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Abstract: AutoGE (Automatic Grammatical Evolution) is a tool designed to aid users of GE for the automatic estimation
of Grammatical Evolution (GE) parameters, a key one being the grammar. The tool comprises of a rich
suite of algorithms to assist in fine tuning a BNF (Backus-Naur Form) grammar to make it adaptable across
a wide range of problems. It primarily facilitates the identification of better grammar structures and the
choice of function sets to enhance existing fitness scores at a lower computational overhead. This research
work discusses and reports experimental results for our Production Rule Pruning algorithm from AutoGE
which employs a simple frequency-based approach for eliminating less useful productions. It captures the
relationship between production rules and function sets involved in the problem domain to identify better
grammar. The experimental study incorporates an extended function set and common grammar structures
for grammar definition. Preliminary results based on ten popular real-world regression datasets demonstrate
that the proposed algorithm not only identifies suitable grammar structures, but also prunes the grammar which
results in shorter genome length for every problem, thus optimizing memory usage. Despite utilizing a fraction
of budget in pruning, AutoGE was able to significantly enhance test scores for 3 problems.

1 INTRODUCTION

Grammatical Evolution (GE), since its inception
twenty years ago, has found wide acceptance in the
research communities (Ryan et al., 2018). It is a bio-
inspired population-based methodology from the do-
main of evolutionary computation which heavily re-
lies on the core aspect for its implementation: the def-
inition of context-free grammar (CFG). By defining
grammars in any language of choice, GE can evolve
valid program of arbitrary length. This flexibility
makes GE a powerful tool in genetic programming
(GP) and it has gained a wide-scale appeal.

Grammar is a key input to grammatical evolution
and it has been known that the performance of GE
is significantly influenced by the design and structure
of the grammar (Nicolau and Agapitos, 2018). How-
ever, when it comes to defining grammar, there is lit-
tle guidance in the literature. This task is generally
performed by the users of GE, solutions developers,
or domain experts and the grammar is hand-crafted.
Choice of terminals and non-terminals, and their com-
position to form production rules is largely based on
expertise. For a novice user, there is no tool or frame-
work which can assist them in defining the grammar.

A related problem, faced even by the experienced
users, is that of the choice of function set. Func-
tions or operators are represented as productions in
the grammar. Choosing an appropriate function set is
a key decision in applying GP as it can have a vital
impact on the performance of GP (Gang and Soule,
2004; Uy et al., 2013). However, there is not enough
guidance in selecting a function set and no system-
atic approach exists (Nicolau and Agapitos, 2021). To
date, it is also largely considered a decision made by
domain experts.

Automatic Grammatical Evolution (AutoGE) (Ali
et al., 2021) is a system that can aid users of GE to
explore and identify grammar structures to smoothly
adapt according to the underlying problem domain. It
can aid users in identifying appropriate terminals in-
volved in forming production rules. It is being de-
veloped with a rich suite of algorithms which can
adapt (prune or extend) user provided grammar, or
even generate an appropriate grammar from scratch if
certain pieces of information about problem at hand
are known. Besides definition and/or fine-tuning of
the grammar, AutoGE will facilitate in adapting other
evolutionary parameters such as mutation/crossover
probabilities and tree depths. Depending upon the
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nature of the problem and its complexity, it can as-
sist in the selection and definition of correct fitness
function, which can be composed of single, multiple
or many objectives, and can be hierarchical in nature
(Ryan et al., 2020).

This work reports preliminary results with our
Production Rule Pruning approach applied to real-
world symbolic regression problems. For a given
grammar structure and a generic larger function set, it
reduces the grammar by pruning useless productions.
It helps in evolving individuals of shorter lengths
thereby optimizing memory usage (Kshirsagar et al.,
2020). The algorithm and related production rank-
ing scheme is discussed in section 4. Section 5 shows
our experimental setup and section 6 presents and dis-
cusses the results. In the coming section 2 and 3, we
briefly outline theoretical background and the related
work.

2 BACKGROUND

2.1 Grammatical Evolution

Grammatical Evolution is a variant of Genetic Pro-
gramming (GP) in which the space of possible solu-
tions is specified through a grammar. Although differ-
ent types of grammars have been used (Ortega et al.,
2007; Patten and Ryan, 2015), the most commonly
used is Context Free Grammar (CFG), generally writ-
ten in Backus-Naur Form (BNF). GE facilitates a
modular design, which means that any search engine
can be used, although typically a variable-length Ge-
netic Algorithm (GA) is employed to evolve a popu-
lation of binary strings.

In GE, each population individual has a dual rep-
resentation, a genotype and a phenotype. When the
underlying search engine is a genetic algorithm, the
genotype is a sequence of codons (usually a group
of 8-bit substrings), while the phenotype expresses
an individual’s representation in the solution space.
Mapping, a key process in GE, maps a given genotype
to the phenotype. While subsequently consuming
each codon, it selects a production from the available
set of alternative productions in a rule through mod
operations and builds the derivation tree (Ryan et al.,
1998). Although there are other mapping schemes
(Fagan and Murphy, 2018), the conventional scheme
follows left-most derivation. An important measure
in the mapping process is the effective genome length,
which is equal to the number of codons consumed
to generate a fully mapped individual (the one which
does not contain any non-terminals in its phenotype).
The actual genome length is the total number of

Figure 1: Schematic of Evolutionary Process in GE.

codons in the genome, some of which may remain
unused.

2.2 Grammar Design

Since GE exploits the expressive power of grammars,
it can be applied to a multitude of problem domains,
for instance in Symbolic Regression (SR) where the
purpose is to search the space of mathematical ex-
pressions to find a model that best fits a given dataset
(Koza, 1993). To construct valid and useful mathe-
matical expressions in GE, the grammar needs to be
well designed.

A grammar is formally defined as the tuple (T, N,
P, S) where T is a set of terminal symbols, N is a set of
non-terminal symbols, P is a set of production rules,
and S is the start symbol . While the set of terminals
outline the building blocks of a solution, the choice of
non-terminals and deciding how exactly to organize
those into a set of rules and productions is a design
task. By designing an ’appropriate’ grammar, one
specifies the syntactic space of possible solutions (it
is worth noting that there are an infinite number of
possible grammars which specify the same syntax).
Although grammar design is an important consider-
ation, yet majority of the research works provide lit-
tle to no justification for the design decisions related
to the choice of (non)terminals and the formation of
production rules.

2.3 Grammar Structures

Instead of designing grammar from scratch, a com-
mon approach is to utilize and adapt existing gram-
mar designs for that domain. For example, in gram-
matical evolution based symbolic regression (GESR),
typical grammar structures are shown in Table 1. The
most widely used structure, which we call mixed-arity
grammar, combines operations of multiple arities in a
single rule. A contrasting structure is that of arity-
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Table 1: Grammar Structures.

based grammars where productions relevant to arity-
1 and arity-2 operations are grouped in separate rules.
A balanced grammar version balances the proba-
bilities of selecting recursive (non-terminating) pro-
ductions and terminating productions (Nicolau and
Agapitos, 2018).

It is important to note how operators and functions
are represented as productions in the grammar. Be-
sides embodying arithmetic operators, a number of
common mathematical functions are represented as
alternative recursive productions.

3 RELATED WORK

In this work, we exercised our approach on problems
in symbolic regression which is the most common ap-
plication domain for GP-like systems. Since there is
a large amount of work in relation to symbolic regres-
sion, we skip that discussion due to space limitation
and rather focus on the following relevant research di-
rections:

3.1 Function Set Selection

It is important to select appropriate function set in
order to achieve good performance in GE/GP. Not
many works appeared which specifically address the
problem of function set selection. (Gang and Soule,
2004) experimented with various function sets and
highlighted that function groups exist and functions
in the same group have same effect on performance.
(Uy et al., 2013) examined characteristics of the fit-
ness landscapes generated by various function sets
and the performance of GP. They concluded that the
autocorrelation function can be used as an indicator to

select a function set. Recently, (Nicolau and Agapi-
tos, 2021) also studied the effect of various groups
of function sets on generalisation performance of GP
and GE. With a detailed review and experimentation
over a large set of symbolic regression problems, they
concluded that protected functions should be avoided.
They also indicate that full set (comprising of all con-
sidered function primitives) performed consistently
well in training across all problems. Our earlier study
(Ali et al., 2021) support their finding, while we use a
larger generic function set at the start of evolutionary
process.

3.2 Encapsulation

In a normal setup of canonical GE, grammar is a static
artefact which never changes during the execution.
However, in this work, we modify the grammar by re-
moving productions from the grammar which we term
as pruning. Several strands of research modify the
grammar dynamically during the evolutionary pro-
cess. The idea of automatically defined functions, in-
stead of striving to choose an optimal set in advance,
is about identifying, encapsulating, and reusing useful
functionality discovered during the evolution (Koza,
1994). (O’Neill and Ryan, 2000) used grammar-
based approach to automatically define new function
for the Santa Fe trail problem. (Harper and Blair,
2006) introduced a meta-grammar into grammatical
evolution allowing the grammar to dynamically de-
fine functions without the need for special purpose
operators or constraints. More recently, (Murphy
and Ryan, 2020) utilized covariance between traits to
identify useful modules which are added to the gram-
mar.

3.3 Probabilistic GE

In our work, we assign weight called rank to a pro-
duction, which at a stage is used to decide upon its
fate: whether or not to stay in the grammar. Although
our ranks do not bias the selection of a production dur-
ing the mapping process, the probabilistic approach to
GE does . It uses probabilistic grammar, also known
as stochastic context-free grammar (SCFG) to assign
selection probabilities to each production. Although
a huge set of research explores probabilistic gram-
mars in connection to GP and Estimation of Distribu-
tion Algorithms (EDA), there aren’t attempts to uti-
lize SCFG in GE with genetic operations, except the
recent work from (Megane et al., 2021). This paper
does not compare our ranking approach with SCFG,
which is a definite future work.

ECTA 2021 - 13th International Conference on Evolutionary Computation Theory and Applications

70



4 METHODOLOGY

We discuss our approach to rank grammar produc-
tions and subsequent pruning of unworthy produc-
tions in this section. Prior to that, we present our hy-
pothesis underlying this approach.

4.1 Hypothesis

It is well known that with the correct configuration
and fitness criteria, an evolutionary process is geared
towards convergence. Increasingly, the evolved solu-
tions contain more and more of the right ingredients
or building blocks (in our case, grammar productions)
(Koza, 1993). We hypothesize that the structural com-
position of evolved solutions carries information that
can be useful in identifying the right ingredients.

In GE, each individual in the population is com-
posed of terminals, which appear in an order defined
by the derivation tree constructed during genotype to
phenotype mapping. By traversing the derivation tree,
it is possible to obtain a list of grammar productions
used in the mapping process to generate an individ-
ual. Such a list is termed as the production-list. Once
identified, the frequency of usage of each production
in the production-list can be easily determined.

Productions can be weighed or ranked based on
how frequently they are used in the construction of
individuals in the population. As evolution proceeds,
fitter individuals survive, and the productions which
more frequently shape the structures are the ones that
are considered to be worthy being part of the gram-
mar. Such productions should be assigned a high
rank. Conversely, productions which harm individ-
ual’s fitness to an extent they become extinct, gen-
erally do not enjoy high usage frequency (although
rarely zero, due to hitch-hiking effects) in the popula-
tion.

To test our hypothesis, we devised a simple
frequency-based approach to rank productions, which
we present next.

4.2 Production Ranking

Figure 2 describes the overall process of production
ranking. At the end of a generation, individuals in
the population are structurally analyzed and assigned
ranking scores based on the frequency count of pro-
ductions in the production-list. requency ofjth pro-
duction

Let P be the set of productions in the grammar G.
Pi ⊂ P is the set of productions in the production-list
of the ith individual. If n = |P|, number of produc-
tions in the P, and k = |Pi|, then k < n for practically

Figure 2: Schematic of production ranking at each Stage.

all individuals. The ranking score assigned to the jth
production in the production-list is given by:

(nfr) j
i =

(
φ

j
i

li

)
(1)

( fpr) j
i = (nfr) j

i ×ρi (2)
where φ

j
i is the frequency of jth production, li is the

effective codon length, and ρi is the fitness of ith indi-
vidual. Equation 1 defines the normalized frequency
rank (nfr) of a production, while Equation 2 com-
putes the fitness-proportionate rank (fpr). As a con-
sequence of the above two definitions, the following
two properties hold for an ith individual:

k

∑
j=1

(nfr) j
i = 1 , and

k

∑
j=1

( fpr) j
i = ρi

Once individual ranking scores have been com-
puted, we accumulate the scores of all u individuals
in the population to compute generation worth (gw)
of jth production in the production-list for mth gen-
eration, and then across all g generations to compute
the overall run worth (rw).

(gw) j
m =

u

∑
i=1

( fpr) j
i (3)

(rw) j =
g

∑
m=1

(gw) j
m (4)

To minimize the computational cost of production
ranking, we track the production-list during the map-
ping process, so it does incur a small memory over-
head. However, since the ranking scores are com-
puted at the end of a small number of evolutionary
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Figure 3: Fitness-proportionate production ranks across
runs for redwine dataset (runs: 30, ngen: 5, popsize 250).

runs (called a stage), and the operations defined by
the above equations are trivial, those can be efficiently
performed with minimal overhead.

An important consideration is to decide how much
of the population to select for ranking. We experi-
mented with three possible choices: 1) the whole pop-
ulation, 2) only unique individuals, 3) top X% of the
population (we use X=20). The second option turned
out to be the best choice based on our empirical eval-
uations. Potential issue with the first option is that the
rankings can be biased due to redundancy, and with
the third option there is a chance of pruning impor-
tant production which is not yet picked because of the
small number of evolutionary iterations.

Figure 3 shows a sample box and whisker plot of
fpr ranking for the redwine dataset. It gives a nice
picture of the utility of each production in the evolu-
tionary cycle.

4.3 Grammar Pruning

According to Occam’s razor, “no more things should
be presumed to exist than are absolutely necessary.”
Following this principle, we try limiting the complex-
ity of the models and favour simpler ones to take part
in the evolution. Grammar is a key model of the so-
lution space, so the idea is to remove unnecessary or
less worthy productions (or functions) from the gram-
mar to tune the grammar design.

One of the key driver in grammar tuning1 is the

1It is worth mentioning that in AutoGE, tuning may in-
volve pruning as well as extension of the grammar, although
this work only reports on pruning approach.

Algorithm 1: Production Rule Pruning (PRP).
input : grammar G, number of trials/runs T,

available budget Bgt , number of
generations for pruning runs genp

output: pruned grammar Gp

initialize MBprev to a high value;
Gp ← G;

while Bgt > genp do
do T runs for genp with grammar Gp;
MBcurr ← get current mean-best;
Sprune ← PRUNABLES();
decrement Bgt ;

if MBcurr < MBprev then
Gp ← PRUNE();
MBprev ←MBcurr;

else
REVERT();
increment genp;

end
end

pruning strategy and algorithm. There can be a num-
ber of strategies for pruning and we look at two here.
The core idea they have in common is a staged ap-
proach; that is, at each stage solutions are evolved
over a small number of generations, then one or more
productions are pruned, and then subsequent stages
(if any) are conducted. Every next stage is a com-
plete restart with the newly modified grammar (more
on this in section 6.3). The number of stages may vary
depending upon the strategy being employed. We ex-
perimented with the following two strategies:

• Strategy 1: Prune for the maximum pruning bud-
get (20%). The remaining runs will verify if it was
fruitful.

• Strategy 2: Only proceed with pruning if it results
in improving mean training score at each stage. If
it degrades performance, stop.

Strategy 1 has slightly less overhead as it is com-
posed of only one stage, but suffers from blind prun-
ing which in many cases fails to reap any benefits.
Strategy 2 incorporates a feedback loop which in-
forms on its usefulness. In our preliminary experi-
ments, we have observed it to be yielding a much bet-
ter overall outcome. Coupled with the pruning poli-
cies defined in section 5.4, our Production Rule Prun-
ing algorithm achieved good results.

The pseudocode listed in Algorithm 1 outlines
Production Rule Pruning (PRP) algorithm. Choice
of pruning budget Bgt and number of generations for
pruning runs genp determine the maximum possible
stages. In our experimentation, We set Bgt to 20 and
genp as 5. PRUNE is the key procedure in the algo-
rithm. It performs two important functions:
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1. It analyses production ranking scores and identi-
fies the least worthy productions. Based on the
pruning policy, it identifies how many productions
to prune at a given stage and returns that many
productions as candidates to be pruned.

2. It removes productions from the grammar and
adds them to Sprune which is implemented as a
stack. At each stage, pruned productions are
pushed to the stack.

The REVERT function undoes the last pruning ac-
tion by popping the last productions from Sprune and
adding them back to the grammar. When a pruning
stage reverts and the budget is still remaining, genp is
incremented, in our case from 5 to 10.

The output of the PRUNABLE function are pruning
suggestions. In our earlier work (Ali et al., 2021),
we empirically evaluated the consistency of first and
second pruning suggestions (we only prune 2 produc-
tions at max in a stage) and found those to be 99%
and 95% consistent respectively over 100 experimen-
tal runs for certain randomly chosen problems.

5 EXPERIMENTAL SETUP

5.1 Dataset

Table 2 lists the problems considered in this work.
All the datasets correspond to the real-world sym-
bolic regression benchmark problems which have
been widely studied in several esteemed publication
venues, as also noticed by (Oliveira et al., 2018; Ray-
mond et al., 2020). Except for Dow Chemical dataset,
which was sourced from gpbenchmarks.org web-
site2, all other datasets were obtained from the UCI
Machine Learning Repository3 and CMU StatLib
Archive4.

The collection of datasets is diverse including
problems having 5 to 57 input features, with sample
size varying from 60 to nearly 4900. There are no
missing values in the dataset, and we utilize the raw
values without any normalization. Each dataset is re-
ferred to with a short name (in distinct font), which
will be used in the rest of the paper.

5.2 Parameters

Table 3 presents the evolutionary parameters used in
all experimental runs. Note that we utilized repeated

2http://gpbenchmarks.org/?page id=30
3https://archive.ics.uci.edu/ml/datasets.php
4http://lib.stat.cmu.edu/datasets/

Table 2: List of Datasets.

Dataset Short name Features Instances
Airfoil Self-Noise airfoil 5 1503
Energy Efficiency - Heating heating 8 768
Energy Efficiency - Cooling cooling 8 768
Concrete Strength concrete 8 1030
Diabetes diabetes 10 442
Wine Quality - Red Wine redwine 11 1599
Wine Quality - White Wine whitewine 11 4898
Boston Housing housing 13 506
Air Pollution pollution 15 60
Dow Chemical dowchem 57 1066

Table 3: Parameter Settings.

Parameter Value
Number of Runs 30
Population Size 250
Number of Generations 100
Search Engine Steady-State GA
Cross Validation 10-fold (r=3)
Crossover Type Effective Crossover
Crossover Probability 0.9
Mutation Probability 0.01
Selection Type Tournament
Initialization Method Sensible Initialization
Max Pruning Budget 20% (4 stages at max)
Extended function set + − × / − x x2 x3

sin cos tan sinh cosh
tanh ex e−x ln|x|

√
|x|

k-fold cross validation, with k = 10 and repeat factor r
= 3. For repetition we used a different seed to prepare
a different training-test data split each time. The rep-
etition ensure that we further minimize the chances of
overfitting (Wong and Yeh, 2020).

We ran all experiments on the libGE system5,
which is an efficient C/C++ implementation of canon-
ical GE and provides capabilities to effectively exam-
ine grammar productions.

The purpose of the fitness function is to measure
the performance of the algorithm against a predefined
objective. A common fitness function in symbolic re-
gression is Root Mean Squared Error (RMSE), which
is defined as:

RMSE =

√
1
n

n

∑
i=1

(ŷi− yi)2

where n is the number of data points, yi is the target
value, and ŷi is the predicted value. RMSE assesses
the mean extent of deviation from the desired value,
so the goal of evolution is to minimize this error met-
ric across generations.

5http://bds.ul.ie/grammatical-evolution/
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5.3 Grammars and Function Set

We defined an extended function set (see Table 3),
which is the superset of all mathematical functions
commonly used in symbolic regression. It includes
arithmetic operators, trigonometric functions, expo-
nential and power functions. We do not use protected
division. However we did include functions such as
ex, e−x, tan, sinh, and cosh. These functions grow
exponentially and are usually avoided (Nicolau and
Agapitos, 2021). However, we kept those in our func-
tion set in order to validate if our approach of produc-
tion ranking and grammar pruning was able to remove
such functions from the grammar.

The grammar which contains productions em-
bodying whole extended function set is called Ex-
tended Grammar in this work (referenced with the
letter ’E’ in the results). The three grammar struc-
tures considered are shown in Table 1. The <var> rule
includes as many alternative terminal productions as
there are number of input variables in the dataset.

5.4 Pruning Policies

For the problems we examined, the usage frequency
of arithmetic operators, input features, and constant
terminals was low, irrespective of the grammar struc-
ture. We therefore do not consider their correspond-
ing productions, and the productions where the right
hand side is only composed of non-terminals (for
example productions in the start rule of arity-based
grammar in Table 1). This resulted in 14 prunable
productions (excluding productions embodying arith-
metic operators).

It is important to highlight a few other policies
adopted while pruning which server as parameters to
the PRP algorithm:

• We do not consume more than 20% of the compu-
tational budget on pruning. In our case, it meant
consuming at most 20 generations;

• Pruning takes place in stages. At a stage, prune
only 10% of the productions;

• In pruning runs, we evolve for 5 generations to
maximize pruning. If 5 generation runs terminate
with a positive REVERT decision and part of the
pruning budget is remaining, we proceed with 10
generations.

Note that the grammar which results after pruning
is termed Pruned Grammar in this work and is refer-
enced with the letter ‘P’ in Table 4.

Figure 4: Productions pruned in first two stages of pruning
across all datasets.

6 RESULTS

We conducted an extensive set of experiments over
the 10 datasets. A single experiment comprised of 30
runs for each given problem and grammar structure.
Table 4 presents a summarized view of the results. It
shows the impact of using various grammar structures
alongside extended function set and pruning approach
on training performance, test performance, and mean
effective genome length for the best-of-run solution.
The letter on the right of each cell indicates which
grammar (‘E’ for the grammar with extended function
set, ‘P’ for pruned) achieved better results. Results
in italics indicate which grammar structure scored the
highest. When the numbers are in boldface, the differ-
ences are statistically significant. The cells in yellow
indicate that pruning results in better scores, regard-
less of significance.

6.1 Statistical Comparisons

Since the assumption of normality and dependence, as
required by parametric tests, does not hold in general
in experimental results of evolutionary computing ap-
proaches, we decided to use non-parametric tests, for
which we followed the guidelines presented by (Der-
rac et al., 2011). In our work, we do pairwise as well
as multiple comparisons. All results were compared
at the 0.05 statistical significance level.

For each problem, and each grammar structure,
we compared the best training, test, and effective
genome length scores (in 30 runs) among extended
and pruned grammars using a non-parametric Mann-
Whitney U-test (2-tailed version). Scores in boldface
indicate that the p-value, while comparing outcomes
resulting from extended vs. pruned grammar for a
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Table 4: Effective genome length, test, and training performance comparisons. ‘E’ stands for extended, ‘P’ for pruned;
numbers in italics indicate which grammar structure scored best; bold indicates statistical significance; yellow highlights
indicate improvement due to pruning.

fixed grammar structure, was less than 0.05 and the
null hypothesis was therefore rejected.

To compare among three grammar structures
(mixed, arity-based, balanced), we utilized Friedman
test, where the null hypothesis assumes no effect or
difference for adopting any of the grammar struc-
tures with respect to training performance, test perfor-
mance or genome length. Where the null hypothesis
was rejected, the post-hoc analysis was carried out us-
ing Shaffer’s static procedure (Derrac et al., 2011) to
signify which pair of grammars yielded statistically
different results. The outcome is discussed in next
section.

6.2 Effect of Grammar Structures

It is evident that some grammar structures are more
appropriate for certain types of improvement or for
certain problems. When comparing raw numbers
from Table 4:

• Mixed-arity grammar results in lower genome
length for all problems except whitewine, for
which arity-based structure was the best choice
achieving significantly better training as well as
test performance;

• Balanced arity-based grammar achieve better re-
sults in 7 problems (in training) and 5 problems
(in test) out of 10 problems;

• An interesting set of results appear for pollution
and airfoil datasets where mixed-arity grammar
achieved much better results as compared to other
two structures. This trend was observable from
very early on in the evolution.

For both extended and pruned grammars, we com-
pared among three groups (named as, M for Mixed-
arity, A for Arity-based, and B for Balanced arity-
based) of results for each type of the three outcomes
(training, test, and effective size) using Friedman test.

For instance, considering extended grammar, we ran
a test which compared mean training scores for all
10 problems in case of mixed-arity, arity-based, and
balanced-arity grammar structures. In this way, we
ran 6 Friedman tests, comparing among results of
3 grammar structures in each. In case of training
and test groups, no significant difference was found.
However, for the effective size group, the null hypoth-
esis was rejected (p <0.05) which indicates there are
significant differences among the outcomes of three
grammar structures.

For post-hoc analysis, we utilized Shaffer’s static
procedure, as recommended in (Derrac et al., 2011).
With the pair-wise multiple comparisons among
grammar structures, following two pairs were iden-
tified as producing significant difference:
• Mixed-arity vs. Arity-based for extended gram-

mar with adjusted p-value (APV) of 0.02534;
• Mixed-arity vs. Balanced for pruned grammar

with APV of 0.00346.
Since in both pair mixed-arity achieved better re-

sults, it was concluded that the mixed-arity structure
significantly improves effective genome length with
or without pruning. Many symbolic regression stud-
ies using GE or Grammar Guided Genetic Program-
ming (GGGP) use mixed-arity grammar structure, for
instance (Nicolau et al., 2015). Based on our findings,
we state that the choice is fruitful in exploring small-
sized less bloated solutions, but it does not warrant
gains in generalization or approximation.

6.3 Effect of Grammar Pruning

Pruning was applied in all experiments. The number
of productions pruned varied from 2 to 6, out of 14
prunable productions. Figure 4 shows for how many
different problems a production was pruned in first
two stages of pruning with different grammar struc-
tures. sinh, cosh, and x3 were actively recognized
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Figure 5: Impact of grammar pruning on test performance
of airfoil.

as unuseful productions even in the initial genera-
tions. It would be interesting to explore why Mixed-
arity grammars rank log and −x so low. It is evident
from the highlighted cells in Table 4 that pruning fur-
ther improves/reduces genome length, especially with
mixed-arity or balanced arity-based structures. Figure
6 shows the same effect in box plot for some of the
problems.

Table 5 shows the percentage improvement with
grammar pruning approach comparing extended
grammar and pruned grammar results. Again, these
differences are mostly significant in case of effective
size evaluations. Besides, following inferences can be
drawn from these results:

• Genome length improvements due to pruning are
more prominent with mixed-arity grammar.

• Pruning resulted in improved test performance
in housing, diabetes, redwine, and airfoil
datasets, though gains are non-significant.

• For three datasets (cooling, heating, and
whitewine), pruning, with the currently exper-
imented strategy, could not improve test perfor-
mance. Also, for the rest of the problems, the drop
in test performance was not significant.

However, it is worth noting that since we keep
the same computational budget, trials with the pruned
grammar lasted for 80 (in some cases 85) generations.
Had the pruned grammar also exercised for 100 gen-
erations, it is likely that it would have achieved better
performance. Figure 5 shows a sample convergence
plots (for airfoil problems) where grammar prun-
ing enhanced generalization performance when com-
pared with extended grammar. The three spikes in the
plot in case of pruned grammar depict that pruning
runs were carried out in three stages in the first 15
generations.

Table 5: Percentage Improvement with Pruning.

Mixed-arity Balanced
Dataset Test Eff. Size Test Eff. Size
housing 4.32% 39.73% -5.28% 2.09%
diabetes 1.09% 37.04% 0.94% 22.05%
redwine 0.08% 29.33% 0.20% 18.62%
airfoil -0.53% 39.42% 3.13% 25.44%
dowchem -1.56% 30.90% -0.15% -4.06%
concrete -3.96% 31.01% -0.45% 5.26%
cooling -4.53% 39.37% -4.69% -3.88%
heating -8.29% 39.77% -2.16% 18.50%
pollution -12.59% 19.74% -6.81% 28.43%
whitewine -1.99% -7.25% 1.68% 47.20%

7 CONCLUSION

We propose a new algorithm as part of the AutoGE
tool suite being developed. The proposed Produc-
tion Rule Pruning algorithm is an approach that com-
bines an extended function set and a frequency count-
ing mechanism for ranking production rules. AutoGE
achieved significantly better genome length in 7 out
of 10 problems (with improvements the other three
also), without significantly compromising on test per-
formance of any, while in three of the problems, Au-
toGE shows a significant improvement on test per-
formance. Our results highlighted that mixed-arity
grammar structure or balanced arity-based structure
can be a better choice for real-world symbolic regres-
sion problems.

7.1 Future Directions

An immediate extension to the current work is to
improve and trial grammar pruning approach for
feature selection and how it impacts test perfor-
mance. Besides, dynamic approach to pruning and
improved ranking schemes and pruning strategies are
also planned. We also intend to explore other problem
domains for instance program synthesis, and Boolean
logic. The PRP algorithm performance can be fur-
ther enhanced by investigating other search mecha-
nisms, for example particle swarm optimization or
ant colony optimization. We aim to extend AutoGE’s
suite of algorithms and to make it more robust by ex-
ploring approaches like grammar-based EDAs.
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