embedded soc
design: A case study for systems biology. ACM
Transactions on Embedded Computing Systems, Vol.
13, No. 4, Article 84.

Florent Kermarrec, Sebastian Bourdeauducq, J.-C. L. L.
and Badier, H. (05/05/2020). Litex: an open-source soc
builder and library based on Migen Python DSL. arXiv:
2005.02506v1 [cs.AR].

J.Decaluwe (2004). Myhdl: A Python-based hardware
description language. In P.5. Linux Journal.

JIANG Shunning, PAN Peitian, O. Y. and al (2020).
Pymtl3: A Python framework for open-source hardware
modelling, generation, simulation, and verification.
IEEE Micro, 2020, vol. 40, no 4, p. 58-66.

John Clow, Georgios Tzimpragos, D. D. S. G. J. M. and
Sherwood, T. (2017). A pythonic approach for rapid
hardware prototyping and instrumentation. 27th
International Conference on Field Programmable Logic
and Applications (FPL).

K.O.Setetemela, K.Keta, M., and S.Winberg (2019).
Python-based FPGA implementation of AES using
migen for the internet of things security. 2019 IEEE
10th International Conference on Mechanical and
Intelligent Manufacturing Technologies (ICMIMT
2019).

Le Lann, Jean-Christophe, B. H. K. and Florent (2020).
Towards a hardware DSL ecosystem: Rubyrtl and
friends. OSDA 2020 Open Source Hardware Design,
colocated with DATE 20.

A Review of Open-source Systems on Chip, Case of LiteX, RubyRTL, and PyMTL

123

Paolo Mantovani, Davide Giri, G. D. G. L. P. J. Z. E. G. C.
M. P. C. P. and P.Carloni, L. (2/09/2020). Agile soc
development with open esp. arXiv:2009.01178v1
[cs.AR].

Piotr binkowski, Jedrzej Boczar, E.-d. (20/02/2021).
Litexsim.https://github.com/enjoy-
digital/litex/blob/master/litex/tools/litexsim.py.

Shunning Jiang, C. T., and Batten, C. (08/11/2018).
Open-source Python-based hardware, generation,
simulation, and verification framework. WOSET 18.

S.Jiang and al. (Juin 2018). Mamba: Closing the
performance gap in productive hardware development
frameworks. Design Automation Conference (DAC).

Sebastien Bourdeauducq, W. (16/02/2021). Migen-Sim.
https://github.com/mlabs/migen/blob/master/doc/
simulation.rst.

TORNG Christopher, WANG Moyang, S. B. and al.
(2016). Experiences using a novel Python-based
hardware modelling framework for computer
architecture test chips. Hot Chips Symposium.p.1.

Veripool (20/02/2021). the fastest Verilog/SystemVerilog
simulator. https://github.com/verilator/verilator.

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

124

