
Incremental Subsequence Clustering Algorithm from Multiple Data
Streams

Zaher Al Aghbari1 a, Ayoub Al-Hamadi2 b and Thar Baker1 c
1Department of Computer Science, University of Sharjah, UAE

2IIKT, Otto-von-Guericke-University Magdeburg, Germany

Keywords: Clustering subsequences, Data streams, Incremental clustering, Big Data.

Abstract: Clustering subsequences of continuous data streams have a wide range of applications, such as stock market
data, social data, and wireless sensor data. Due to the continuous nature of data streams, finding evolving
clusters is a challenging task. This paper proposes ISsC, which is an incremental clustering algorithm of
subsequences in multiple data streams. The ISsC algorithm employs a window buffer to collect and process
the continuous data. Clusters found in previous windows are kept in a global List. Then, the List of clusters
is updated incrementally by clusters found in the current without the need to recompute the clusters from the
entire historical streams. If the number of cluster members (e.g., subsequences) is above a certain threshold,
the cluster is deemed a frequent subsequence. Old clusters are tracked through a decay parameter and removed
from the global List once this parameter is decayed to a negative value. Extensive experiments are conducted
on multiple data streams to show the feasibility of the ISsC algorithm.

1 INTRODUCTION

Due to the abundance of generated data streams in
recent years, many new applications benefited from
mining these data streams. These data streams are
continuously generated and are affecting many
aspects of our life. The Internet of Things (IoT)
devices, social media, stock markets, online services,
etc., are generating continuous data streams (Islam et
al. 2019) (Tareq et al. 2021) (Alkouz et al. 2019).
Sensors have been utilized by several applications
and industries, such as health services, transportation,
and environment, where these IoT devices transmit
massive data streams (Al-Aghbari et al. 2019).

Processing data streams to find clusters of
subsequences within them requires careful algorithm
design that considers the characteristics of these data
streams. The first requirement is that the algorithm
should pass through the data only once due to the
continuous nature of the stream. This requirement can
be solved by employing a window buffer to collect
the incoming data. Moreover, the requirement of one-
pass only through data stream is imposed due to other

a https://orcid.org/0000-0003-2285-953X
b https://orcid.org/0000-0002-3632-2402
c https://orcid.org/0000-0002-5166-4873

characteristics, such as unboundedness and high
arrival rate of the data. Therefore, a data stream would
be processed in chunks of data, where each chunk is
a group of buffered m data values that fills one
window. Processing chunks of data is known as a
sliding window model (Al-Aghbari et al. 2012)
(Dinges et al. 2011). Another requirement of data
stream processing is that the task (e.g., clustering)
should be mined incrementally. Clustering the data at
the current window should not require recomputing
the whole historical data stream, but rather the found
clusters in the current window should be added and
update the existing clusters that were computed in
previous windows.

This paper proposes an incremental algorithm
called ISsC to discover clusters in multiple data
streams. Each cluster contains a group of similar
subsequences of the data stream. One of the
subsequences in the cluster acts as a representative
subsequence of the cluster. The ISsC algorithm
computes these clusters efficiently, and they can be
extracted at any time. To dynamically update
clusters, involves adding new subsequences to active

92
Al Aghbari, Z., Al Hamadi, A. and Baker, T.
Incremental Subsequence Clustering Algorithm from Multiple Data Streams.
DOI: 10.5220/0010729000003101
In Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning (BML 2021), pages 92-96
ISBN: 978-989-758-559-3
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

clusters and removing old clusters from the global
List of clusters, ISsC utilized a delay parameter for
every cluster. This parameter increments if the cluster
is still active in the current window and decreases
otherwise.

Several applications could benefit from clustering
subsequences, such as finding correlated stocks
behaviours in financial markets, discovering buying
patterns of customers, and mining website search
behaviour of online users that can be utilized by web
admins in making their websites more efficient
through predicting and pre-fetching certain pages
(Alkouz et al. 2020). System administrators may use
such clusters of subsequences in creating efficient
load-balancing strategies. The benefits of clustering
subsequences as well as the fact that this topic has not
been fully addressed by the research community are
the motivations behind the proposed ISsC.

Plenty of research work was conducted on
discovering frequent itemsets from transactional data
streams. However, very few research works were
published on finding clusters of subsequences of
continuous data streams. Moreover, existing research
work on clustering subsequences processes a single
data stream. Therefore, the main contributions of the
ISsC algorithm are:
 It is an efficient and incremental algorithm that

finds clusters of subsequences by passing
through the data stream only once.

 It employs a decay parameter to incrementally
update existing clusters and remove decayed
old clusters.

 It processes multiple data streams in parallel to
find clusters of subsequences, and thus, our
algorithm is scalable.

The rest of this paper is organized as follows. The
related work is presented in Section 2. Section 3
discusses the problem of clustering subsequences
from multiple data streams and presents the ISsC
algorithm. Extesive experiments are presented and
discussed in Section 4. The paper is concluded in
Section 5.

2 RELATED WORKS

Clustering subsequences of data streams has attracted
several research works. A fundamental clustering
algorithm called DBSCAN (Ester et. al 1996) finds
density-based clusters; however, it does not cope with
high dimensionality. DenStream (Cao et. al 2006) is
a density-based algorithm to find clusters in the data
stream; however, this algorithm suffers from high
processing time. A similar density-based clustering

algorithm is called CluStream (Aggarwal et al. 2003)
was proposed to find clusters from data streams, but
it does not support non-circular clusters.

Maintaining stream summaries using a tree index
structure that is leveraged to find clusters is proposed
by (Kranen et al. 2018). The Piece-wise Aggregate
Approximation algorithm was combined with the
density-based spatial clustering to find clusters from
medical data streams to group and monitor patients
with similar symptoms (Al-Shammari et al. 2019).

 (Gong et al. 2017) propose an algorithm called
EDMStream to discover clusters from data streams
and address the concept of the drift problem.
However, this algorithm does not consider the
temporal relationships between the data values in the
stream. On the other hand, (Zoumpatianos et al. 2014)
propose an index to help find clusters incrementally
in time series data. However, this method adopts a
distance function to compute the clusters, which
hinders extracting information about the dynamicity
of frequent subsequences.

A method to find clusters of similar subsequences
whose length are variable is called StreamScan
(Matsubara et al. 2014) was proposed. This method
uses HMM to compute the clusters of subsequences
from the data stream.

Most of the research mentioned above, provided
solutions to find clusters of subsequences from data
streams; however, they do not satisfy all the
requirements, such as an incremental and scalable
algorithm.

3 CLUSTERING SUBSEQUENCES

Data streams are inherently continuous and infinite
(Al-Aghbari et al. 2013). Although a data stream can
contain any type of data (e.g. social media data
streams can be textual, images, and audio), in this
paper, we consider data streams that consist of real
numbers. Assume S1, S2, …, Sp are given data
streams, the ISsC clusters subsequences over these
data streams incrementally. These clusters represent
frequent subsequences in the data streams.

Since the proposed ISsC algorithm mines clusters
from multiple data streams, the arrival rate r of the
data values of a stream is assumed to be fixed among
all data streams (i.e. synchronized data streams).

3.1 Incremental Clustering Parameter

Data values of a stream are arriving at a specified rate
in all considered streams. Therefore, clusters of
subsequences appear and grow during a number of

Incremental Subsequence Clustering Algorithm from Multiple Data Streams

93

windows, and then shrink and disappear during
another set of windows. Therefore, ISsC tracks
clusters at every window. That is ISsC determines
whether each of the existing clusters is active or
inactive at each window. Here, a cluster is considered
active at the current window if a new subsequence is
found to be similar to the subsequences that are
already in the cluster and thus added to the cluster.
Otherwise, a cluster is considered inactive.

For a certain cluster Ci, if the number of member
subsequences, , is greater than or equal to the
support threshold, τ, (  τ), then Ci is active, and its
decaying parameter δ is incremented. Otherwise, if Ci

is inactive, the δ is decremented. The inactive cluster
whose decaying parameter δ reaches -1 is removed
from the global List. That is because it is thought to
contain infrequent subsequences.

3.2 IScC Clustering Algorithm

Each cluster in the global List represents a frequent
subsequence, where the member subsequences in the
cluster are similar. Each cluster is represented by one
of its member subsequences, and usually, the first
member of the cluster is selected as the
representative. The Incremental Subsequence
Clustering (ISsC) algorithm initializes the number of
member subsequences, , in the current window wi
for every cluster to 0. In the current window, the ISsC
algorithm iterates over all variable lengths
subsequences l within a range between h and m. That
is, every subsequence l is in the range: h ≤ l ≤ m. The
length of an obtained subsequence should not be
smaller than the minimum h and should not exceed
the maximum m, where h and m are set based on the
application under consideration. Then, for every
obtained subsequence l, the ISsC algorithm verifies
whether one of its subsets si. is frequent. If so, the
ISsC algorithm verifies whether the global List of
existing clusters contains a cluster (representative
subsequence) similar to the found frequent subset si.
of the current subsequence l. This similarity check is
performed by computing the distance dmin between si
and every cluster Ci in List.

If dmin is greater than a certain threshold Θ and
there is no overlap between si and the subsequences
in the cluster Ci, then the current si belongs to Ci.

Therefore, si is included in Ci, and the number of
cluster members  of Ci is incremented by one.
Otherwise, if si is not similar to any of the
representative subsequences of clusters in List, then
si creates a new cluster Cj. Note that the ISsC
algorithm does not consider overlapping

subsequences since they lead to trivial matches
(Keogh et al. 2005).

For every cluster Ci, if the number of cluster
members  is less than the support threshold τ, ( <
τ), cluster Ci is considered inactive, and its decaying
parameter δ is decremented. However, if  is greater
than or equal to the support threshold τ, (  τ), then
cluster Ci is considered active and its decaying
parameter δ is incremented. If a cluster is inactive for
several recent windows, its δ value decreases to -1,
and thus, this cluster will be removed by ISsC.
Moreover, to parallelize finding clusters from the
different data streams, the ISsC algorithm executes
each data stream using a separate JAVA thread.

Algorithm: Incremental Subsequence Clustering
Input: w, List, Θ
Output: List
Set  of every cluster (subsequence) in wi to zero.
for every subsequence l: h ≤ l ≤ m do
 if a subset si of l is frequent,
 Compute dmin with every Ci in List
 if (dmin > Θ AND si no overlap with Ci)
 include si in Ci

 Increment  of Ci
 else
 si creates a new cluster Cj
 end if

 end if
end for
for every cluster in List do
 if ( < τ)
 decrease the decay value δ by one
 remove clusters with δ = -1
 end if

end for

4 EXPERIMENTS

The ISsC algorithm was evaluated by conducting a
set of experiments. First, the ISsC is assessed on how
well it discovers the clusters of subsequences from
multiple data streams as we modify the density of
clusters in the stream. Second, we evaluated how the
three parameters (window size, support threshold and
the number of cluster members of each sequence)
affect the system’s performance in terms of speed.
That is to what extent the data arrival rate r can be
increased under certain values of the measured
parameters. Note that the higher the value of r, the
slower the performance.

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

94

To obtain a dataset for the experiments, we built a
data generator to create continuous data values for
each of the data streams used in the experiment. The
data values are real numbers and generated around
selected prototype values, which will act as cluster
centres. Each cluster centre value and data values that
belong to this cluster are generated randomly within
a predefined range [value1, value2].

4.1 Evaluating Clustering Purity

We used Equation 1 to measure the clustering purity
of the ISsC algorithm. To validate the result of this
experiment, we use a ground truth of labelled clusters
and their member subsequences in the different data
streams. Then, for every cluster, the purity of cluster
Ci is computed by Equation 1.

𝐶𝑖 𝑝𝑢𝑟𝑖𝑡𝑦 ൌ


𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
 ሺ1ሻ

Assume that the number of clusters in the data
streams is n at the current window wi, then the total
purity of clustering the clusters in wi is given by
Equation 2.

𝑡𝑜𝑡𝑎𝑙 𝑝𝑢𝑟𝑖𝑡𝑦 ൌ ෍ 𝐶𝑖 𝑝𝑢𝑟𝑖𝑡𝑦 ሺ2ሻ

௡

௜ୀଵ

The reported result of the total purity is the
average of 100 runs of the experiment. Each run
includes clusters of five consecutive windows.

Figure 1 illustrates the effect of modifying the
range [value1, value2] from which cluster member
subsequences are generated (referred to as density )
on the total purity of the clusters. In these
experiments, we fixed the other parameters, which are
α = 60%, τ = 3, number of clusters = 4 and the window
size to 120. We notice from Figure 1 that as the
density  of subsequences in the clusters decreases,
which means the range [value1, value2] increases, the
purity of clusters decreases. This is expected as bigger
ranges make the clusters sparse, which cause clusters
to overlap. When clusters are sparse, the possibility
of false-positive subsequences to become members of
clusters increases.

In Figure 2, the performance of the ISsC is
assessed by measuring the data arrival rate r as we
modify the size of window buffers. During this
experiment, we fixed the other parameters at α = 50%,
τ = 3, number of clusters = 4 and the density  = 1.5.
Thus, in Figure 2, we measure the effect of modifying
the size of the window on the maximum speed of r at
which the ISsC algorithm can still process and
discover the intended clusters from the multiple data

streams. Note that the bigger the window size, the
slower the ISsC, which means the slower the required
r.

Figure 1: Effect of cluster density  on total purity

Figure 2: Effect of the size of w on r

Another parameter that affects the ISsC
performance is the support threshold τ. In Figure 3,
we measure the maximum speed of the data arrival
rate r as we increase the value of τ. The other
parameters are set at α = 50%,  = 1.5, number of
clusters = 4, and w = 120. In this experiment, which
is shown in Figure 3, we compare two versions of
ISsC: applying the Monotonicity Property (MP) in
one and without MP in the other. The behaviour of
both versions is that r decreases as τ increases since
less number of subsequences will be selected to be
processed. Note that the ISsC algorithm (with MP)
can deal with faster r.

Similarly, in Figure 4 we measure the effect of the
number of clusters on the performance of ISsC
(required speed of r) using the two versions of ISsC
as in Figure 3. In this experiment, we set  = 1.5, τ =
3, w = 120, and α = 50%. For the ISsC algorithm (with
monotonicity property, MP), the performance
improves (required r decreases) as we increase the
number of clusters. That is because the infrequent
subsequences are skipped when using the
monotonicity property. That is, the ISsC algorithm
tolerates high r of data streams.

0

0,2

0,4

0,6

0,8

1

0,5 1 2 4 6 8 10

To
ta
l P
u
ri
ty

Cluster Density

0

100

200

300

400

60 120 180 240 300 360

A
rr
iv
al
 R
at
e
(m

s)

Window Size

Incremental Subsequence Clustering Algorithm from Multiple Data Streams

95

Figure 3: Effect of the support threshold on τ.

Figure 4: Effect of the number of clusters on r.

5 CONCLUSION

The proposed ISsC is an incremental algorithm that
discovers clusters in multiple data streams. By using
the monotonicity property, the ISsC reduces the
number of processed subsequences. That is by
excluding the non-frequent subsets, which do not
contribute to finding the clusters of subsequences
(non-frequent subsequences). By employing a decay
factor of subsequences, the ISsC can remove older
uninteresting subsequences. We noticed that, as the
cluster density is increased, the total purity of
clustering improved. Moreover, we noted that using
the monotonicity property improved the performance
over not using this property.

REFERENCES

Al Aghbari, Z., Kamel, I., & Awad, T. (2012). On clustering
large number of data streams. Intelligent Data Analysis,
16(1), 69-91.

Islam, M. K., Ahmed, M. M., & Zamli, K. Z. (2019). A
buffer-based online clustering for evolving data stream.
Information Sciences, 489, 113-135.

Tareq, M., Sundararajan, E. A., Mohd, M., & Sani, N. S.
(2020). Online Clustering of Evolving Data Streams
Using a Density Grid-Based Method. IEEE Access, 8,
166472-166490.

Alkouz, B., Al Aghbari, Z., & Abawajy, J. H. (2019).
Tweetluenza: Predicting flu trends from twitter data.
Big Data Mining and Analytics, 2(4), 273-287.

Al Aghbari, Z., Khedr, A. M., Osamy, W., Arif, I., &
Agrawal, D. P. (2019). Routing in wireless sensor
networks using optimization techniques: A survey.
Wireless Personal Communications, 1-28.

Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-
Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”, KDD, 1996, vol. 96, no.
34, 226–231.

Cao F., Estert M., Qian W., and Zhou A., ‘‘Density-based
clustering over an evolving data stream with noise,’’ in
Proc. SIAM Int. Conf. Data Mining, Apr. 2006, 328–
339.

Aggarwal C. C., Han J., Wang J., and Yu P. S., ‘‘A
framework for clustering evolving data streams,’’ in
Proc. 29th Int. Conf. Very Large Data Bases, 29, 2003,
81–92

Kranen, P., Assent, I., Baldauf, C., & Seidl, T. (2011). The
ClusTree: indexing micro-clusters for anytime stream
mining. Knowledge and information systems, 29(2),
249-272.

Al-Shammari, A., Zhou, R., Naseriparsaa, M., & Liu, C.
(2019). An effective density-based clustering and
dynamic maintenance framework for evolving medical
data streams. International journal of medical
informatics, 126, 176-186.

Gong, S., Zhang, Y., & Yu, G. (2017). Clustering stream
data by exploring the evolution of density mountain.
Proceedings of the VLDB Endowment, 11(4), 393-405.

Zoumpatianos, K., Idreos, S., & Palpanas, T. (2014, June).
Indexing for interactive exploration of big data series.
In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data (pp.
1555-1566).

Matsubara, Y., Sakurai, Y., Ueda, N., & Yoshikawa, M.
(2014, December). Fast and exact monitoring of co-
evolving data streams. In 2014 IEEE International
Conference on Data Mining (pp. 390-399). IEEE.

Keogh, E., & Lin, J. (2005). Clustering of time-series
subsequences is meaningless: implications for previous
and future research. Knowledge and information
systems, 8(2), 154-177.

Al Aghbari, Z., Kamel, I., & Elbaroni, W. (2013). Energy-
efficient distributed wireless sensor network scheme for
cluster detection. International Journal of Parallel,
Emergent and Distributed Systems, 28(1), 1-28.

Alkouz, B., & Al Aghbari, Z. (2020). SNSJam: Road traffic
analysis and prediction by fusing data from multiple
social networks. Information Processing &
Management, 57(1), 102139.

Dinges, L., Al-Hamadi, A., Elzobi, M., Al Aghbari, Z., &
Mustafa, H. (2011). Offline automatic segmentation
based recognition of handwritten Arabic words.
International Journal of Signal Processing, Image
Processing and Pattern Recognition, 4(4), 131-143.

0

5

10

15

20

25

2 3 4 5 6

A
rr
iv
al
 R
at
e
(m

s)

Support Threshold

with MP

without MP

0

5

10

15

20

25

2 4 6 8 10

A
rr
iv
al
 R
at
e
(m

s)

Number of Clusters

with MP

without MP

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

96

