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Abstract: Clustering subsequences of continuous data streams have a wide range of applications, such as stock market 
data, social data, and wireless sensor data. Due to the continuous nature of data streams, finding evolving 
clusters is a challenging task. This paper proposes ISsC, which is an incremental clustering algorithm of 
subsequences in multiple data streams. The ISsC algorithm employs a window buffer to collect and process 
the continuous data. Clusters found in previous windows are kept in a global List. Then, the List of clusters 
is updated incrementally by clusters found in the current without the need to recompute the clusters from the 
entire historical streams. If the number of cluster members (e.g., subsequences) is above a certain threshold, 
the cluster is deemed a frequent subsequence. Old clusters are tracked through a decay parameter and removed 
from the global List once this parameter is decayed to a negative value.   Extensive experiments are conducted 
on multiple data streams to show the feasibility of the ISsC algorithm. 

1 INTRODUCTION 

Due to the abundance of generated data streams in 
recent years, many new applications benefited from 
mining these data streams. These data streams are 
continuously generated and are affecting many 
aspects of our life. The Internet of Things (IoT) 
devices, social media, stock markets, online services, 
etc., are generating continuous data streams (Islam et 
al. 2019) (Tareq et al. 2021) (Alkouz et al. 2019). 
Sensors have been utilized by several applications 
and industries, such as health services, transportation, 
and environment, where these IoT devices transmit 
massive data streams (Al-Aghbari et al. 2019). 

Processing data streams to find clusters of 
subsequences within them requires careful algorithm 
design that considers the characteristics of these data 
streams. The first requirement is that the algorithm 
should pass through the data only once due to the 
continuous nature of the stream. This requirement can 
be solved by employing a window buffer to collect 
the incoming data. Moreover, the requirement of one-
pass only through data stream is imposed due to other 
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characteristics, such as unboundedness and high 
arrival rate of the data. Therefore, a data stream would 
be processed in chunks of data, where each chunk is 
a group of buffered m data values that fills one 
window. Processing chunks of data is known as a 
sliding window model (Al-Aghbari et al. 2012) 
(Dinges et al. 2011). Another requirement of data 
stream processing is that the task (e.g., clustering) 
should be mined incrementally. Clustering the data at 
the current window should not require recomputing 
the whole historical data stream, but rather the found 
clusters in the current window should be added and 
update the existing clusters that were computed in 
previous windows.  

This paper proposes an incremental algorithm 
called ISsC to discover clusters in multiple data 
streams. Each cluster contains a group of similar 
subsequences of the data stream. One of the 
subsequences in the cluster acts as a representative 
subsequence of the cluster. The ISsC algorithm 
computes these clusters efficiently, and they can be 
extracted at any time.  To dynamically update 
clusters, involves adding new subsequences to active 
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clusters and removing old clusters from the global 
List of clusters,  ISsC utilized a delay parameter for 
every cluster. This parameter increments if the cluster 
is still active in the current window and decreases 
otherwise.  

Several applications could benefit from clustering 
subsequences, such as finding correlated stocks 
behaviours in financial markets, discovering buying 
patterns of customers,  and mining website search 
behaviour of online users that can be utilized by web 
admins in making their websites more efficient 
through predicting and pre-fetching certain pages 
(Alkouz et al. 2020). System administrators may use 
such clusters of subsequences in creating efficient 
load-balancing strategies. The benefits of clustering 
subsequences as well as the fact that this topic has not 
been fully addressed by the research community are 
the motivations behind the proposed ISsC.   

Plenty of research work was conducted on 
discovering frequent itemsets from transactional data 
streams. However, very few research works were 
published on finding clusters of subsequences of 
continuous data streams. Moreover, existing research 
work on clustering subsequences processes a single 
data stream. Therefore, the main contributions of the 
ISsC algorithm are: 
 It is an efficient and incremental algorithm that 

finds clusters of subsequences by passing 
through the data stream only once.  

 It employs a decay parameter to incrementally 
update existing clusters and remove decayed 
old clusters. 

 It processes multiple data streams in parallel to 
find clusters of subsequences, and thus, our 
algorithm is scalable. 

The rest of this paper is organized as follows.  The 
related work is presented in Section 2.  Section 3 
discusses the problem of clustering subsequences 
from multiple data streams and presents the ISsC 
algorithm.  Extesive experiments are presented and 
discussed in Section 4.  The paper is concluded in 
Section 5. 

2 RELATED WORKS 

Clustering subsequences of data streams has attracted 
several research works. A fundamental clustering 
algorithm called DBSCAN (Ester et. al 1996) finds 
density-based clusters; however, it does not cope with 
high dimensionality. DenStream (Cao et. al 2006) is 
a density-based algorithm to find clusters in the data 
stream; however, this algorithm suffers from high 
processing time. A similar density-based clustering 

algorithm is called CluStream (Aggarwal et al. 2003) 
was proposed to find clusters from data streams, but 
it does not support non-circular clusters. 

Maintaining stream summaries using a tree index 
structure that is leveraged to find clusters is proposed 
by (Kranen et al. 2018). The Piece-wise Aggregate 
Approximation algorithm was combined with the 
density-based spatial clustering to find clusters from 
medical data streams to group and monitor patients 
with similar symptoms (Al-Shammari et al. 2019). 

 (Gong et al. 2017) propose an algorithm called 
EDMStream to discover clusters from data streams 
and address the concept of the drift problem.   
However, this algorithm does not consider the 
temporal relationships between the data values in the 
stream. On the other hand, (Zoumpatianos et al. 2014) 
propose an index to help find clusters incrementally 
in time series data. However, this method adopts a 
distance function to compute the clusters, which 
hinders extracting information about the dynamicity 
of frequent subsequences.   

A method to find clusters of similar subsequences 
whose length are variable is called StreamScan  
(Matsubara et al. 2014) was proposed. This method 
uses HMM to compute the clusters of subsequences 
from the data stream.  

Most of the research mentioned above, provided 
solutions to find clusters of subsequences from data 
streams; however, they do not satisfy all the 
requirements, such as an incremental and scalable 
algorithm. 

3 CLUSTERING SUBSEQUENCES 

Data streams are inherently continuous and infinite 
(Al-Aghbari et al. 2013). Although a data stream can 
contain any type of data (e.g. social media data 
streams can be textual, images, and audio), in this 
paper, we consider data streams that consist of real 
numbers. Assume S1, S2, …, Sp are given data 
streams, the ISsC clusters subsequences over these 
data streams incrementally. These clusters represent 
frequent subsequences in the data streams. 

Since the proposed ISsC algorithm mines clusters 
from multiple data streams, the arrival rate r of the 
data values of a stream is assumed to be fixed among 
all data streams (i.e. synchronized data streams).  

3.1 Incremental Clustering Parameter 

Data values of a stream are arriving at a specified rate 
in all considered streams. Therefore, clusters of 
subsequences appear and grow during a number of 
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windows, and then shrink and disappear during 
another set of windows. Therefore, ISsC tracks 
clusters at every window. That is ISsC determines 
whether each of the existing clusters is active or 
inactive at each window. Here, a cluster is considered 
active at the current window if a new subsequence is 
found to be similar to the subsequences that are 
already in the cluster and thus added to the cluster. 
Otherwise, a cluster is considered inactive.  

For a certain cluster Ci, if the number of member 
subsequences, , is greater than or equal to the 
support threshold, τ, (  τ), then Ci  is active, and its  
decaying parameter δ is incremented. Otherwise, if Ci 

is inactive, the δ is decremented. The inactive cluster 
whose decaying parameter δ reaches -1 is removed 
from the global List. That is because it is thought to 
contain infrequent subsequences.  

3.2 IScC Clustering Algorithm 

Each cluster in the global List represents a frequent 
subsequence, where the member subsequences in the 
cluster are similar. Each cluster is represented by one 
of its member subsequences, and usually, the first 
member of the cluster is selected as the 
representative. The Incremental Subsequence 
Clustering (ISsC) algorithm initializes the number of 
member subsequences, , in the current window wi 
for every cluster to 0. In the current window, the ISsC 
algorithm iterates over all variable lengths 
subsequences l within a range between h and m. That 
is, every subsequence l is in the range: h ≤ l ≤ m. The 
length of an obtained subsequence should not be 
smaller than the minimum h and should not exceed 
the maximum m, where h and m are set based on the 
application under consideration.  Then, for every 
obtained subsequence l, the ISsC algorithm verifies 
whether one of its subsets si. is frequent. If so, the 
ISsC algorithm verifies whether the global List of 
existing clusters contains a cluster (representative 
subsequence) similar to the found frequent subset si. 
of the current subsequence l.  This similarity check is 
performed by computing the distance dmin between si 
and every cluster Ci in List.  

If dmin is greater than a certain threshold Θ and 
there is no overlap between si and the subsequences 
in the cluster Ci, then the current si belongs to Ci. 

Therefore, si is included in Ci, and the number of 
cluster members  of Ci is incremented by one. 
Otherwise, if si is not similar to any of the 
representative subsequences of clusters in List, then 
si creates a new cluster Cj. Note that the ISsC 
algorithm does not consider overlapping 

subsequences since they lead to trivial matches 
(Keogh et al. 2005). 

For every cluster Ci, if the number of cluster 
members   is less than the support threshold τ, (  < 
τ), cluster Ci is considered inactive, and its decaying 
parameter δ is decremented. However, if  is greater 
than or equal to the support threshold τ, (   τ), then 
cluster Ci is considered active and its decaying 
parameter δ is incremented.  If a cluster is inactive for 
several recent windows, its δ value decreases to -1, 
and thus, this cluster will be removed by ISsC. 
Moreover, to parallelize finding clusters from the 
different data streams, the ISsC algorithm executes 
each data stream using a separate JAVA thread. 
 

Algorithm: Incremental Subsequence Clustering  
Input:         w, List, Θ 
Output:       List
Set  of every cluster (subsequence) in wi to zero. 
for every subsequence l:  h ≤ l ≤ m do 
     if a subset si of l is frequent, 
           Compute dmin with every Ci in List 
           if (dmin > Θ AND si no overlap with Ci) 
                include si in Ci

                Increment  of Ci 
          else
                si creates a new cluster Cj 
          end if

      end if 
end for 
for every cluster in List do 
     if ( < τ) 
          decrease the decay value δ by one 
          remove clusters with δ = -1 
    end if

end for

4 EXPERIMENTS  

The ISsC algorithm was evaluated by conducting a 
set of experiments. First, the ISsC is assessed on how 
well it discovers the clusters of subsequences from 
multiple data streams as we modify the density of 
clusters in the stream. Second, we evaluated how the 
three parameters (window size, support threshold and 
the number of cluster members of each sequence) 
affect the system’s performance in terms of speed. 
That is to what extent the data arrival rate r can be 
increased under certain values of the measured 
parameters.  Note that the higher the value of r, the 
slower the performance. 
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To obtain a dataset for the experiments, we built a 
data generator to create continuous data values for 
each of the data streams used in the experiment. The 
data values are real numbers and generated around 
selected prototype values, which will act as cluster 
centres. Each cluster centre value and data values that 
belong to this cluster are generated randomly within 
a predefined range [value1, value2].  

4.1 Evaluating Clustering Purity 

We used Equation 1 to measure the clustering purity 
of the ISsC algorithm. To validate the result of this 
experiment, we use a ground truth of labelled clusters 
and their member subsequences in the different data 
streams. Then, for every cluster, the purity of cluster 
Ci is computed by Equation 1. 

𝐶𝑖 𝑝𝑢𝑟𝑖𝑡𝑦 ൌ


𝑇𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
    ሺ1ሻ 

Assume that the number of clusters in the data 
streams is n at the current window wi, then the total 
purity of clustering the clusters in wi is given by 
Equation 2. 

𝑡𝑜𝑡𝑎𝑙 𝑝𝑢𝑟𝑖𝑡𝑦 ൌ  ෍ 𝐶𝑖 𝑝𝑢𝑟𝑖𝑡𝑦                             ሺ2ሻ 

௡

௜ୀଵ

 

The reported result of the total purity is the 
average of 100 runs of the experiment. Each run 
includes clusters of five consecutive windows.  

Figure 1 illustrates the effect of modifying the 
range [value1, value2] from which cluster member 
subsequences are generated (referred to as density ) 
on the total purity of the clusters. In these 
experiments, we fixed the other parameters, which are 
α = 60%, τ = 3, number of clusters = 4 and the window 
size to 120. We notice from Figure 1 that as the 
density  of subsequences in the clusters decreases, 
which means the range [value1, value2] increases, the 
purity of clusters decreases. This is expected as bigger 
ranges make the clusters sparse, which cause clusters 
to overlap. When clusters are sparse, the possibility 
of false-positive subsequences to become members of 
clusters increases.   

In Figure 2, the performance of the ISsC is 
assessed by measuring the data arrival rate r as we 
modify the size of window buffers. During this 
experiment, we fixed the other parameters at α = 50%, 
τ = 3, number of clusters = 4 and the density  = 1.5. 
Thus, in Figure 2, we measure the effect of modifying 
the size of the window on the maximum speed of r at 
which the ISsC algorithm can still process and 
discover the intended clusters from the multiple data 

streams. Note that the bigger the window size, the 
slower the ISsC, which means the slower the required 
r.   

 

Figure 1: Effect of cluster density  on total purity  

 

Figure 2: Effect of the size of w on r 

Another parameter that affects the ISsC 
performance is the support threshold τ. In Figure 3, 
we measure the maximum speed of the data arrival 
rate r as we increase the value of τ.  The other 
parameters are set at α = 50%,   = 1.5, number of 
clusters = 4, and w = 120. In this experiment, which 
is shown in Figure 3, we compare two versions of 
ISsC: applying the Monotonicity Property (MP) in 
one and without MP in the other. The behaviour of 
both versions is that r decreases as τ increases since 
less number of subsequences will be selected to be 
processed. Note that the ISsC algorithm (with MP) 
can deal with faster r.  

Similarly, in Figure 4 we measure the effect of the 
number of clusters on the performance of ISsC 
(required speed of r) using the two versions of ISsC 
as in Figure 3.  In this experiment, we set  = 1.5, τ = 
3, w = 120, and α = 50%. For the ISsC algorithm (with 
monotonicity property, MP), the performance 
improves (required r decreases) as we increase the 
number of clusters. That is because the infrequent 
subsequences are skipped when using the 
monotonicity property. That is, the ISsC algorithm 
tolerates high r of data streams. 
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Figure 3: Effect of the support threshold on τ. 

 

Figure 4: Effect of the number of clusters on r.  

5 CONCLUSION  

The proposed ISsC is an incremental algorithm that 
discovers clusters in multiple data streams. By using 
the monotonicity property, the ISsC reduces the 
number of processed subsequences. That is by 
excluding the non-frequent subsets, which do not 
contribute to finding the clusters of subsequences 
(non-frequent subsequences). By employing a decay 
factor of subsequences, the ISsC can remove older 
uninteresting subsequences. We noticed that, as the 
cluster density is increased, the total purity of 
clustering improved. Moreover, we noted that using 
the monotonicity property improved the performance 
over not using this property.   

REFERENCES 

Al Aghbari, Z., Kamel, I., & Awad, T. (2012). On clustering 
large number of data streams. Intelligent Data Analysis, 
16(1), 69-91. 

Islam, M. K., Ahmed, M. M., & Zamli, K. Z. (2019). A 
buffer-based online clustering for evolving data stream. 
Information Sciences, 489, 113-135. 

Tareq, M., Sundararajan, E. A., Mohd, M., & Sani, N. S. 
(2020). Online Clustering of Evolving Data Streams 
Using a Density Grid-Based Method. IEEE Access, 8, 
166472-166490. 

Alkouz, B., Al Aghbari, Z., & Abawajy, J. H. (2019). 
Tweetluenza: Predicting flu trends from twitter data. 
Big Data Mining and Analytics, 2(4), 273-287. 

Al Aghbari, Z., Khedr, A. M., Osamy, W., Arif, I., & 
Agrawal, D. P. (2019). Routing in wireless sensor 
networks using optimization techniques: A survey. 
Wireless Personal Communications, 1-28. 

Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density- 
Based Algorithm for Discovering Clusters in Large 
Spatial Databases with Noise”, KDD, 1996, vol. 96, no. 
34, 226–231. 

Cao F., Estert M., Qian W., and Zhou A., ‘‘Density-based 
clustering over an evolving data stream with noise,’’ in 
Proc. SIAM Int. Conf. Data Mining, Apr. 2006, 328–
339. 

Aggarwal C. C., Han J., Wang J., and Yu P. S., ‘‘A 
framework for clustering evolving data streams,’’ in 
Proc. 29th Int. Conf. Very Large Data Bases, 29, 2003, 
81–92 

Kranen, P., Assent, I., Baldauf, C., & Seidl, T. (2011). The 
ClusTree: indexing micro-clusters for anytime stream 
mining. Knowledge and information systems, 29(2), 
249-272. 

Al-Shammari, A., Zhou, R., Naseriparsaa, M., & Liu, C. 
(2019). An effective density-based clustering and 
dynamic maintenance framework for evolving medical 
data streams. International journal of medical 
informatics, 126, 176-186. 

Gong, S., Zhang, Y., & Yu, G. (2017). Clustering stream 
data by exploring the evolution of density mountain. 
Proceedings of the VLDB Endowment, 11(4), 393-405. 

Zoumpatianos, K., Idreos, S., & Palpanas, T. (2014, June). 
Indexing for interactive exploration of big data series. 
In Proceedings of the 2014 ACM SIGMOD 
international conference on Management of data (pp. 
1555-1566). 

Matsubara, Y., Sakurai, Y., Ueda, N., & Yoshikawa, M. 
(2014, December). Fast and exact monitoring of co-
evolving data streams. In 2014 IEEE International 
Conference on Data Mining (pp. 390-399). IEEE. 

Keogh, E., & Lin, J. (2005). Clustering of time-series 
subsequences is meaningless: implications for previous 
and future research. Knowledge and information 
systems, 8(2), 154-177. 

Al Aghbari, Z., Kamel, I., & Elbaroni, W. (2013). Energy-
efficient distributed wireless sensor network scheme for 
cluster detection. International Journal of Parallel, 
Emergent and Distributed Systems, 28(1), 1-28. 

Alkouz, B., & Al Aghbari, Z. (2020). SNSJam: Road traffic 
analysis and prediction by fusing data from multiple 
social networks. Information Processing & 
Management, 57(1), 102139. 

Dinges, L., Al-Hamadi, A., Elzobi, M., Al Aghbari, Z., & 
Mustafa, H. (2011). Offline automatic segmentation 
based recognition of handwritten Arabic words. 
International Journal of Signal Processing, Image 
Processing and Pattern Recognition, 4(4), 131-143. 

0

5

10

15

20

25

2 3 4 5 6

A
rr
iv
al
 R
at
e 
(m

s)

Support Threshold

with MP

without MP

0

5

10

15

20

25

2 4 6 8 10

A
rr
iv
al
 R
at
e 
(m

s)

Number of Clusters

with MP

without MP

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

96


