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Abstract: Deep Learning Artificial Neural Networks has pushed forward researches in the field of image recognition, 
furthermore in handwriting recognition. In writing or writer identification, segmentation, or features 
extraction applications, many ANNs models are applied in the process. This paper presents a comparative 
study of one of the most widely used ANNs for offline handwriting recognition, known as Deep 
Convolutional Neural Networks. We describe the challenging benchmark Dataset entitled EMNIST 
introduced in 2017 as an extended version of the well-known MNIST to fill the gap of handwritten letters 
characters. The accuracies obtained in this work for the letters dataset compares favourably with many other 
approaches in the literature. The effect of the choice of hyperparameters related to our network architecture 
and capabilities are explored and detailed, like the number of layers, neurons, optimizers, learning rates and 
other parameters. 
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1 INTRODUCTION 

Convolutional Neural Networks (CNNs) have 
proven their incredible ability for feature extraction 
leading to outstanding classification performances in 
several application areas, such as object detection, 
language processing, image recognition, and many 
more. Nevertheless, their performance is affected by 
small changes in the network hyperparameters like 
the number of convolutional layers, dense layers, 
activation functions, optimizers, learning rates… etc. 
For the last decade, researchers have made great 
efforts to automatically tune hyperparameters 
seeking to enhance the CNNs performances for 
different applications. Although these methods 
exceeded most of the manually generated 
architectures, the searching process requires greater 
computational resources and implies time to train all 
possibilities during the search for the best 
architecture. Here in this paper, we intend to 
compare different CNNs performances based on 

hyperparameters changes when applied for EMNIST 
letters recognition. It is structured as the following: 
Section two where we give a non-exhaustive 
description of the benchmarked handwriting 
datasets. After that, in section 3 where we describe a 
comprehensive explanation of the Convolutional 
Neural Networks architecture. Finally, in section 4 
where we present our results and findings. 

2 HANDWRITING DATASETS 
BENCHMARK 

Many handwritten datasets have been developed 
across the years, building a solid background for 
evaluating numerous recognition tasks. These 
datasets could be classified based on different 
dimensions: Online or Offline data acquisition 
method, script, size, and types of supported tasks 
(Hussain et al., 2015). This section highlights some 
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of the Benchmarks used in offline handwriting 
recognition for validating novel techniques and 
algorithms. 

2.1 NIST SD 19 

Since the beginning of the 90s, the National Institute 
of Standards and Technology (NIST) developed a 
series of image databases intended for handprint 
document processing and OCR research. In 1995 
they introduced the Special Database 19 (Grother, 
1995), composed of handwriting samples forms of 
3600 writers and 810,000 isolated character images 
in addition to ground-truth information. Even if it 
was available since 1995, it remained mostly unused 
because of difficulties in both accessing and using 
for modern computers, due to the way it was stored. 

2.2 MNIST 

The Mixed National Institute of Standards and 
Technology dataset, or simply (MNIST) was 
introduced in 1998 by LeCun et al., it is a 
handwriting digit database derived from a small 
subset of the numerical digits contained within the 
larger database NIST (Le Cun et al., 1989). It is 
constructed based on two different sources: The 
NIST SD 1 collected among high-school students 
and the NIST SD 3 retrieved from Census Bureau 
employees. We could describe the MNIST as a 
labelled images database that contains handwritten 
digits, with a separate training dataset (60,000 
samples) and test dataset (10,000 samples), making 
it easy to use and allows a fast comparison between 
different techniques. Initially, black and white 
images from NIST were sized to fit in a 20*20 
pixels box with aspect ratio preservation and then 
normalized to grey-scale with anti-aliasing 
technique. As a final result, images were centred in a 
28*28 image by computing the pixel’s centre of 
mass. The MNIST dataset remained the most known 
and used dataset in the computer vision and neural 
networks community and was widely used as the 
“hello-world” of machine and deep learning 
tutorials. 

2.3 EMNIST 

Considering that MNIST dataset has becomes a non-
challenging benchmark, Cohen et al. introduced in 
April 2017  the extended version of the MNIST 
(EMNIST) consisting of both handwritten letters and 
digits with the same structure as the MNIST database 
(Cohen et al., 2017), offering new challenges for 
researchers on computer vision. The EMNIST was 

constructed with the NIST Special Database 19 
(NIST SD 19), where original images were stored as 
28*28-pixel binary images and with using the bi-
cubic interpolation with a Gaussian filter to soften 
the edges with aspect ratio preservation. In the Figure 
below, the process of transforming NIST SD 19 
images into the EMNIST. The EMNIST database is 
growing more interest among researchers in the 
Neural Networks community. Like the MNIST it is 
now known as the “hello-world 2” of machine and 
deep learning tutorials. 

 

Figure 1: Diagram of the conversion process used to 
convert the NIST dataset into EMNIST  
(Cohen et al., 2017) 

3 CONVOLUTIONAL NEURAL 
NETWORKS 

In general, CNN's architecture comprises two parts: 
the first one is composed of alternate layers of 
convolution and pooling that extract features from 
imputed data. The second one is composed of one or 
more fully connected layers leading to classification. 
Different regulating units like batch normalization or 
dropout can be incorporated with the different 
mapping functions in order to optimize CNN 
performances. Therefore, the arrangement of 
components in a CNN is considered fundamental to 
designing new architectures for enhancing 
performances. Here in the following, we describe 
each one of those components: 

 

Figure 2: A Typical Convolutional Neural Networks 
Architecture 

3.1 Convolutional Layer 

The existing neurons in the convolutional layer act 
as filters that aim to divide the image into small 
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parts known as kernels or receptive fields. By sliding 
those filters over the inputted image, we calculate 
the product between the parts of the input image and 
the filter respecting the size of the filter (M*M). As 
a result, we get a feature map that provides the 
classification part of the network with relevant 
information about the image, such as edges and 
corners, leading to enhancing the features extraction 
process and classification performances.  

3.2 Pooling Layer 

Pooling, also referred to as down-sampling, is a 
great local operation that allows summing a number 
of similar information in the neighbourhood of the 
kernels leading to output the dominant response 
within this local region. It also reduces the size of 
resulted feature maps from the convolutional layer 
which regulates the network complexity. Different 
formulas of pooling exist such as max, average, 
overlapping, spatial pyramid, L2… etc. When using 
a max-pooling layer the resulted map would contain 
the most prominent features in the previous feature 
map generated in the convolutional layer. 

3.3 Fully Connected Layer 

The fully connected layer represents the 
classification part at the end of the Convolutional 
Neural Network. It takes the pooled feature maps as 
inputs and performs non-linear combinations in 
order to classify the data. In some cases, we replace 
the fully connected layer with a global-average-
pooling layer. 

3.4 Dropout Layer 

Dropout is a technique that introduces regularization 
within the network by skipping some of the units or 
connections (randomly) with a predefined 
probability. In a CNN, multiple connections that 
learn a non-linear relation are sometimes co-adapted, 
which causes over-fitting (Srivastava et al., 2014). 
Randomly dropping some connections or units 
produces several thinned network architectures, and 
as a result, the one representative network with small 
weights is selected to be considered as an 
approximation of all proposed networks. 

3.5 Activation Functions Layer 

The Activation function is one of the main 
hyperparameters of the CNNs model. It adds the 
non-linearity aspect to the model, allowing it to 
decide which information is fired in the forward 

direction and which ones are not at the network's 
end. Several activation functions are commonly 
used, such as tanH, Sigmoid, ReLU, Softmax, and 
most recently Mish (Misra, 2019). Each of these 
functions has a specific usage: Sigmoid and Softmax 
are more used in a binary classification, ReLU is 
generally used in multi-class classification. 

3.6 Normalization Layer 

Data normalization ensures similar data distribution 
for each input parameter. It is a process that makes 
convergence faster while the network is training. 
Many normalization layers types have been used in 
CNNs architectures like Batch Normalization, 
Weight Normalization, Layer Normalization and 
Group Normalization. 

3.7 Optimizers Algorithms 

Optimizers are algorithms used to change a CNN’s 
attributes like the weights and learning rate with the 
purpose of reducing the losses. Changing the 
optimizers and learning rates reduces the losses, so 
they are a key factor for reducing the losses and 
providing the most accurate results possible. There 
are various choices of optimizers such as Adam 
(Kingma & Ba, 2017), RMSprop (Hinton, 2012), 
GD and SGD (Ruder, 2017). 

4 EXPERIMENT 
METHODOLOGY 

There is an important number of hyperparameters in 
a Convolutional Neural Network. Changing all those 
parameters would result in a more significant 
number of cases. Thus, we only chose 
hyperparameters like the number of layers, 
activation functions, optimizers, learning rates, 
dropout rates and the number of neurones. 
Combining nine possible architectures with three 
different optimizers and four learning rates, we 
generated 108 CNNs architecture. We trained and 
tested all of them on the EMNIST Letter dataset 
after grouping existing samples and splitting them 
randomly into training and testing sets with a ratio of 
80% to 20%. The training was for 50 epochs with a 
fixed batch size equal to 512 batches and took nearly 
three and a half-hour. We have automated 
implementing, training and testing all the possible 
models in Python 3.7 using Keras, a well-known 
high-level neural networks API that runs on top of 
the TensorFlow Framework. We carried out our 
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experiments on the Kaggle, a cloud-based 
workbench for Data Science and Deep Machine 
Learning. It offers a free virtual notebook powered 
by a 2-core of Intel Xeon CPU @ 2.30GHz, 16GB 
of RAM, 16GB of the NVidia K80 GPUs and 73 GB 
of Storage access. Here below in Table 1, we give a 
detailed description of all the hyperparameters 
choices: 

Table 1: Hyperparameters choice description.  

Hyperparameters Value
Number of convolution layers 1-3
Number of filters respectively 32-64-128

Kernel sizes 3x3
Pool size in MaxPooling layer 2x2

Dropout rates 
0.2-0.5  

(0.05 steps)
Number of dense layers 1-3

Number of neurons per dense 
512-1024  
(2 steps)

Activation function for all 
convolutional and dense layers 

Mish 

Optimizer 
Adam , SGD, 

RMSprop
Number of Epochs 50

Batch size 512

5 RESULTS AND DISCUSSION 

We have noticed that the choice of learning rates is 
remarkably affecting the efficiency of the 
optimizer’s algorithm. We have noticed that with the 
SGD optimizer, there is stability using all the 
learning rates, it take more time for the network to 
learn, and the smaller is the learning rate, the slower 
the learning is getting. However, the best 
performances were with the bigger learning rates 
like 1e-2. As for Adam and RMSprop optimizers, it 
seems that they are unstable when used with bigger 
learning rates. Nevertheless, all nine CNNs 
architectures showed faster learning with accurate 
performances when used with the learning rate 1e-4, 
whichever optimizer is chosen. The use of three 
convolutional layers with one or two dense layers 
marked the best results in all cases. A summary of 
the results can be found in Tables 2 and 3 below: 

Table 2: Top 3 CNN’s Architectures with highest Testing 
Accuracy. 

CNN Architectures Optimizer (L R) Accuracy 
3 Conv, 2 Dense Adam (1e-3) 94.681 %
3 Conv, 2 Dense Adam (1e-4) 94.517 %
3 Conv, 2 Dense RMSprop (1e-4) 94.517 %

Table 3: Top 3 CNN’s Architectures with highest Testing 
Error rate. 

CNN Architectures Optimizer (L R) 
Error 
Rate

3 Conv, 1 Dense Adam (1e-4) 16.706 %
3 Conv, 1 Dense RMSprop (1e-4) 17.043 %
3 Conv, 2 Dense Adam (1e-4) 17.323%

The highest accuracy was achieved by a CNN model 
with three convolutional and two dense layers. A full 
description of this model’s architecture is presented 
in the following Figure: 

 
Figure 3: Architecture of the best CNN model. 

Here in Figures 4 and 5, we give more details 
about the best CNN model with the highest accuracy 
rates, an illustration of monitoring the training and 
validation for the 50 epochs: 

 
Figure 4: Top CNN’s Training and Validation Accuracy 
across different learning Epochs 

 

Figure 5: Top CNN’s Training and Validation Loss  
across different learning Epochs.  
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There is an apparent absence of the phenomena of 
neither overfitting nor underfitting across the 
training and validation process. The main factor of 
such achievement is the choice of the Mish 
activation function (Misra, 2019) in addition to the 
use of the batch normalization layer (Ioffe & 
Szegedy, 2015). We strongly believe that further 
training for this model could lead to better results. 
Satisfied with what we had achieved, we chose to 
present only those results. In the following table, we 
compare our best achievement to the existing works 
under the same scope: 

Table 4: Our best achievement compared to the state of 
art. 

CNNs for EMNIST Letters Accuracy 
(Peng & Yin, 2017) 95.44%

(Baldominos et al., 2019) 95.35%
This work 94.68 %

(Sen Sharma et al., 2018) 94.36%
(Cavalin & Oliveira, 2019) 93.63%

(Ciresan et al., 2011) 92.42%

6 CONCLUSION 

In this paper, we have described the EMNIST 
benchmark dataset alongside Deep Convolutional 
Neural Networks architectures and hyperparameters. 
By tuning hyperparameters of CNNs, we have 
achieved excellent results that compare favourably 
with other work under the same scope. We believe 
that further tuning would lead to better outcomes. 
Thus we intend to evaluate deeper architectures of 
the CNNs with larger hyperparameters tuning to 
enhance performances even further. 
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