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Abstract: Reinforcement learning (RL) is a category of algorithms in machine learning that deals mainly with learning 
optimal sequential decision-making. And because the medical treatment process can be represented as a series 
of interactions between doctors and patients, RL offers promising techniques for solving complex problems 
in healthcare domains. However, to ensure a good performance of such applications, a reward function should 
be explicitly provided beforehand, which can be either too expensive to obtain, unavailable, or non-
representative enough of the real-world situation. Inverse reinforcement learning (IRL) is the problem of 
deriving the reward function of an agent, given its history of behaviour or policy. In this survey, we will 
discuss the theoretical foundations of IRL techniques and the problem it solves. Then, we will provide the 
state-of-the-art of current applications of IRL in healthcare specifically. Following that, we will summarize 
the challenges and what makes IRL in healthcare domains so limited despite its progress in other research 
areas. Finally, we shall suggest some prospective study directions for the future. 

1 INTRODUCTION 

In recent years, reinforcement learning (RL) (Richard 
S. & Andrew G., 2017) has been very successful at 
solving complex sequential decision-making 
problems in different areas like video games (K. Shao 
et al., 2019), financial market (Halperin, 2017), 
robotics (Kober et al., 2013),  healthcare domains 
(Yu, Liu, & Nemati, 2019), including pathologies like 
cancer, diabetes, anaemia, schizophrenia, epilepsy, 
anaesthesia, and drug discovery, to mention a few. 
However, for RL applications to work correctly, an 
explicit reward function should be provided to specify 
the objective of the treatment process that clinicians 
have in mind. Manually specifying a reward function 
may require prior domain knowledge. It also depends 
on the clinician’s personal experience, which 
undoubtedly differs across all health professionals, 
thus leading to a non-representative enough reward 
function of a real-world scenario or resulting in 
inconsistent learning performance. 

The problem of inferring a reward function from 
an observed policy is known as inverse reinforcement 
learning (IRL) (Russell, 1998), (Ng & Russel, 2000) 
and (Pieter & Ng, 2004). 

 

 

Figure 1: Global view of the RL - IRL framework in 
healthcare 

During this past decade or so, IRL has been 
gaining a lot of attention among researchers in the 
artificial intelligence communities, psychology, 
control theory, and other domains. For a much 
broader discussion of IRL’s progress, its theoretical 
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foundations, different algorithms, application in 
various domains and its inherent challenges, one 
might be referred to the work done by (Z. Shao & Er, 
2012) and (Arora & Doshi, 2021). 

Despite the excellent theoretical progress, one can 
easily remark that there is a small amount of work 
regarding IRL applications to healthcare domains, 
which might be referred to many reasons, as we will 
explore in the corresponding sections of this article. 
In this respect, this article addresses the following 
points: 
 An introduction to the theoretical foundations 

of IRL and the problem that it solves 
 A state-of-the-art application of IRL in 

healthcare domains 
 The challenges that face the applicability of 

IRL in healthcare 
 Some potential directions for future research 

 
Obviously, a conference article, will not cover 

everything. However, we tried to make this survey as 
comprehensive as possible. 

2 THEORETICAL 
FOUNDATIONS OF IRL 

To get a proper understanding of IRL, we will 
consider the most standard model, “the Markov 
Decision Process (MDP)”. There are other models, 
such as the partially observable Markov Decision 
Process, the hidden-parameter Markov Decision 
Process, which we will not go through in this article. 

Unlike RL, which gets as input states of the 
environment and a well-defined reward function so 
that it produces the optimal behaviour that 
maximizes the reward function, IRL is the exact 
opposite. IRL takes in states of the environment and 
information about the behaviour exercised by the 
expert to output a reward function. 

2.1 Definitions 

A Markov Decision Process of {S, A, T, R, γ} 
represents an agent's history of interactions, where: 
 A is the action space, = {a1, a2 . . . ak}. 
 S is the state space. 
 T is the transition function, i.e., given state S, 

and executing action A. The agent will follow 
T to get to another state S’. 

 γ is the discount factor. It is mainly used for two 
goals, first is to prove the convergence of the 
algorithm, second is to model the uncertainty 

of the agent about the  successive decision 
instants. 

 R is the reward received when action A is 
performed at state S. 

 πE is an assumedly optimal policy. In the case 
of IRL, it is the behaviour performed (or 
trajectories followed) by the expert. 

2.2 Formulation of the IRL problem 

 Given rollouts of the expert’s policy πE, i.e., 
history of states and actions from the expert’s 
interaction process with the MDP.  

 Identify a set of possible reward functions (R) 
so that the policy π recovered from the R is (or 
as near as possible as) the policy performed by 
the expert πE for the given MDP. 

Many algorithms were developed to solve this 
problem since the first steps taken in 2000 by (Ng & 
Russel, 2000) and (Pieter & Ng, 2004) in 2004, such 
as Maximum Entropy IRL (Ziebart et al., 2008), 
nonlinear representations of the reward function 
using Gaussian processes (Levine et al., 2011), 
Bayesian IRL (Ramachandran & Amir, 2007), and 
many others as discussed in detail in (Z. Shao & Er, 
2012) and (Arora & Doshi, 2021). 

3 IRL FOR HEALTHCARE: 
STATE-OF-THE-ART 
APPLICATIONS 

In most cases, IRL is just a step towards making a 
more robust approach to solve a healthcare-related 
decision-making problem using RL, where providing 
the reward function to the RL algorithm is not trivial, 
exploiting IRL techniques might be of massive 
benefit in solving many issues that RL faces when 
used in clinical settings, for a more detailed 
discussion on the use of RL in healthcare, the survey 
conducted in (Yu, Liu, & Nemati, 2019) is a good 
resource.  

Despite being widely used, nearly every RL 
application assumes that a reward function is 
provided or easy to program manually, which is often 
not the case, calling for new robust ways such as IRL. 

After working on modelling medical records of 
diabetes as an MDP in this first article (Asoh, Shiro, 
Akaho, Kamishima, et al., 2013), and utilizing the 
doctors’ opinions for defining the reward for each 
treatment, Asoh et al. then developed a new method 
based on Bayesian-IRL to infer the reward function 
that doctors were considering for the treatment 
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process (Asoh, Shiro, Akaho, & Kamishima, 2013), 
in the conclusion of their work, Asoh et al. reported 
that the results they have achieved thus far are 
somewhat preliminary and still some difficulties that 
must be addressed, such as introducing the 
heterogeneity of doctors and patients using 
hierarchical modelling, applying the multitasks 
inverse reinforcement learning algorithm by 
(Dimitrakakis & Rothkopf, 2012), extending the 
MDP to POMDP which implicates a proper design of 
the state and the action spaces, and finally taking into 
account longer examinations histories and treatments. 

Next, is the work done in (Li & Burdick, 2017) 
and (Li et al., 2018) regarding clinical motion 
analysis of both physicians and patients. They worked 
on the problem of inverse reinforcement learning in 
large state space and solved it using function 
approximators approaches (e.g., a neural network) 
that do not necessarily need to go through the RL 
problems when learning the reward function. They 
reported that the proposed approach showed more 
accuracy and scalability when compared to traditional 
methods. A clinical application was also presented as 
a test for the proposed method, where it was applied 
to evaluate robot operators according to three surgical 
activities: tying knots, passing needles and suturing. 
And in their later work (Li & Burdick, 2020), the 
suggested technique was tested in two simulation 
settings. They used ground-truth data for comparing 
alternative configurations and extensions and then 
applied it to a clinician skill assessment and the 
analysis of a patient motion therapy. 

Following the above, the  authors in (Yu, Liu, & 
Zhao, 2019) applied the Bayesian IRL method and 
modelled the sequential decision-making problem of 
a ventilator weaning as an MDP, and used a batch RL 
approach, fitted-Q-iterations with a gradient boosting 
decision tree, to infer an appropriate strategy from 
actual trajectories in historical data in ICU. In their 
results, they concluded that the IRL approach could 
extract significant indications for prescribing 
extubation readiness and sedative dosage. This makes 
it clear that patient’s physiological stability received 
greater importance by clinicians, rather than 
oxygenation criteria. In addition, new successful 
treatment procedures can be proposed when 
determining optimum weights. They also emphasized 
that although the results have confirmed the viability 
of inverse reinforcement learning techniques in 
complex medical environments, there are still many 
concerns that must be properly addressed before these 
approaches might be meaningfully applied. 

In even more recent work, (Yu, Ren, & Liu, 2019) 
Yu et al. proposed a new model that incorporates the 

advantages of mini trees and Deep IRL. As reported 
in their conclusion, this approach can adequately 
address the problems of identifying factors that have 
to be taken into consideration when evaluating the 
decision-making performance, and the different roles 
these factors can play in treating sepsis. 

4 IRL FOR HEALTHCARE: 
CHALLENGES 

The previous section has summarized the state-of-
the-art applications of IRL in healthcare domains over 
the past decade. While notable success has been 
obtained, IRL applications in healthcare still manifest 
some limitations. Most of these limitations are 
inherent to the RL framework in general and to the 
complexity of clinical data, which was exhaustively 
discussed in (Yu, Liu, & Nemati, 2019) and 
(Gottesman et al., 2018) and (Gottesman et al., 2019). 
In the present work, however, we will concentrate on 
the challenges encountered when using IRL in 
healthcare and what makes the literature as limited as 
we explored. 

4.1 Data in Healthcare Settings 

As shown in Figure 1, the primary sources of data for 
an IRL algorithm in healthcare are states of the 
patients and actions performed by clinicians 
accordingly. Thus, the main challenge here is how to 
collect useful data given that: 
 Patients may fail to complete the treatment 

regime. 
 Devices in clinical settings can be changed, and 

each device is subject to many inherent biases. 
 For some complicated diseases, clinicians are 

still confronted with inconsistencies in 
selecting precise data as the state in each case 
(Vellido et al., 2018). 

 States and actions -by credit assignment- 
should contain sufficient information for a 
clear distinction of different patients.  

 States and actions must be causal, meaning 
they must have either direct or indirect effects 
on the task to learn or reward to achieve. 

4.2 IRL for an Eventual RL 
Application 

Let us consider that the IRL algorithm did well and 
gave us the reward function perfectly. The RL 
algorithm now have two choices, either: (one) learn 
using trial and error or (two) learn from another 
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policy, i.e., that of the expert clinician, also known as 
the off-policy evaluation problem. Learning via 
method one implicates executing the policy directly 
on the patients, this is impossible because of the large 
trial costs, uncontrolled treatment hazards, or just 
illegal and unethical humanistic considerations. 
Method two on the other hand (the off-policy 
evaluation), estimates the performance of the learned 
policies on retrospective data before testing them in 
clinical environments. Using sepsis management as 
an illustration, (Gottesman et al., 2019) discussed the 
reasons that make the assessment of policies on 
historical data a difficult problem, as any improper 
handling of the state representation, variance of 
importance-sampling-based statistical estimators, and 
confounders in more ad-hoc measurements, would 
result in inaccurate or even deceptive values of the 
treatment quality. 

4.3 the Black Box Problem 

This problem, which is the lack of clear 
interpretability (Lipton, 2018) is inherent to the RL 
eventual application after an IRL usage. As illustrated 
in figure 1, most IRL applications are just a bridge 
(extracting the reward function) for an eventual RL 
application, and RL algorithms take-in some input 
data and directly output a policy, that is hard to 
interpret. Despite the tremendous success achieved in 
solving challenging problems like learning games 
such as Atari and Go, autonomous driving, etc. 
Adopting RL policies in medical applications might 
get strong resistance given the fact that clinicians are 
not expected to try any new treatment without 
laborious validation accuracy, safety, and robustness. 

5 POTENTIAL DIRECTIONS 
FOR FUTUR RESEARCH 

Since the very first introduction of IRL, a good 
number of remarkable improvements have enabled it 
to be integrated in more practical applications. 
However, IRL applications in healthcare are still very 
limited given the challenges manifested in current 
IRL applications in healthcare domains discussed 
above. Addressing these challenges would certainly 
be of enormous benefit in improving clinical decision 
making.  

In this section, we will discuss some future 
perspectives that we believe are among the most 
important ones, mainly focusing on the following 
four axes: 

5.1 The Missing Data 

As concluded in (Yu, Liu, & Zhao, 2019), the 
learning accuracy will undoubtedly be affected by the 
errors brought in by the data collection and 
preprocessing phase. They proposed that IRL 
methods must be able to directly work on the raw, 
noisy, and incomplete data.  

On the other hand, Asoh et al. believe that next 
time they should consider longer histories of 
examinations and treatments to introduce complex 
decision-making processes of doctors (Asoh, Shiro, 
Akaho, & Kamishima, 2013).  

While enough available training samples are 
currently scarce in many healthcare domains (e.g., 
few retrospective data for new or rare diseases). 
Excellent solutions were proposed in other fields of 
research that might mitigate the effect of missing data 
immensely if exploited in healthcare applications, for 
example, using data augmentation techniques 
(Salamon & Bello, 2017) or GANs (Goodfellow et 
al., 2020) to increase the number of samples. Another 
solution is the application of knowledge distillation 
(Hinton et al., 2015), or meta-learning (Lake et al., 
2017), or even knowledge transfer (Killian et al., 
2019) from a well-known patient to another relatively 
similar patient to overcome the problem of 
insufficient data. 

Although it is still early, significant progress has 
been made in the “small sample learning” research in 
recent years (Carden & Livsey, 2017). Building on 
these achievements and address the issue of IRL with 
little data in healthcare domains, is a calling area for 
future research. 

5.2 Modelling Complex Clinical 
Settings 

Most of the current IRL applications in healthcare 
assume that the agent operates in tiny domains with a 
discrete state space, which in contrast to the 
healthcare domains, that often involve continuous 
multi-dimensional states and actions. Learning and 
planning across such large-scale continuous models 
is a great challenge. 

The authors in (Yu, Liu, & Zhao, 2019) reported 
that their future investigations would focus on 
applying IRL methods that can estimate the reward 
and the model-dynamics simultaneously (Herman et 
al., 2016). Because usually, IRL methods rely on the 
availability of an a precise MDP model, which is 
either given or estimated from data. Asoh et al. also 
faced a similar issue (Asoh, Shiro, Akaho, & 
Kamishima, 2013) regarding the over simplicity of 
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MDPs in a healthcare setting. Thus, they decided that 
the following works will consider some extensions of 
the MDP to POMDP and introducing the 
heterogeneity of doctors and patients by hierarchical 
modelling. 

5.3 IRL or Apprenticeship Learning 

Apprenticeship learning via IRL (Pieter & Ng, 2004) 
is learning a reward function using IRL from 
observed behaviour and using the learned reward 
function in reinforcement learning. While most 
studies use IRL as a bridge for an eventual RL 
application, just like in apprenticeship learning, in the 
case of healthcare where safety is of paramount 
importance, it might be helpful to consider using IRL 
alone for the sake of extracting the reward function. 
Because all it does is inferring the reward function of 
presumably optimal treatment policy and extracting 
information about the essential variables to consider 
and recommend for clinicians. Thus, unless we can 
provide a sophisticated and realistic simulation of the 
healthcare setting for RL algorithms to be trained and 
create interpretable RL solutions to improve the 
safety, robustness, and the accuracy of learnt policies 
in healthcare-domains which is currently an 
unresolved topic that necessitates more research, IRL 
can safely help improve clinician’s decision-making. 

6 CONCLUSIONS 

Inverse reinforcement learning (IRL) presents a 
theoretical, and in lots of cases, a practical solution to 
infer the reward function or the objective behind a 
given policy. Usually, in healthcare domains, the 
policy is performed by a clinician (i.e., the expert). 

This paper aims to provide a brief comprehensive 
survey of state-of-the-art applications of IRL 
techniques in healthcare, the challenges faced, and 
some potential directions for future research. 

Although tremendous progress has been made in 
recent years in the field of IRL in a lot of other areas, 
clinical settings are uniquely critical and high risk-
sensitive, thus the limited literature regarding these 
IRL applications in healthcare.  

Nevertheless, IRL can be safely and efficiently 
exploited to extract meaningful indicators associated 
with the learned reward function. This can help to 
recommend new effective treatment protocols and 
therefore improving clinician’s decision making.  

However, the risks of IRL in healthcare 
applications is manifested highly when it is used as a 
bridge for an eventual RL application where the 

patient’s health is becoming between the hands of an 
algorithm usually functioning as a non-interpretable 
black-box making clinicians unlikely to trust it. Also, 
most RL algorithms in healthcare learn either by trial 
and error, which is obviously unfeasible/unethical, or 
through another policy given as retrospective 
treatment data, which -as we discussed- is still not 
reliable enough and needs more improvement. 

Finally, the hope is that more researchers from 
different disciplines exploit their domain-expertise 
and collaborate to produce more reliable solutions to 
improve the decision-making in the healthcare 
domains. 
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