
Implementing the Trapeze Method on GPU and CPU to Solve a
Physical Problem using CUDA

Youness Rtal a and Abdelkader Hadjoudja
Department of Physics, Laboratory of Electronic Systems, Information Processing, Mechanics and Energy, Faculty of

Sciences, Ibn Tofail University, Kenitra, Morocco

Keywords: GPU, CPU, CUDA, Trapeze Method, Parallel Computing.

Abstract: Graphical Processing Units (GPUs) are microprocessors attached to graphics cards and dedicated to
displaying and manipulating graphic data. Currently, such graphics cards GPUs occupy all modern graphics
cards. In a few years, these microprocessors have become potent, tools for parallel computing. Such
processors are practical instruments that develop several fields like video and audio coding and decoding,
resolution of a physical system to one or more unknowns. Their advantages are faster processing and lower
power consumption than the power of the central processing unit (CPU). This paper will define and implement
the Trapeze method to solve a problem in physics that computes the execution time of a vehicle moving at a
speed v using the CUDA C/C++ parallel computing platform. This is a programming model from NVIDIA
that increases computational performance by exploiting the power of GPUs. This type of calculation can be
helpful, to control the speed of vehicles by radars with precision. The objective, of this study, is to compare
the performance of the implementation of the Trapeze method on CPU and GPU processors and deduce the
efficiency of using GPUs for parallel computing.

1 INTRODUCTION

In most cases, the analytical functions, due to their
complexities, are not analytically integral. In other
patients, some parts are evaluated numerically at
different points in the interval. We can obtain
numerical approaches by the integrality of analytical
functions. There are several integration methods,
such as the trapezium method, Simpson's method,
Newton-Cotes formulae and Gauss method. In this
paper, we are interested in the frequently used
trapezium method (Nadir, 2008) to solve physical
problems using programming language and GPU
processors. The emergence of high-level
programming languages for graphics processing units
(GPUs), has reinforced the interest in GPUs to
accelerate tasks that work in parallel. Despite these
new languages, it is difficult to use these complex
architectures efficiently. Indeed, graphics cards are
evolving rapidly, with each generation bringing its
features dedicated to accelerating graphics routines
and improving performance. The complexity and
performance of today’s GPUs present challenges

a https://orcid.org/0000-0003-0064-2233

when exploring new architectural solutions or
refining certain parts of the processor. GPU
computing needs are increasing exponentially,
including processing mathematical algorithms such
as the trapezoid and Simpson algorithm (Nadir,
2008), physical simulation (CalleLedjfors, 2008), risk
calculation for financial institutions, weather
forecasting, video and audio encoding (NVIDIA
Corporation, 2014). GPU computing has brought a
massive, advantage over the CPU regarding
performance (speed and energy efficiency). It is,
therefore, one of the most exciting areas of research
and development in modern computing. The GPU is
a graphics-processing instrument that mainly allows
executing graphics and calculating 3D functions. This
kind of calculation is tough, to perform on the CPU
(central processing unit), so GPUs can help
programmers to work more efficiently because the
evolution of the GPU over the years is oriented
towards better performance. In 2006, NVIDIA
introduced its massively parallel architecture called
"CUDA" and changed the whole perspective of GPU
programming. The CUDA architecture consists of

Rtal, Y. and Hadjoudja, A.
Implementing the Trapeze Method on GPU and CPU to Solve a Physical Problem using CUDA.
DOI: 10.5220/0010728100003101
In Proceedings of the 2nd International Conference on Big Data, Modelling and Machine Learning (BML 2021), pages 45-49
ISBN: 978-989-758-559-3
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

45

multiple cores that work together to handle all the
data provided by the application. Using the GPU to
process non-graphical objects is called GPGPU
(general-purpose graphics processing unit), which
performs highly complex mathematical calculations
in parallel to achieve low power consumption and
reduce execution time (David, Sidd, Jose, 2006;
Shuai, Michael, Jiayuan, David, Jeremy W, Kevin,
2008).
 In this paper, we consider a physical problem of a
vehicle of mass m moving at speed V. This speed
does not remain constant over time because of fluid
friction. We will apply the second law of dynamics
on the vehicle to calculate the distance travelled when
its speed reduce from 30 m/s to 15 m/s using the
trapezoidal method. We will implement this method
on both CPUs and GPU using CUDA C/C++. The
objective of this study is to examine the
implementation of this method and to show the
efficiency of using GPUs for parallel computing. This
implementation may be helpful to control the speed
of vehicles by precision. The upcoming section of this
paper is as follows: in section 2, we present the
architecture of the CUDA program. In section 3, we
define the numerical integration method to solve the
problem. In section 4, we will deliver, the hardware
used and the results and discuss this implementation.

2 THE CUDA PROGRAM
ARCHITECTURE

The CUDA environment is a parallel computing
platform and programming model invented by
NVIDIA (NVIDIA, 2008). It allows to significantly
increase computing performance by exploiting the
power of the graphics processing unit (GPU). CUDA
C/C++ is an extension of the programming languages
well suited and helpful for parallel algorithms. The
main idea of CUDA is to have thousands of threads
running in parallel to increase computational
performance. Typically, the higher the number of
threads, the better the performance. All threads
execute the same code, called kernel; each thread is
characterized by its address ID. These threads execute
using the exact instructions and different data
(CUDA-Wikipedia). The program executed by
CUDA consists of a few steps executed on the host
(CPU) and a GPU device. In the host code, no data
parallelism phases execute. In some cases, the data
parallelism is weak in the host code (CPU) and strong
in the peripheral (GPU) during execution. CUDA C
or C++ is a platform for parallel computing that

includes host and peripheral code. The host code
(CPU) is simple code compiled using only the C or
C++ compiler, the device code (GPU) written using
CUDA specific instructions for parallel tasks, called
kernels. The kernels can be executed on the CPU if
no GPU device is obtainable; this functionality is
provided using a CUDA SDK function. The CUDA
architecture consists of three main components,
which allow programmers to use all the computing
capabilities of the graphics card more efficiently. The
CUDA architecture divides the GPU device into
grids, blocks and threads in a hierarchical structure,
as shown in Figure 1. Since several threads in a block
and several blocks in a grid, and several grids in a
single GPU, the parallelism resulting from a
hierarchical architecture is very significant (Manish,
2012; Jayshree, Jitendra, Madhura, Amit, January
2012).

Figure 1: The architecture of the CUDA program and these
memories.

 A grid is composed of several blocks; each block
contains several, threads. These threads are not
synchronized and cannot be shared between GPUs as
they use many grids for maximum performance. Each
call to CUDA by the CPU is made from a single grid.
Each block is a logical unit containing multiple
threads and some shared memory. Each block in a
grid uses the same program, and to identify the
current block number, the instruction "blockIdx" is

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

46

used. The blocks themselves contain are made up of
threads that run on individual cores. Currently, there
are about 65,535 blocks in a GPU. Each thread is
characterised by its ID called "threadIdx". Thread IDs
can be 1D, 2D or 3D, depending on the dimensions of
the block. The thread ID is relative to the block in
which it is located. Threads have a certain amount of
registered memory (Anthony, 2009; Yadav, Mittal,
Ansari M, Vishwarup, 2015). Usually, there can be
512 threads per block.

3 THE TRAPEZE INTEGRATION
METHOD

The trapezoidal method (Nadir, 2008) consists of
cutting the total area to be computed into small
trapezoidal areas.
 Either f x the function to be integrated on [𝑎,b].
The integral I from f x written using the trapezium
method (Nadir, 2008):

I f x . dx
h
2

. f 2. f ⋯ 2. f ⋯

2. f 2. f E

h
2

. f x f x 2. f x E

Where: h , x a i 1 , f f x and

i 1,2,3 … . , n, n 1

The term representing the error is:

E
b a

12
. h . f

b a
12. n

. f

f is the average of f x on the interval [𝑎,𝑏]. The
error 𝐸 is inversely proportional to the value of n .
 If the 𝑓 given on regular intervals, x x
h the trapeze method can be written in the form:

I h ∗ sum f 0.5 ∗ f 1 f length f

With: sum f f ⋯ f ⋯ f f

You can also make a program to calculate the
integral I. This one called 'trapez_cu' for example, is
listed below:

function I trape_V f, h
I sum f f 1 f length f /2 ∗ h;

In our study, we consider a mass vehicle m
 2000 kg moves at the speed of V 30 m/s.
Suddenly, the engine is disengaged at 𝑡 =0. The
equation of motion after the instant 𝑡 =0 is given by:

 m. V. 8,1. V 1200 (1)

Where x represents the linear distance measured from
t 0.
 In this equation (1), the term on the left represents
the acceleration force, the 1𝑒𝑟 the proper time
describes the aerodynamic resistance exerted by the
wind on the vehicle, the second term is the coefficient
of friction. We want to calculate the distance beyond
which the speed of the car is reduced to 15 m/s.
Equation (1), can be written as:

dx
m. V. dV

8,1. V 1200

The integration of this equation gives:

x
m. V. dV

8,1. V 1200

The trapezoid can evaluate the integral, if we give
ourselves 𝑛 intervals (or n 1 dots), one can write:

V 15 i 1 ∆V

Where i 1,2,3, … , n 1 and ∆V cte

By defining:

x
m. V

8,1. V 1200

Moreover, applying the trapezoidal method for
integration, we obtain:

 x ∆V. ∑ f 0,5. f f (2)

The following program list (trapeze.cu) allows
calculating the value given by the formulation (2):

𝑎 15;
𝑏 30;
𝑛 1;
𝑓𝑜𝑟 𝑘 𝑓𝑟𝑜𝑚 1 𝑡𝑜 10
 𝑛 2 ∗ 𝑛;
 ℎ 𝑏 𝑎 /𝑛;
 𝑖 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑛 1 ;
 𝑉 𝑎 𝑖 1 ∗ ℎ;
 𝑓 2000 ∗ 𝑉./ 8.1 ∗ 𝑉. ^2 1200 ;
 𝑥 𝑡𝑟𝑎𝑝𝑒𝑧_𝑣 𝑓, ℎ
 𝐸𝑟𝑟𝑜𝑟 𝑎𝑏𝑠 𝑥𝑒𝑥𝑎𝑐𝑡 𝑥 / 𝑥𝑒𝑥𝑎𝑐𝑡;

Implementing the Trapeze Method on GPU and CPU to Solve a Physical Problem using CUDA

47

𝐸𝑛𝑑.

To write and run the trapezoid program in CUDA C,
follow these steps:
 Write the program in a standard C/C++.
 Modify the program written in CUDA C or

C++ parallel code using the SDK library.
 Allocate CPU memory space and the same

amount of GPU memory using the
"CudaMalloc" function.

 Enter data into the CPU memory and copy this
data to the GPU memory using the
"CudaMemCpy" function with the
"CudaMemcpyHostToDevice" parameter.

 Perform the processing in the GPU memory
using kernel calls. Kernel calls are a way to
transfer control from the CPU to the GPU.

 Copy the final data to the CPU memory using
the "CudaMemCpy" function with the
parameter as "CudaMemcpyDeviceToHost".

 Free up GPU memory using the Cudafree
function. (Yadav, Mittal, Ansari M,
Vishwarup, 2015)

4 EVALUATION OF THE
PERFORMANCE OF THE
IMPLEMENTATION

The results of “Table 1” show the evolution of the
execution time on CPU and GPU processors as a
function of the number of intervals n to calculate the
distance x beyond which the car’s speed is reduced
by 30m/s à 15𝑚/𝑠 by using the trapeze method. We
notice that when the number of intervals n doubles,
the solution x approaches its exact value and the
relative error decreases to almost zero, and the

execution time on the GPU and CPU increases. The
comparison of the execution time of the
implementation on the GPU and the CPU tells us that
the performance of the commission on the GPU is
superior to that of the CPU in terms of speed and
speed of execution. This implementation can be
explained by the fact that the CPU processes data
sequentially (task by task), while GPUs process data
in parallel (several charges simultaneously), which
implies the efficiency of using GPU processors for
parallel computing.

4.1 Measurement Methodologies

The measurements function on the execution time of
implementing the trapezoid method on both GPU and
CPU processors. The unit of measure of the execution
time is the millisecond. The platform used in this
study is a conventional computer dedicated to video
games and equipped with an Intel Core 2 Duo E6750
processor and an NVIDIA GeForce 8500 GT graphics
card. All specifications for both platforms are
available in (ark.intel.com; www.nvidia.com).
 The processor is a dual-core, clocked at 2.66 GHz
and considered entry-level in 2007. The graphics
card has 16 streaming processors running at 450 MHz
and was also considered entry-level in 2007. In terms
of memory, the host has 2 GB, while the device has
only 512 MB. .

4.2 Results and Discussions

The performance of the implementation of the trapeze
algorithm on GPUs and CPUs using CUDA C to
calculate the distance travelled x are grouped in Table
1.

Table 1: Results of the implementation of the trapeze method on CPU and GPU.

Number of
intervals n

The value x
of distance in (𝑚)

Percentage of
relative error

CPU Time
TS in (ms)

GPU Time
TP in (ms)

Speed up
(𝑇𝑆 /𝑇𝑃)

2
4
8
16
32
64

128
256
512
1024

127.58319
127.5258
127.51141
127.5078
127.5069
127.50662
127.50662
127.50661

127.506605
127.50660

0.019111429
0.00478998
0.00119825
0.00029965
0.0007496

0.00001878
0.00000474
0.00000123
0.00000035
0.000000013

0.99
1.59
2.45
4.01
5.87
8.36

34.05
141.47
614.36

2517.57

0.012
0.021
0.046
0.091
0.165
0.25
1.05
4.42
30.98

253.48

82.5
75.71
53.26
44.06
35.57
33.44
32.42

32
19.84
9.94

BML 2021 - INTERNATIONAL CONFERENCE ON BIG DATA, MODELLING AND MACHINE LEARNING (BML’21)

48

Figure 2: Evolution of Speed up as a function of the number
of intervals.

In parallel computing, Speed Up refers to how faster
a similar algorithm is compared to a corresponding
sequential algorithm. In our case, Speed up =
execution time on CPU / execution time on GPU. In
our implementation, the Speed Up goes from 82.5 to
9.94 when the number of intervals 𝑛 doubles and the
solution tends to its exact value; it means that the
performance of computing by GPU processors is
faster than CPUs. This optimality results from a good
choice of the size of the block used and according to
the number of the processor in the graphics card used.

5 CONCLUSION

More and more computers integrate into, their
configurations GPU graphics processors, which are
characterized by significant computing power. This
computing power is exclusively intended for
programs manipulating graphical and non-graphical
data, such as physical problems- solving. However,
we believe that we can use this GPU computing
power in other ways. In this paper, we have
successfully demonstrated the implementation of the
trapezoid method to calculate the execution time of
posed problem. This method can be helpful, to control
the speed of vehicles by precision, and we found that
GPUs outperform CPUs in terms of execution time,
which shows the efficiency of using GPUs in parallel
computing.

ACKNOWLEDGEMENT

The authors would like to thank the referee for his
valuable comments on the manuscript.

REFERENCES

Anthony, L., 2009. NVIDIA GPU Architecture for General
Purpose Computing.

Manish, A., 2012. The Architecture and Evolution of CPU-
GPU Systems for General Purpose-Computing.

Shuai, C., Michael, B., Jiayuan, M., David, T., Jeremy W,
S., Kevin, S., 2008. A Performance Study of General-
Purpose Applications on Graphics Processors Using-
CUDA.

Jayshree, G., Jitendra, P., Madhura, K., Amit, B., 2012.
GPGPU PROCESSING IN CUDA ARCHITECTURE.
Advanced 12 Computing, An International Journal
(ACIJ), Vol.3, No.1.

Nadir, M., 2008. Full Equations Course. University of
Milan, Algeria.

David, T., Sidd, P., Jose, O., 2006. Accelerator: Using Data
Parallelism to Program GPUs for General-purpose
Uses.

Yadav, K., Mittal, A., Ansari M, A., Vishwarup, V., 2015.
Parallel Implementation of Similarity Measures on
GPU Architecture using CUDA.

NVIDIA CUDA Compute Unified Device Architecture-
Programming Guide, Version 2.0, June 2008.

CalleLedjfors, 2008. High-Level GPU Programming.
Department of Computer Science Lund University.

NVIDIA Corporation, 2014. CUDA C programming guide
version 4.2.

Wikipedia- http://en.wikipedia.org/wiki/CUDA.
http://ark.intel.com/Product.aspx?id=30784.
http://www.nvidia.com/object/geforce_8500.html.

Implementing the Trapeze Method on GPU and CPU to Solve a Physical Problem using CUDA

49

