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A major cognitive function is often overlooked in artificimtelligence research: episodic memory. In this

paper, we relate episodic memory to the more general neexkfdicit memory in intelligent processing. We
describe its main mechanisms and its involvement in a wadéfunctions, ranging from concept learning
to planning. We set the basis for a computational cognitimerascience approach that could result in im-
proved machine learning models. More precisely, we argaeegpisodic memory mechanisms are crucial for
contextual decision making, generalization through clidation and prospective memory.

1 INTRODUCTION

Despite recent progress in machine learning, the field
of artificial intelligence has not yet given rise to gen-
erally intelligent and autonomous agents endowed
with autobiographical memory and capable of defin-
ing their own goals and planning their way to reach
them. As a result, machine learning models are
mainly confined to domain-specific processing. Com-
plementary and interacting memories have been ar-
gued to be a key component of autonomous learn-
ing (Alexandre, 2016). We claim that current tech-
nigues in artificial intelligence mirror implicit mem-
ory, while topics related to building explicit memory

systems remain largely unaddressed. The view we de-

pict here is mostly consistent with the one proposed
in (Botvinick et al., 2019) in that they both propose to

draw inspiration on both the prefrontal cortex and the
hippocampus to develop more powerful algorithms.
Our work further expands this proposal by consider-
ing additional mechanisms inspired from anatomical
and electrophysiological studies.

We first argue that models need complementary
memories, then set the focus on the organization of
episodic memory in biological organisms. Finally, we
propose aroadmap to implement these mechanismsi
artificial agents.
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2 THE NEED FOR
COMPLEMENTARY
MEMORIES

Consider a task where you have different colored
shapes displayed on a table and you can press one
among a set of buttons to get rewards. There are hid-
den rules controlling reward delivery that you can dis-
cover by trial and error. An example rule would be
that if a red square is on the left, pressing the left but-
ton is rewarded. This kind of task can be learned very
easily and efficiently with classical machine learn-
ing techniques like reinforcementlearning (RL). Sim-
ilarly, the subtask of object identification is prototyp-
ical of gradient-based forward layered architectures.
Through learning, these models build what is called
in cognitive science an implicit memory. This corre-
sponds to a slow and procedural learning of the un-
derlying regularities. If information (like position or
color of the shapes) is encoded in a topographical
way, the model builds an overlapping representation,
which enables it to generalize. In RL, this learning
can be done with a model-free (MF) approach, mean-
ing that the values of configurations are learned with-
out explicit knowledge of the task structure (hence the
term implicit memory).

These computational approaches have been par-
alleled with known principles in neuroscience. For
instance, layered architectures of deep networks have
been compared to the hierarchical structure of the sen-
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sory posterior cortex. RL models have been very ben- tivation and perform functions like associative mem-
eficial to better understand learning principles of the ory and recall. Thanks to its very sparse coding and
most ancient regions of the frontal cortex (i.e. the an advanced function of pattern separation (Kassab
part of the cortex that is anterior to the central sulcus) and Alexandre, 2018), the HPC is able to learn very
that are also called agranular cortex, corresponding toquickly, possibly in one shot, an arbitrary binding
the motor, premotor and lateral orbitofrontal cortices of any distributed cortical representation with a min-
(Domenech and Koechlin, 2015). In association with imized risk of interference. Consequently, it can-
the sensory cortex, these regions are involved in deci-not generalize well. However, it also performs pat-
sion making via action selection from perceptual cues tern completion, namely the ability to rebuild a com-
(associated to actions in motor and premotor cortex) plete pattern from partial cues, and replay it in (i.e.
and reward values (learnt in the orbitofrontal cortex). send it back to) the cortex. Implemented in attractor
Loops associating these cortical regions with the basal networks, this function is useful for doing reinforce-
ganglia and modulated by dopaminergic projections mentlearning in the real world with high-dimensional
carrying reward prediction errors have been carefully states and noisy observations (Hamid and Braun,
studied, and corresponding models have been com-2017). It can consequently complement the cortex by
pared to MF-RL (Joel et al., 2002). It is also reported learning rare patterns very quickly and binding a dis-
in cognitive neuroscience that, after a long period of tributed cortical representation that would be hard to
repetition, this reward-based behavior is transformed associate with a motor response at the cortical level.
into a purely sensorimotor behavior (also called ha- At each moment, when the HPC receives a cortical
bitual) simply associating the sensory and motor cor- pattern, it has to decide whether it is novel and must
tices, with no sensitivity to reward change (Boraud be learned, orif itis reminiscent of a previously stored
et al., 2018): after a long practice, you automatically activation and must be completed (recalled) and sent
press the left button when you see a red square on theback to the cortex. This is done by a clever mech-
left without even thinking of an anticipated reward.  anism described in the next section. It must also be
stressed that what is manipulated by the HPC (origi-
2.1 The Need for Episodic Memory nating from current cortical activation) does not repre-
sent a single event but rather, thanks to several mecha-
The functions of these cortical regions are conse- nisms of temporal coding of the cortex evoked below,
quently tightly associated with implicit learning, as a full behavioral episode that can last several seconds.
performed by the most famous and efficient models This faculty of storing and recalling specific episodes
in artificial intelligence today, like deep networks and is termed episodic memory. It is a kind of explicit
MF-RL agents. Nevertheless, these models suffer memory because information can here be explicitly
from a series of well-identified weaknesses. Layered questioned. In humans, this is often associated with a
architectures with overlapping representations are notconscious declarative process.
good for learning data without structure or regulari- ~ We have now discussed principles of these com-
ties. They learn very slowly, from global aspects to plementary learning systems, with the cortex per-
details and are sensitive to what is called catastrophicforming a slow statistical learning using distributed
forgetting: if you first learn a relation (e.g. pressing overlapping representations, and the HPC perform-
the left button when seeing the red square on the left), ing rapid arbitrary binding of cortical activation to
then, when learning another one (e.g. pressing thestore new episodes in a sparse associative memory
left button when seeing the blue circle on the left), the and recall them later on. Interestingly, the capacity
previous association will be forgotten in the absence of the HPC to send back previously stored episodes
of regular recall. to the cortex Qlafsdéttir et al., 2018) is very use-
This problem has been clearly identified and ad- ful because it can solve the problem of catastrophic
dressed in the framework of the complementary learn- forgetting. Thanks to the replay of virtual (i.e. not
ing systems (CLS) (McClelland et al., 1995), intro- actually experienced) episodes, the HPC indeed has
ducing the role of the hippocampus (HPC). This neu- the capacity of gradually inserting examples of a new
ronal structure has been originally studied in navi- rule and interleaving them with examples of the previ-
gation tasks, demonstrating major learning capabil- ously stored rules not to forget them. This process of
ities and exhibiting place cells that respond to spe- replay is also very useful for another learning mecha-
cific places in the environment (Stachenfeld et al., nism called consolidation. We have explained above
2017). Later on, the HPC has been associated withthat it is difficult for the cortex to manipulate and for
more complex and general functions. It is thought to example associate by learning a concept which is dis-
receive a summary sketch of the current cortical ac- tributed in distant regions of its surface. Conversely,
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it is not possible for combinatorial reasons, to repre- not sufficient and should be completed by the possi-
sent locally in associative regions of the cortex, any bility to decide from internal cues corresponding here
combination of elementary patterns that might con- to the memory of recently observed cues. Other inter-
stitute the premises of a behavioral rule. By this re- nal cues to consider for biasing the decision could be
play mechanism, if it appears that the HPC has to also related to emotion or motivation associated to the
frequently send back an arbitrary binding of pattern present situation.

to answer non tractable situations, the cortex will be All these cases share common principles (Miller
able to slowly learn this combination of activities re- and Cohen, 2001). We are here in cases where the de-
played by the HPC on its surface and to link units in fault behavior learned by a slow stimulus-driven pro-
an associative area to this distributed activation, thus cess must be inhibited and replaced with a new behav-
forming locally a new concept to be employed in fu- ior adapted to the present context. To ensure flexibil-
ture behaviors, without the help of the HPC. Under ity and reversibility, this process must be explicit and
this view, it can be said that the HPC is a supervisor manipulate knowledge about the world, as in Model
of cortical learning. If the stored episodes represent a Based approaches in RL. Not only based on the per-
very rare case (or a particular case or an exception), itception of external stimuli, this system must rely on a

can continue and be treated by the HPC. internal source of activity to bias the default behavior
suggested by stimuli and impose the new behavior in
2.2 TheNeed for Cognitive Control atop-down way. At the same time, it must be flexible

but also robust to distractions from external stimuli.
Another series of weaknesses associated with implicit It has been demonstrated by neuroscience that all
learning in the cortex is linked to the fact that, some- these properties are ensured by the prefrontal cortex
times, and particularly in a complex and dynamic (PFC), a more recent (also called granular) region of
world, it is not sufficient for the behavior to be only the frontal cortex, particularly developed in primates
reactive, stimulus driven, but it also need to be goal (Fuster, 1989). This structure, organized according
driven, guided by internal states like motivations, in- to the kind of task (Domenech and Koechlin, 2015)
tentions or to obey external instructions providing a implements contextual rules which can ensure a top-
new rule. Consider cases where the rule associat-down control of behavior. It has a modulatory role
ing the red square on the left with the left button and does not replace reactive rules slowly acquired
changes for the right button and comes back to the by implicit learning. Instead, it is able to inhibit the
left button (so-called reversal learning): a reactive default (and not adapted here) behavior and trigger
stimulus-driven behavior would slowly unlearn the an attentional process to favor task-relevant stimuli
previous rule and learn the new one and unlearn it and consequently elicit a previously learnt rule more
again, whereas it is rather expected to have a moreadapted to the present context (O'Reilly et al., 2002).
flexible behavior including an internal deliberation to  This modulatory role implies that, in case of a lesion,
switch rapidly from one rule to the other. You can the behavioris not stopped but comes back to the (non
also consider cases (like in the Wisconsin Card Sort- appropriate) default case, yielding classical deficits
ing Test (Bock and Alexandre, 2019)) where several of PFC damage like perseveration. All these mech-
rules are proposed but at a given moment only one is anisms are implemented by the unique mechanism of
valid or cases where the new rule is given by instruc- working memory, where neuronal populations of the
tion from a fellow creature. Here also you should PFC exhibit a sustained activity to represent, main-
give up immediately the previously learned rule and tain and impose this contextual activity. In addition to
adopt a new one provided by internal process. You its role in learning, the role of the dopamine has been
generally wait for errors (difference between antici- shown central to regulate the balance between main-
pated and actual reward) to understand that rule hasteénance and updating of the sustained activity (Braver
changed and that you have to find a new one. Some-and Cohen, 2000).
times, you can also discover that changes are asso- In contrast to the classical weight-based learning
ciated with a contextual cue. In this case, you can (as presented above with the HPC), what we describe
learn contextual rules and change your behavior be-here is an activity based control but if it is frequently
fore making errors (Koechlin, 2014). Consider now exploited in certain context, it can become a default
cases where the rule becomes more complex and rebehavior by slow implicit learning.
lies on non visible cues (for example press the left
button if you see a red square on the left and if on the
previous trial the red square was on the right). Here
also a reactive behavior guided by observed cues is
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2.3 The Need for Prospective Memory 3 ORGANIZATION OF EPISODIC
MEMORY

It is now time to describe what could be called a side

effect of the interactions between these two kinds of
explicit memories, considering that the HPC and the
PFC are interconnected (Simons and Spiers, 2003)

F
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and apply their respective functions one on the other. C’g‘r}fx cOrﬁcoe's

In short, the HPC can replay episodes of cortical ac-
tivation, including prefrontal activation; reciprocally
the PFC is informed about contextual aspects of the vy

situation by the HPC and can control the generation 5 \ ! _ECy ECou
of adapted episodes and their storage. These episode ‘ Entorhinal corte* A

can be manipulated explicitly by the PFC, the same * ‘ g

way it creates new rules adapted to the situation. Alto-
gether, this gives rise to prospective memory (Schac-
ter et al., 2007), also called memory of the future
(Fuster, 1989), the unique capacity of imagination,
of explicitly anticipating the future from an internal -
model of the world and of making a decision informed Am;oj”’”"/

by the potential outcomes of possible future scenar-

10S and dellrl])eratlng on thelfr TeSpecg.\ll.e. mterfezt' Fhig tween the hippocampus and the frontal, posterior and en-
IS among the most powerful capabilities of human 4hina| cortices. Connections of the trisynaptic pathway

cognition, also associated to planning and reasoning.are shown in blue while connections of the monosynaptic
clearly going beyond reactive automatic behavior and pathway are shown in green.

enabled by the combination of the two kinds of ex-
plicit memory evoked above, episodic and working 3.1 Memory Storage intheHPC
memory. An alternative computational account of
how these memories interact has been proposed byas mentioned above, the HPC is able to store and re-
(Zilli and Hasselmo, 2008). Yet, this framework is play sequences of experienced states, as well as con-
rather elementary and its limitations have been high- struct novel ones. These sequences are embedded in
lighted by (Dagar et al., 2021), who argued that more two coupled oscillatory regimes: a theta rhythm (4-
complex mechanisms are needed in realistic cases, imQ Hz) and faster gamma rhythm (20-80 Hz). Ac-
the same vein as what we propose here. cording to their respective frequency, approximately
Models for implicit learning are today well mas- seven gamma cycles are nested in each theta cycle.
tered and employed in artificial intelligence. Mod- The entorhinal cortex (EC) constitutes the main in-
els for cognitive control by the PFC have been pro- put to the HPC by its superficial layers that we call
posed for some time in computational neuroscience ECs. They are thought to provide one state per theta
(O'Reilly et al., 2002) and their principles begin to be cycle (Jensen and Lisman, 2005). The HPC then ei-
transferred to machine learning (Wang et al., 2018). ther engages its gamma regime in a retrospective code
EpiSOdiC Iearning has also been considered reCGnt'ySupporting short-term memory and episodic storage,
for machine Iearning (thtel’ et al., 2018) but for the orin a prospective code with which it tries to pre-
moment, the corresponding models propose a rathergict future states (Lisman and Otmakhova, 2001). In
superficial view of this cognitive function and of its  poth cases, sequences are represented in a compressed
multlple roles in Cognitive control, consolidation and way, with one state represented per gamma Cyc|e_ In
prospective memory, as we have evoked here. Inthe retrospective (or learning) code, the sequence of
the forthcoming section, we explain that integrating gamma states reflects the order at which past states
information about episodic learning from different  haye just been experienced, with the current state be-
sources in neuroscience can help understand and giveng represented at the end of the theta cycle. The main
a more precise computational account of this cogni- computational reason behind having such a buffer is
tive function in order to define an integrated eXpIiCit that the gammatimesca|e is more appropriate at a bio-
learning involving both the HPC and the PFC. physical level (relating to constants of time of molec-
ular processes) for learning state transitions than the
behavioral timescale at which events naturally occur
(Lisman and Otmakhova, 2001), especially given the

— 5\ D —

> CAl

Figure 1. Connectivity within the hippocampus and be-
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fact that the most anterior parts of the HPC learn tran- scription of a state but rather what makes it different
sitions between temporally distant events as we will from the others, through orthogonalization processes.
discuss below. In the prospective (or recall) code, the When the HPC sends information back to the cortex
item provided by the cortex is followed by one item for reasons we will detail in the next part, this partic-
per gamma cycle. The order and identity of these sub- ular encoding cannot be used as is. In fact, the role of
sequent items reflect a prediction of upcoming states, CAl is to act as a translator between the sparse repre-
potentially based on previous learning through ret- sentation of the HPC and the dense overlapping rep-
rospective coding. Alternation between these two resentation used in the cortex (Schapiro et al., 2017).
mechanisms is presumably based on the ability (or Learning mechanisms in the monosynaptic pathway
inability) of the prospective code to accurately pre- ensure CA1l is tuned in such a way that what is re-
dict future states. Under this view, the HPC begins by constructed in deep layers of EC (ECd) corresponds
considering the current episode as already known andto the original information sent by ECs. This tun-
attempts to predict the next states until errors indicate ing can be done at the moment of learning, when
that the current episode is too different from stored both the original information and its reconstruction
situations and must consequently be considered novelare present. At the moment of prediction, the same
and learned accordingly. In fact, a crucial part of the comparison mechanism serves as a novelty proxy for
HPC called CALl is often linked to novelty detection, switching between recall and learning regimes, like
namely computation of the mismatch between pre- previously mentioned. A side effect of this slower
dictions and incoming sensory information (Duncan learning mechanism is the involvement of CA1 in
et al.,, 2012). When unpredicted sequences of stim- gathering statistics over multiple episodes (Schapiro
uli are presented to the HPC, a dopaminergic signal is et al., 2017), thus explaining why the activity of some
used to switch from the prospective code to the learn- hippocampal units like place cells reflect statistical
ing retrospective code in order to update the internal regularities (Stachenfeld et al., 2017). Computer sim-
model (Lisman and Otmakhova, 2001). ulations reveal the importance of such a mechanism

Retrospective and prospective codes are expandedor discovering associations not directly experienced
with mechanisms of pattern separation and patternin for example transitive inference, namely the dis-
completion (Kassab and Alexandre, 2018). The HPC covery that if A is associated to B and B is associated
indeed tries to complete each gamma state (whetherto C, A is indirectly associated to C (Schapiro et al.,
being actual or predicted) by relating it to states it 2017). The role of episodic aggregation has also been
has experienced in the past. This is the task of a re-described for building a kernel function in the context
current region called CA3. Conversely, if the state of episodic reinforcement learning (Gershman and
does not match any stored pattern, its representationDaw, 2017). Finally, these statistics might serve as
is modified in such a way that it becomes as dissim- an intermediate step for the transfer between episodic
ilar (orthogonal) as possible to any other pattern, to and cortical memory systems (Kumaran et al., 2016).
avoid interference in this very fast learning process. We explain this in more detail in the next part.

This is performed in the largest region of the HPC, the

Dentate Gyrus (DG), thus encoding what makes each3.2 I nterfacing between the HPC and

state unique, with a very sparse coding. In sum, the the Cortex

HPC performs a succession of auto-associations (en-
coding states) and hetero-associations (encoding theirA
sequence, whether being retrospective or prospective)e
(Lisman and Otmakhova, 2001).

The mechanisms just described are thought to
underlie the learning of individual experienced se-
quences of states (i.e. episodes). They mainly involve
the trisynaptic pathway : ECs DG — CA3 — CAL.
CA1 also receives information from a more direct
monosynaptic pathway: EGs CA1 — ECd. While
fast learning enabling the trisynaptic pathway to learn
to link items represented in successive gamma cycles
is obviously useful for one-shot sequence learning,
slower learning deployed in the monosynaptic path-
way may serve additional roles. We have seen that
what is encoded in DG and CAS3 is not the full de-

constant dialog between the HPC and the cortex is
nsured by multiple pathways, including a major hub:
the entorhinal cortex. This highly integrated cortical
region receives inputs from most regions of the en-
tire cortex in its superficial layers and buffers them
in episodes to be sent to the HPC. Reciprocally, its
deep layers receive replays from the HPC and dis-
tribute them back to the cortex. Other minor paths for
the specific communication with the PFC will also be
evoked below. While the precise description of these
pathways is outside our scope, we would like to high-
light a few key characteristics before addressing the
computational role of this dialog.

Connectivity with the cortex is not homogeneous
throughout the HPC. In humans, the HPC runs along
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an anterior-posterior longitudinal axis. Along this shown to be useful for predictive coding in the visual
axis, genetic, electrophysiological, and anatomical cortex (Hindy et al., 2016) and cognitive anticipation
differences underlie differences in functionality, and (Gershman and Daw, 2017). Thirdly, the complemen-
in particular, decreasing degrees of spatio-temporaltary learning systems theory suggests that the HPC
abstraction (see (Strange et al., 2014) for areview). In acts as a temporary store for memories to be trans-
the spatial domain, the gradient of abstraction trans- ferred to the cortex (McClelland et al., 1995). More
lates into place cells being sensitive to larger portions precisely, dense representation and slow learning are
of the environment in the anterior HPC compared to deployed for the cortex to learn high-level generaliza-
place cells located in the posterior HPC (Jung et al., tions while avoiding catastrophic forgetting respec-
1994). More generally, it is hypothesized that on the tively, resembling implicit memory of classical deep
one hand, more posterior parts of the HPC which are learning models. The other side of the coin is that
mostly connected to posterior (and sensory) parts of the cortex is not able to learn from a single exposure
the cortex are concerned with specifics (details of a to a piece of information. Conversely, the HPC de-
scene, precise location,...). On the other hand, moreploys fast learning and sparse representation for en-
anterior parts which are mostly interacting with an- abling one-shot acquisition. Since sparse encoding is
terior parts of the cortex (dealing with cognitive and not suitable for generalization, the HPC alone is not
behavioural control but also emotional and motiva- sufficient either. In fact, it is really the conjunction
tional aspects) represent more abstract and generaand interaction of these two systems that enable hu-
information (context, larger scale location, seman- mans to learn fast and exploit acquired knowledge ef-
tic information, mood...). Intermediate portions are ficiently. During resting periods, the HPC is thought
thought to mediate interactions between the two endsto “teach” the cortex by sending recently acquired in-
of the longitudinal axis using intermediate represen- formation interleaved with more established knowl-
tations (Strange et al., 2014). Organisation in trisy- edge. This process is called interleaved learning and
naptic and monosynaptic pathways is preserved allis used to incorporate new information into cortical
along, although the dentate gyrus is more prominent knowledge without interference (McClelland et al.,
in posterior HPC while CA1-3 are more prominent 1995). Note that the aforementioned hypothesis re-
in its anterior part (Malykhin et al., 2010). Hence, gardingthe complementarity of the monosynaptic and
the same mechanisms for learning detailed percep-trisynaptic pathways was introduced as an analogous
tual state transitions in the posterior HPC are used for and intermediate step to this consolidation process
learning transitions between more spatially and tem- (Schapiro et al., 2017). Indeed, intermediate statistics
porally distal cognitive cues in the anterior HPC. In- discovered in the monosynaptic pathway might pref-
terestingly, this also constitutes a potential substrate erentially be sent to the cortex. There would there-
for transitive inference, since items that are not asso-fore be a trisynaptic-monosynaptic-cortical gradient
ciated at the posterior scale of functioning can poten- of learning abstraction, in the perpendicular direction
tially be associated at the anterior scale of temporal of the anterior-posterior axis of representational ab-
abstraction (Strange et al., 2014). straction. To our knowledge, understanding the differ-
Let us now discuss candidate functions of ential contributions of these two axes to functions like
hippocampo-cortical dialog, beginning with topics in- transitive inference remains an open and unaddressed
volving communication through the entorhinal cortex. question. As a concluding remark, the fact that the
Firstly, hippocampal pattern completion can be taken monosynaptic pathway might play a more dominant
advantage of for the recall of missing information in role in the anterior HPC and the trisynaptic pathway a
the cortex (Rolls, 2013). It is obviously helpful in the more dominant role in the posterior one suggests that
noisy domain of perception, in which objects must be these two axes might not be completely orthogonal.
identified while exhibiting a constantly changing as- Concerning specific paths of communication be-
pect, for example dependent on light conditions in the tween the PFC and the HPC, several principles must
case of vision. As mentioned before, similar mecha- be mentioned. In short, a unidirectional loop of com-
nisms are used with more abstract representations inmunication has been described (Eichenbaum, 2017).
intermediate and anterior regions of the HPC. Conse- The anterior HPC is hypothesized to send contextual
quently, pattern completion might also be useful for information about the retrieved episode to the PFC,
retrieving more abstract information related to con- which uses it to better select appropriate behavioral
text, emotional states, and even behavioral plans, arules. Reciprocally, the PFC controls episodic re-
requirement for prospective memory. Secondly, a fur- call and encoding, either directly by modulating ac-
ther function of the dialog is to use knowledge about tivity in the posterior HPC (Rajasethupathy et al.,
state transitions stored in the HPC. This has been2015) or indirectly by biasing the activity of the sen-
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sory and entorhinal cortices. As a result, hippocam- ing new conceptual knowledge online. On the other
pal recall and its prospective code are oriented to- hand, even if several pieces of information are still
wards task-relevant episodes, whereas encoding andnissing, preliminary studies about the involvement of
its retrospective code are modulated to control mem- interactions between the HPC and the PFC in forming
ory organization. The PFC would therefore need a a prospective memory should also be considered for
model of what is stored in the HPC, a function that is improving decision making algorithms. Finally, we
sometimes referred to as metamemory. The directionbelieve that explicit cognition is a key ingredient for
of these information flows are presumably controlled creating artificial agents capable of deliberating and
by an additional communication pathway linking the explaining their actions.
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