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Abstract: This paper presents several models for individual object detection with TensorFlow in a 2D image with 
Convolution Neural Networks (ConvNet). Here, we focus on an approach for hardware with limited resources 
in the field of the Internet of Things (IoT). Additionally, our selected models are trained and evaluated using 
image data from a Unity 3D simulator as well as real data from model making area. In the beginning, related 
work of this paper is discussed. As well known, a large amount of annotated training data for supervised 
learning of ConvNet is required. These annotated training data are automatically generated with the Unity 3D 
environment. The procedure for generating annotated training data is also presented in this paper. 
Furthermore, the different object detection models are compared to find a better and faster system for object 
detection on hardware with limited resources for low-power IoT devices. Through the experiments described 
in this paper the comparison of the run time of the trained models is presented. Also, a transfer learning 
approach in object detection is carried out in this paper. Finally, future research and work in this area are 
discussed. 

1 INTRODUCTION 

In the autonomous vehicle industry, vehicles can 
drive autonomously without a driver. To do this, these 
vehicles have to recognise the lane or determine and 
classify the objects in the environment. The safety of 
the occupants is at the top of the list. For this reason, 
the topic of computer vision has become very popular 
in recent years. Object detection requires usually 
hardware with high computational power, such as a 
graphics processing unit (GPU), because image 
processing is a highly intensive computing procedure. 
Additionally, object recognition is processed using 
Convolutional Neural Networks (ConvNets). These 
are known for the successful processing of 2D 
images. Furthermore, the ConvNets have been proven 
to be effective in object detection including contour 
finding. In this paper, we focus on an object detection 
for hardware with limited resources for low-power 
IoT devices. For this purpose, we have trained and 
evaluated different models of object detection with 
TensorFlow. The idea is to find a suitable system for 
model cars with non-high-computing hardware 
without a GPU. However, object recognition with 
limited resources is not only interesting in the field of 

model making. Additionally, this detection of objects 
can be useful in other areas. For example, consider 
postal drones that place the package in the garden or 
smart surveillance cameras for agriculture which 
notify when certain objects e.g. animal species are 
detected. Object detection is not new and has been 
researched in the vehicle industry for some time. For 
example, Tesla has already recognition of 
pedestrians, bicycles, or other vehicles since 2014 
(Wikipedia, 2021). The problem in academic research 
is that these algorithms and procedures, which are 
already established in the autonomous vehicles 
industry, are kept under lock and key and are not 
freely accessible. For this reason, own algorithms and 
procedures have to be researched and developed in 
the academic field. 

The goal of our work is to switch from the 
simulation we developed before (Kuzmic and 
Rudolph, 2020) to the real model cars. In case of a 
successful transfer of simulation to reality (sim-to-
real transfer), the model car behaves exactly as before 
in the simulation. For this purpose, the model cars 
have to recognise the lane from a 2D image (Kuzmic 
and Rudolph, 2021) and determine and classify the 
objects on this lane. 
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2 RELATED WORK 

Numerous scientific papers are dealing with object 
detection, e.g. (Fink, Liu, Engstle, Schneider, 2018) 
who have made a deep learning-based multi-scale 
multi-object detection and classification for 
autonomous driving or (Zaghari, Fathy, Jameii, 
Shahverdy, 2021) who have developed the 
improvement in obstacle detection in autonomous 
vehicles using YOLO non-maximum suppression 
fuzzy algorithm. Some scientific works introduce a 
shape detection framework for detecting objects in 
cluttered images (Zhu, Wang, Wu, Shi, 2008). 
Another approach for object recognition is to 
distinguish the objects by 3D information. For this 
purpose, LiDAR sensors (Beltrán et al., 2018) or the 
stereo camera can be used. This camera contains two 
cameras at a certain distance, similar to human eyes. 
This delivers two images. These both images can be 
used to determine the depth of the image to 
distinguish between roads, humans, cars, houses, etc. 
(Li, Chen, Shen, 2019). Also, some related scientific 
papers present the sim-to-real transfer (Tan et al., 
2018) or (Kahn, Abbeel, Levine, 2020). Our approach 
is to develop further systems and procedures for 
object detection for hardware with limited resources 
in a real environment, e.g. in the field of model 
making or in the farm and forest business. 

3 DATA SET 

Before training of the ConvNets, annotated training 
data have to be obtained for each specific use case. 
This training data is the basis for a successful object 
detection. Table 1 shows the data sets we have created 
for our object detection. 

Table 1: Our data sets for object detection with TensorFlow. 
The resolution of the images is 1280x720 (width x height) 
pixel. Count stands for the number of records. 

No. Name Classes Class labels Count 
1 Sim 1 1 SimCar 300 
2 Sim 2 2 SimCar, 

SimAnimal 
1000 

3 Mod 1 1 PiCar 111 

4 Mod 2 4 
PiCar, ModCar, 

ModAnimal, 
ModPerson 

200 

Some small pre-tests have shown: it is sufficient to 
take pictures of the object in a 360° view. The colour 
of the objects does not matter in object detection. The 
objects are distinguished by their different shapes. 

Data sets 1 and 2 were created and automatically 
annotated with our simulator. Data set 1 contains a 
simulation car SimCar with various objects. Here, 
only the simulation car is labelled and not the other 
objects. So, the ConvNet can learn the difference to 
the other objects. Data set 2 has been expanded and 
contains the labels SimCar and SimAnimal. Data sets 
3 and 4 were created with some objects from the 
model making area. We annotated this data manually. 
Data set 3 contains a model car PiCar and data set 4 
additionally ModCar, ModAnimal and ModPerson 
from the real world. The following Figure 1 shows 
some images of the created training data from our 
data sets. The split of training and test data is 80/20. 
The test data was used as validation data. 

 
Figure 1: Our several data sets for object detection with 
TensorFlow. First two rows: Data set from simulator. Last 
two rows: Data set from model making area. 

Each of data sets 1 and 3 have just one class (SimCar 
and PiCar). So, results from simulation and model 
making area can be compared to find a suitable object 
detection system for hardware with limited resources. 
If object detection on real data has to be implemented, 
already published data sets MS COCO (Lin et al., 
2014) or PASCAL VOC (Everingham et al., 2010) 
can be used. These already contain thousands of 
annotated real objects.  

3.1 Automatic Labelling 

With our simulator in Unity 3D (Kuzmic and 
Rudolph, 2020), thousands of annotated training data 
(input and output data) could be generated 
automatically. For the automatic generation of the 
required data sets, two virtual cameras were installed 
in the same place in a simulated car in the simulator. 
The first camera could see everything in the virtual 
environment (Fig. 2, left 1). The second camera only 
saw the object to be recognised (Fig. 2, left 2). These 
two images could be used for the further generation 
of the training data. The image from the first camera 
is the input image for the ConvNet. The image from 
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the second camera was converted into a greyscale 
image first. To get the annotation of the data (output 
data), a binary image was created from the greyscale 
image next (Fig. 2, right 1). From this binary image 
(black background, white object), the information for 
the position of the object (top left and bottom right) 
could be extracted. This gives the position of the 
object (Fig. 2, right 2) for the input image as 
coordinates for P (xMin, yMin) and Q (xMax, yMax). 
Then, these coordinates are stored in an XML file 
(Vuppala, 2020). The advantage of this approach: 
many annotated training data with different objects 
can be created in a short time. Several objects can also 
be created in one image. Since, the position of the 
objects is known, these objects can be moved or 
exchanged among each other. Additionally, to create 
many different training data the position and size of 
the objects can be changed. The exchange of the 
background image is also conceivable. 

 
Figure 2: Training data generation in our Unity 3D 
simulator. Left 1: Image from first camera. Left 2: Image 
from second camera. Right 1: Binary image. Right 2: 
Information for the position of the object P and Q. 

3.2 Manual Labelling 

For the data set with real data, some pictures from 
several models from model making were taken. 
Afterwards, these images were manually annotated 
with the LabelImg tool (Tzutalin, 2021). This tool 
simplifies the drawing of the rectangle around an 
object and automatically determines the coordinates 
for P (xMin, yMin) and Q (xMax, yMax). Then, these 
coordinates are stored in an XML file with the same 
name as the image file. 

4 OBJECT DETECTION 

For the object detection with TensorFlow (Huang et 
al., 2017), pre-trained models, that were already 
established in object detection with real data, were 
investigated. The run time measurements of the pre-
trained TensorFlow (TF) models were performed on 
the NVIDIA GeForce GTX 1660 Ti GPU. This makes 
it possible to get first differences for the run times of 
the models. Our pre-experiments were performed 
with the same 200 images to measure the run time of 
the models on our hardware and to make a small pre-
selection. There are several ConvNet models for 

TensorFlow 2 available in the TensorFlow 2 detection 
model zoo (Chen, 2021). These models have already 
been pre-trained on the MS COCO 17 data set and can 
detect and classify 90 objects. The speed of detection 
is shown as frames per second (FPS) in table 2. The 
accuracy is given as COCO mean average precision 
(mAP) metric (Hui, 2018). 

Table 2: Pre-experiment to determine the fastest 
TensorFlow model. SSD 1: SSD MobileNet V2. SSD 2: SSD 
ResNet50 V1 FPN. CenterNet: CenterNet HourGlass104. 

No. Name Resolution mAP FPS 

1 SSD 1 320x320 20.2 16.4 
2 EfficientDet D0 512x512 33.6 5.7 
3 SSD 2 640x640 34.3 4.7 
4 SSD 2 1024x1024 38.3 2.3 
5 CenterNet 1024x1024 44.5 1.7 
6 EfficientDet D4 1024x1024 48.5 1.5 

As expected, this small preliminary experiment 
confirms: a smaller resolution of the model gives a 
faster processing of the images. After a comparison 
of the mAP and FPS it can be seen, that a higher 
resolution of the ConvNets gives a more accurate 
object detection. For this reason, a balance between 
the precision and the run time had to be found to use 
object detection on hardware with limited resources. 
To compare the different TensorFlow models, some 
models were trained and evaluated on the already 
presented data sets. The base learning rate was set to 
0.008. The warmup learning rate is 0.0001. The 
batch size is 4. By default, these values are higher. 
The MS COCO data set contains much more training 
data. So in our scenario, we reduced these parameter 
values. Tables 3 and 4 below show our trained 
models. Steps denotes the value for the last training 
step. This parameter is important to avoid 
overtraining of the model. 

Table 3: Overview of trained EfficientDet D0 512x512 
models. 

No. Steps Data Set mAP 
1 150 k Sim 1 95.8 
2 100 k Sim 2 87.1 

3 150 k Mod 1 91.7 
4 100 k Mod 2 76.4 

A comparison of the precisions shows that models 
with higher input image size are more accurate 
(comparison between table 3 no. 2 and table 4 no. 2).  
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Table 4: Overview of trained SSD MobileNet V2 320x320 
models. 

No. Steps Data Set mAP 
1 150 k Sim 1 93.4 
2 100 k Sim 2 79.6 
3 150 k Mod 1 92.1 
4 100 k Mod 2 69.3 

All trainings were carried out with the same settings 
of the parameter and training data. First, the models 
trained with the simulation data were evaluated. 
Sometimes these models detect objects in places 
where no objects can be seen. To solve this, more 
training data with the PiCar and many different 
shapes is needed. Afterwards, we started with the 
EfficientDet D0 512x512 model and one output class 
to get a model which detects individual objects from 
reality and needs few resources. Here, only the PiCar 
and no other objects are detected and classified. 
Figure 3 shows this recognition. Rectangles show the 
detection of the object by the ConvNet. 

 
Figure 3: Object detection with EfficientDet D0 512x512 
model (no. 3 in table 3). Class: PiCar. 

To make a comparison, the SSD MobileNet V2 
320x320 model was trained with the same output 
class (Fig. 4). As can be seen, this model is less 
accurate in recognising the PiCar (figures 3 and 4, 
marked in blue). But this is not reflected in the mAP 
(comparison between table 3 no. 3 and table 4 no. 3). 
These recognitions are completely acceptable for our 
purpose and sufficient for our application. 

 
Figure 4: Object detection with SSD MobileNet V2 320x320 
model (no. 3 in table 4). Class: PiCar. 

Subsequently, these models were extended. Figure 5 
shows the EfficientDet D0 512x512 model with four 
output classes. This model detects and classifies the 

objects very exactly. The detected position and size 
of the objects also match. Here, a precision of 76.4 % 
can be achieved. For comparison, figure 6 shows the 
detections of the SSD MobileNet V2 320x320 model 
with four output classes, too. Also, this model 
recognises very exactly the objects with four classes 
PiCar, ModCar, ModAnimal, ModPerson and 
achieves a lower precision of 69.3 %. But even this 
detection is completely sufficient for our purpose. 
Also, the never seen objects could be detected by our 
models. For example, a Lego person, a model horse 
and a blue model car are recognised by these two 
models (Fig. 7).   

 
Figure 5: Object detection with EfficientDet D0 512x512 
model (no. 4 in table 3).  Classes: PiCar, ModCar, 
ModAnimal, ModPerson. 

 
Figure 6: Object detection with SSD MobileNet V2 320x320 
model (no. 4 in table 4). Classes: PiCar, ModCar, 
ModAnimal, ModPerson. 

During training the ConvNets have already seen 
figures of model persons, model animals and model 
cars. These ConvNets learned the similar shapes of 
the objects and not only images from the training data 
set.  

 
Figure 7: Object detection on never seen objects. First row: 
Detection with EfficientDet D0 512x512 model (no. 4 in 
table 3). Last row: Detection with SSD MobileNet V2 
320x320 model (no. 4 in table 4). 

Object Detection with TensorFlow on Hardware with Limited Resources for Low-power IoT Devices

305



 

Furthermore, every other object with an unknown 
shape is recognised as a PiCar. The models have 
never seen any object with a similar shape (contour) 
during the training. Thus, the object cannot be clearly 
classified. As a result, the first output class PiCar is 
assigned to this unknown object. This problem can be 
solved by enlarging the data set. More training data 
with the PiCar and many different objects (different 
shapes) is needed. So, the difference to other shapes 
can be learned. Additionally, we have converted the 
SSD MobileNet V2 model with 320x320 pixels to a 
224x224 pixel model. This model is not present in the 
TensorFlow 2 model zoo (Chen, 2021). Since, it is 
interesting to see how the models perform in 
precision and run time. Table 5 shows an overview of 
the accuracy of these models. 

Table 5: Overview of trained SSD MobileNet V2 224x224 
models. 

No. Steps Data Set mAP 
1 150 k Mod 1 90.9 
2 100 k Mod 2 60.6 

With this model 60.6 % accuracy is achieved. For 
comparison, the SSD MobileNet V2 320x320 model 
achieves 69.3 % (no. 4 in table 4). The next figure 8 
shows this object detection on the Mod 2 data set. 

 
Figure 8: Object detection with SSD MobileNet V2 224x224 
model. Classes: PiCar, ModCar, ModAnimal, ModPerson.  

5 EXPERIMENTS 

The following experiments were carried out to 
compare the functionality and the run time of our 
different TensorFlow models on the same hardware. 
The resolution is in the format width x height. 
Training of the ConvNets on Google Colab: Intel 
Xeon 2.30 GHz CPU, 26 GB RAM, NVIDIA Tesla 
P100-PCIe-16GB GPU. Run time measurements 
with GPU: Intel i7-9750H 2.60 GHz CPU, 16 GB 
RAM, 256 GB SSD, NVIDIA GeForce GTX 1660 Ti 
GPU. Run time measurements on Raspberry Pi 3 B 
for hardware with limited resources: ARM Cortex-

A53 1.2 GHz CPU, 1 GB RAM, 8 GB SD. This gives 
the possibility to compare the results afterwards and 
to find the optimal object detection system. The test 
input images for the respective systems are also the 
same. 

5.1 Run Time on GPU 

As can be seen in previous section 4 very good results 
in object detection were already achieved with the 
EfficientDet and SSD MobileNet models. In this 
experiment we test the run time of these models on 
hardware with GPU. Therefore, we only test the run 
time of the models for the real data from model 
making area (Tab. 6). Afterwards, these results can be 
compared with the run times achieved on the 
hardware with limited resources. First column 
contains the number (id) of the experiment (Exp. 
No.). 

Table 6: Run time overview of trained TensorFlow models 
on hardware with GPU. EfficientDet: EfficientDet D0 
512x512 TF2. SSD 224: SSD MobileNet V2 224x224 TF2. 
SSD 320: SSD MobileNet V2 320x320 TF2. 

Exp. 
No. Model Steps Data 

Set 
Run 
Time 
[FPS] 

1 EfficientDet 150 k Mod 1 14.6 
2 EfficientDet  100 k Mod 2 14.2 
3 EfficientDet 150 k Mod 2 14.1 
4 SSD 224 150 k Mod 1 40.1 
5 SSD 224 100 k Mod 2 39.2 
6 SSD 224 150 k Mod 2 40.8 
7 SSD 320  150 k Mod 1 39.8 
8 SSD 320  100 k Mod 2 38.1 
9 SSD 320  150 k Mod 2 38.3 

As can be seen in table 6, the fastest model is SSD 
MobileNet V2 224x224 with 150 k steps and four 
output classes PiCar, ModCar, ModPerson and 
ModAnimal. This model achieves approx. 41 FPS. 
These measurements do not include loading and 
processing of the input images. With one class PiCar 
the same model accomplishes up to 40 FPS. 

5.2 Run Time on Limited Resources 

In the following experiment the run time 
measurements are carried out on hardware with 
limited resources. A Raspberry Pi 3 B was used for 
this test. To increase the run time of processing a 
quantised SSD MobileNet V2 224x224 model was 
created for this experiment. Quantisation converts the 
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weights of the model from float to uint8 (TensorFlow 
Performance, 2021). TFLite represents a converted 
model from TensorFlow Core to TensorFlow Lite. 
Table 7 shows the run time measurements at a glance. 

Table 7: Run time overview of trained TensorFlow models 
on hardware with limited resources. EfficientDet: 
EfficientDet D0 512x512. SSD 224 Q: SSD MobileNet V2 
Quantized 224x224. SSD 224: SSD MobileNet V2 224x224. 
SSD 320: SSD MobileNet V2 320x320. 

Exp. 
No. Model Steps Data 

Set 
Run 
Time 
[FPS] 

1 EfficientDet 150 k Mod 1 - 
2 EfficientDet  100 k Mod 2 - 
3 EfficientDet 150 k Mod 2 - 
4 SSD 224 Q 150 k Mod 1 3.2 
5 SSD 224 Q 100 k Mod 2 2.8 
6 SSD 224 Q 150 k Mod 2 3.0 
7 SSD 224 150 k Mod 1 1.4 
8 SSD 224 100 k Mod 2 1.4 
9 SSD 224 150 k Mod 2 1.4 

10 SSD 320 150 k Mod 1 0.9 
11 SSD 320 100 k Mod 2 0.9 
12 SSD 320 150 k Mod 2 0.9 

For the EfficientDet D0 512x512 models the 
measurement was automatically stopped by the 
Raspberry Pi after some time. No run time 
measurements could be carried out for these models 
on a Raspberry Pi. An out-of-memory error has 
occurred on this system. As can be seen after these 
experiments: the SSD MobileNet V2 Quantised 
224x224 model with 150 k steps and a PiCar output 
class is the fastest model. Here, the model 
accomplishes approx. 3.2 FPS. These measurements 
also do not include loading and processing of the 
input images. With four classes PiCar, ModCar, 
ModPerson and ModAnimal the same model achieves 
up to 3 FPS.  

5.3 Evaluation of the Run Time 

After the performance tests of the models have been 
completed, evaluating of the run times of these 
different models could be started. Therefore, it is 
important to find a balance between sufficient 
accuracy and the run time of the models. Also, some 
experiments show longer training does not affect the 
run time. The run time depends only on the model 
architecture, on size of the input resolution and on 
size of the output classes of the ConvNet. For 
hardware with GPU: real-time object detection can be 

achieved with the models SSD MobileNet V2 
224x224 and SSD MobileNet V2 320x320 (exp. no. 4 
to 9 in table 6). For hardware without GPU: approx. 
3.2 FPS can be achieved with the SSD MobileNet V2 
Quantized 224x224 model on the Raspberry Pi 3 B 
(exp. no. 4 in Table 7). To speed up this object 
detection, the tflite runtime-2.5.0-cp37 library 
(TensorFlow Lite, 2021) and a quantised SSD 
TensorFlow 1 model were used (TensorFlow 
Performance, 2021). The run time measurements of 
the non-lite TensorFlow 2 models were performed 
with the TensorFlow 2.4.0-rc2 library (TensorFlow 
Core, 2021) on the Raspberry Pi 3 B. Additionally, 
object detection does not have to evaluate every 
frame. Object detection can be done as soon as 
anomalies are detected. In an autonomous vehicle it 
can be done, for example, with the radar sensor. In 
smart surveillance cameras it could be the motion 
sensor, for example. 

5.4 Sim-to-Real Transfer 

While training the different models with the 
simulation and the model data the following research 
question arose: If the objects in the simulation look 
similar to model objects from the real world, which of 
our ConvNets can best recognise the real model 
objects? To answer this question, we have trained two 
different models to perform a transfer learning 
approach. By creating the data in the simulation, 
many different data with many different models of an 
object can be created. Additionally, there are already 
a lot of modelled objects from the video game field. 
So, the modelling of own objects is not required. For 
this sim-to-real transfer we tested two models 
EfficientDet D0 512x512 and SSD MobileNet V2 
320x320. These models were trained with the same 
data set Sim 1 (includes SimCar) and 150 k steps to 
compare the results afterwards. Table 8 shows the 
comparison of the models evaluated on the test data 
from simulation and reality. 

Table 8: Overview of trained TensorFlow sim-to-real 
models with object detection in simulation and real model 
data. 

Exp. 
No.

Model Detect 
Sim 

Detect 
Real

1 EfficientDet D0 512x512 Yes Yes 

2 SSD MobileNet V2 
320x320 Yes No 

As can be seen in figure 9, first row, the SSD 
MobileNet V2 320x320 model achieves accurate 
recognition on the simulation data. However, the 
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detection on the real model data does not work (Fig. 
9, last row). Green rectangle shows the detection of 
the object by the ConvNet. Thus, the SSD MobileNet 
V2 320x320 model is only suitable for recognising 
already seen objects during the training. According to 
our experiments, this model is not suitable for the 
sim-to-real approach. We assume the resolution of 
this ConvNet is too small. 

 
Figure 9: Sim-to-real transfer with SSD MobileNet V2 
320x320. First row: Images from simulation. Last row: 
Model car images from the real world. 

On the other hand, the EfficientDet D0 512x512 
model is suitable for a sim-to-real approach. The next 
figure 10 shows the object detection with this model. 
The model car can be detected in simulation (Fig. 10, 
first row) and in real data from the real world (Fig. 
10, last row). The images of the model car were never 
seen by this ConvNet before. 

 
Figure 10: Sim-to-real transfer with EfficientDet D0 
512x512. First row: Images from simulation. Last row: 
Model car images from the real world. 

As can be seen, the EfficientDet D0 512x512 model 
detects the model cars very accurate. Conversely, 
some of the other objects (animals and persons) are 
also detected as SimCar (Fig. 11). 

 
Figure 11: Object detection with EfficientDet D0 512x512 
Model. Left: Detected model horse. Middle: Detected 
model person. Right: Detected model dog. 

The reason is, such data was never seen by the 
ConvNet. So, the model has only learned the shape of 

the object SimCar and did not have other objects for 
comparison. However, this sim-to-real approach is 
worthy of improvement. We assume that these 
inaccuracies can be corrected with several training 
data and different models in simulation. But on the 
whole, from our experiments can be seen: the sim-to-
real transfer can be successfully performed in object 
detection with the EfficientDet D0 512x512 Model. 

6 CONCLUSIONS 

This section summarizes once again the points that 
were introduced in this paper. For object detection 
with TensorFlow we have focused on hardware with 
limited resources for low-power IoT devices. The 
acquisition of automated annotated training data from 
the simulation is also presented. Furthermore, 
training data from individual objects in the field of the 
model making to compare the results afterwards were 
created. Additionally, several different TensorFlow 
models were trained to find a balance between the 
accuracy and the run time of these models. According 
to our experiments the SSD MobileNet V2 with 
224x224 pixels as well as the same model with 
320x320 pixels resolution is suitable for object 
detection in real-time scenarios with GPU. A suitable 
model for object detection in hardware with limited 
resources for low-power IoT devices is the SSD 
MobileNet V2 Quantized 224x224 model. This model 
achieves up to 3.2 FPS on a Raspberry Pi 3 B without 
hardware extension. The SSD MobileNet V2 224x224 
models achieve an effective balance between 
accuracy and run time. Finally, a transfer learning 
approach in object detection was conducted in this 
work. With the EfficientDet D0 512x512 model this 
sim-to-real approach can be successfully carried out.  

7 FUTURE WORK 

As already announced, the goal of our future work is 
to successfully conduct a sim-to-real transfer, 
including our lane and object detection we have 
developed for the model making area. This means the 
simulated environment is completely applied to a real 
model vehicle. In this approach, we focus on 
developing software for hardware with limited 
resources for low-power IoT devices. Additionally, 
we want to set up a model test track like a real 
motorway for this experiment. Another important 
aspect on the motorways is the creation of an 
emergency corridor for the rescue vehicles in the case 
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of an accident. Thus, the behaviour of the vehicles in 
the simulation can be compared with the behaviour of 
the model vehicles in reality. It is also conceivable to 
extend this object detection by a distance 
measurement to the detected objects on the lane. This 
can be used, for example, to protect the radar sensor 
in self-driving cars. When developing software for 
hardware with limited resources for low-power IoT 
devices it is also interesting to see how the run time 
can be improving with a Raspberry Pi 4 B with 
hardware extension such as the Intel Neural Compute 
Stick 2 (CNET, 2018) or the Google Coral USB 
Accelerator (Coral, 2020). This approach will be 
explored in our future research. 
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