
Unsupervised Grammatical Pattern Discovery from Arabic Extra Large
Corpora

Adelle Abdallah1 a, Hussein Awdeh1 b, Youssef Zaki1, Gilles Bernard1 c and Mohammad Hajjar2

1LIASD Lab, Paris 8 University, 2 rue de la Liberté 93526 Saint-Denis, Cedex, France
2Faculty of Technology, Lebanese University, Hisbeh Street, Saida, Lebanon

Keywords: Arabic Language, Arabic Natural Language Process, Validation Information Retrieval, Silver Standard
Corpus.

Abstract: Many methods have been applied to automatic construction or expansion of lexical semantic resources. Most
follow the distributional hypothesis applied to lexical context of words, eliminating grammatical context (stop-
words). This paper will show that the grammatical context can yield information about semantic properties
of words, if the corpus be large enough. In order to do this, we present an unsupervised pattern-based model
building semantic word categories from large corpora, devised for resource-poor languages. We divide the
vocabulary between high-frequency and lower frequency items, and explore the patterns formed by high-
frequency items in the neighborhood of lower frequency words. Word categories are then created by cluster-
ing. This is done on a very large Arabic corpus, and, for comparison, on a large English corpus; results are
evaluated with direct and indirect evaluation methods. We compare the results with state-of-the-art lexical
models for performance and for computation time.

1 INTRODUCTION

Lexical semantic resources are essential for a wide
range of Natural Language Processing (NLP) tasks.
The way to build automatically such resources from
large corpora is usually by deducing semantic similar-
ities between linguistic items from their distribution.
The distributional hypothesis says that “words that are
utilized and happen in the same contexts tend to pur-
port similar meanings” (Harris, 1954), in other words
“a word is characterized by the company it keeps”
(Firth, 1957).

This hypothesis has been applied to measuring se-
mantic similarity, to word clustering, to automated
creation of thesauri and bilingual dictionaries, etc.
But nearly every work has restricted the context to
lexical items (hence the use of stopwords). This re-
striction is not part of the initial hypothesis, as seen in
the work of Harris disciples on links between lexicon
and grammar (Gross, 1994).

We try here a new approach, which is to identify
the semantic properties that can be discovered from

a https://orcid.org/0000-0001-5837-8688
b https://orcid.org/0000-0002-2805-4444
c https://orcid.org/0000-0002-4587-4209

the grammatical patterns a word can be used into. The
idea is to build a word vector based on grammati-
cal patterns and then compare it to vectors produced
by state-of-the-art methods based on lexical context.
This approach, inspired by previous works (Bernard,
1997; Lebboss et al., 2017), is especially aimed at
resource-poor languages as Arabic, as it is mostly
built from knowledge extracted from big corpora.

Detection of grammatical patterns without knowl-
edge from the language, even stopwords, is done
by dividing the corpus vocabulary between high fre-
quency items and low frequency items. Then we com-
pute all possible patterns of high frequency items in
the neighborhood of a word, considered as features
of this word. The produced vector is the number of
occurrences of each feature.

Evaluation of our results will be double: on one
side, we will compare semantic properties deduced
from grammatical patterns with those deduced by
state-of-the-art methods from lexical data; on the
other side, we will compare the results obtained from
Arabic corpora with those obtained from an English
corpus. We will use the few semantic gold standards
available for Arabic and English, and apply an indi-
rect evaluation in vector clustering, using WordNets
for both languages.

Abdallah, A., Awdeh, H., Zaki, Y., Bernard, G. and Hajjar, M.
Unsupervised Grammatical Pattern Discovery from Arabic Extra Large Corpora.
DOI: 10.5220/0010651700003063
In Proceedings of the 13th International Joint Conference on Computational Intelligence (IJCCI 2021), pages 211-220
ISBN: 978-989-758-534-0; ISSN: 2184-3236
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

211

Next section will give a short survey of related
works. Section 2 describes our method. Section 4
presents our results, before concluding.

2 RELATED WORKS

Unsupervised methods for extracting semantic
knowledge from corpora are usually divided in two
types: statistical and embedding methods. According
to the distributional hypothesis, in both types of
methods, a context must be defined, and each word
is characterized by the frequency of its occurrence
in each of these contexts. The contexts are usually
defined as neighboring words in some window. The
window can be a document, paragraph or sentence,
or a fixed-length window.

Most of these methods follow a bag-of-words ap-
proach, where the order of items is not taken into
account – among the rare exceptions, HAL (Lund
et al., 1995); nearly all also follow a lexical context
approach, where functional words are not taken into
account.

The statistical methods whose origins date back
to (Salton, 1971) are still very active. The principle
of operation of these methods is simply to produce a
vector where each column contains the number of oc-
currences of some context in the vicinity of the word.
With a high number of contexts, as in big corpora,
this produces a huge sparse vector, with a high com-
putational and memory cost, so these methods use di-
mensionality reduction methods as singular value de-
composition or other kind of matrices factorization,
random mapping, etc.

These vectors are generated by various algorithms
such as Latent Dirichlet Analysis (Blei et al., 2003),
Probabilistic HAL (Azzopardi et al., 2005), Gener-
alized Vector Space (Wong et al., 1985), Latent Se-
mantic Analysis (Dumais, 2004), Rocchio Classifica-
tion (Schutze et al., 2008), Random Indexing (Kan-
erva et al., 2000). Some methods enhance the vectors
by pre- or post-processing techniques (Turney and
Pantel, 2010; Erk, 2012; Clark, 2012), for instance
weighing values with TF-IDF or PPMI.

To overcome the sparsity problem, word embed-
ders have been developed. They represent a word
in a dense low-dimensional vector using predictive
models, usually neural network ones (Bengio et al.,
2003; Collobert and Weston, 2008; Mnih and Hin-
ton, 2008; Collobert et al., 2011; Dhillon et al., 2011;
Mikolov et al., 2013a; Mnih and Kavukcuoglu, 2013;
Collobert, 2014; Pennington et al., 2014). The prin-
ciple here is to learn a weight matrix able to predict
some neighboring word(s) of a given word. Compo-

nents of a word vector do not represent directly the
number of occurrences of some context, even if the
number of times each context occurred influences the
learning model.

Other than capturing semantic information, word
embedding have successfully been employed by sev-
eral downstream NLP applications such as named-
entity recognition, semantic role labeling, sentiment
analysis, machine translation and dependency pars-
ing.

Despite their empirical success, recent papers
shed light on the limitations of word embedders:
(Levy et al., 2015b) targets its limitation in extracting
the hyponymy and entailment relations, while (Ru-
binstein et al., 2015) pointed at its failure in captur-
ing attributive properties. (Levy et al., 2015a) shows
that the advantage of word-embedding methods over
the count-based methods (Baroni et al., 2014) can be
overridden with a good choice of hyper-parameters,
which have more influence on the results than the cho-
sen method. On the other hand, (Levy et al., 2015b)
unveils that the word-embedding methods outperform
the count-based models in diverse semantic tasks,
such as word association, synonym detection and
word clustering. (Mikolov et al., 2013b) use the offset
method to solve analogical questions such as “man is
to king as woman is to. . . ?” by addition of vectors.

Whatever the method, the bag-of-word approach
disregards grammar and word order and yields very
little information on the syntactico-semantic relations
between the words. To overcome this limitation, some
solutions have been recommended. The first solution
proposes injecting lexico-syntactic knowledge into
the embeddings, such as dictionary, ontology or the-
saurus information, to the objective function (Kiela
et al., 2015; Lazaridou et al., 2015; Liu et al., 2015),
or at the post-processing step (Faruqui et al., 2014;
Mrkšić et al., 2016).

Others suggest a lexical pattern-based approach,
replacing the bag-of-word contexts with other con-
text types considering syntactic items. These methods
were pioneered by (Hearst, 1992; Hearst, 1998) who
manually coded patterns to capture hyponymy rela-
tions. Hand crafted patterns were used for many ap-
plications, such as extracting hyperonymy/hyponymy
(Rydin, 2002; Tjong Kim Sang and Hofmann, 2007),
meronymy (Berland and Charniak, 1999), antonymy
(Lin et al., 2003), noun categories (Widdows and
Dorow, 2002). Some methods based on Hearst pat-
terns implement weakly supervised bootstrap tech-
niques (Riloff and Shepherd, 1997), while others
refined its algorithm using the syntactic structure
(Roark and Charniak, 1998; Widdows and Dorow,
2002; Phillips and Riloff, 2002; Pantel and Ravichan-

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

212

dran, 2004; Tanev and Magnini, 2006). Other
attempts use lexical-syntactic contextual patterns
(Riloff et al., 1999; Thelen and Riloff, 2002), one
even uses only grammatical information (Bernard,
1997).

(Caraballo, 1999) was the first to use conjunctions
and appositive features to build a hyperonym-labeled
noun hierarchy similar to WordNet. (Alfonseca and
Manandhar, 2002) use Hearst patterns in an unsuper-
vised manner to extend ontology and compare it with
WordNet. In this sense, Hearst patterns were applied
to increase recall in Information Extraction systems
as KNOWITALL (Etzioni et al., 2004; Ritter et al.,
2009), to extract web-based semantic relations (Pasca,
2004), and in various other studies (Sang, 2007; Som-
batsrisomboon et al., 2003; Sumida and Torisawa,
2008).

Other works take into account the dependency re-
lations (Lin, 1998; Padó and Lapata, 2007; Murphy
et al., 2012; Levy and Goldberg, 2014). Some even
use clusters of lexical-syntactic patterns in which the
word occurs as context to represent it (Baroni et al.,
2010). (Bollegala et al., 2015) replaces bag-of-words
contexts with various patterns (lexical, POS and de-
pendency). Another work (Yatbaz et al., 2012) uses
paradigmatic representations of word context by re-
placing the bag-of-word contexts with substitute vec-
tors, which include the potential words that could re-
place the target word given its neighboring words.

All these methods make use of knowledge about
the language. Alternatively, the flexible approaches
aim to extract patterns in an unsupervised man-
ner. Such methods were used in various NLP tasks
as constructing noun categories (Davidov and Rap-
poport, 2006) analogy question answering (Biçici and
Yuret, 2006), extracting semantic relationships (Tur-
ney, 2008a; Bollegala et al., 2009; Davidov et al.,
2007), detecting synonyms (Turney, 2008b), disam-
biguation of nominal compound relations (Davidov
and Rappoport, 2008), sentiment analysis (Davidov
et al., 2010) and detection of sarcasm (Tsur et al.,
2010) or irony with Probabilistic LDA (Nozza et al.,
2016).

In a similar way, (Lebboss et al., 2017; Lebboss
et al., 2019), building on (Bernard, 1997), cluster
word vectors based on grammatical patterns. Oth-
ers use statistical graph-based approaches for auto-
matic extraction of semantic relations (Vossen, 1998;
Widdows and Dorow, 2002; Shinzato and Torisawa,
2004).

3 OUR METHOD

In order to assess the quality of semantic information
that can be extracted from automatically constructed
grammatical pattern, the flexible approach is the most
convenient. Very few tests have been made on other
languages than English, and only one (Lebboss et al.,
2017) has been done on Arabic.

In this last work, the corpus vocabulary was cut
in two parts, high-frequency elements and lower-
frequency elements. Then patterns were generated
from the high-frequency elements in the vicinity of
words, forming vectors to be clustered and compared
for evaluation with Arabic WordNet. There are draw-
backs: the method explores only some of the possible
patterns; it cannot work on a really big corpus; the
evaluation was partial and only done on Arabic data.
But on the other side, the method was not language-
dependant, was based on grammatical information1,
and had a very few number of parameters, relatively
easy to tune.

The method presented here corrects all these
drawbacks, adding different testing protocols (every
protocol available for Arabic), with a much larger cor-
pus (one billion instead of six millions words), while
reducing the computation time and minimizing occu-
pied space.

This is done in a modular and multi-threaded
framework (https://gitlab.com/Data-Liasd/Interface),
used by various projects of our laboratory since 2014,
and collecting tools for extracting language struc-
ture from extra-large corpora. It is mainly written in
C++, with parts in Python and Java, Qt5 library, Post-
greSQL database and Cmake. Figure 1 presents the
general operation of our system, and its three main
stages will be presented in next subsections.

3.1 Word Trie Preparation

A Trie or Prefix Tree, is one of the best data struc-
tures for word indexing. It stores words by nodes;
each node has sons and brothers, and contains one
Unicode letter. Every common prefix is represented
by one node; each node branches off when the letters
diverge from the other prefixes in the Trie. The word
is represented by merging the characters from the root
node to the end node. The structure is compact as it
stores the common prefixes only once. Unlike hash-
code or binary trees where the search time of a word is
proportional to the number of stored elements, search
time here is proportional to word length. It is thus
faster as the maximum length of a word is lower than

1In a big enough corpus, high-frequency words are, as is
well known, mostly functional ones.

Unsupervised Grammatical Pattern Discovery from Arabic Extra Large Corpora

213

Figure 1: Our system.

the number of words. It is also more efficient than
hashing since it does not require hash function com-
puting or collision handling. The only drawback is
that it consumes a lot of space if the words are het-
erogeneous – few common prefixes (which is not the
case here).

We store the Trie in two ways: globally as a Json
file or by nodes in the database. It is worthy to note
that the word-trie is built before applying any prepro-
cessing, in order to generate various tests without hav-
ing to re-read the corpus. For reasons that will appear
later, word identifiers are frequency-based.

Word preprocessing integrates Khoja stemmer
(Khoja and Garside, 1999) implemented in Java by
Motaz Saad2), Arabic IBM normalization rules im-
plemented by Stanford NLP group3, among others. In
normalization preprocessing, we also replace all num-
bers by ‘1’, and all words in foreign scripts by ‘0’, in
order to keep track of those as potential context. After
every preprocessing, a mapping to the initial word-trie
is stored in the database.

3.2 Phrase Segmentation Preparation

Before building patterns, we first segment the corpus
in small textual units that will serve as context. The
segments are delimited with punctuation (including
carriage return and linefeed). The type of punctua-
tion used for boundaries has an impact on the pattern
results. For Arabic, cutting at double punctuations
(parenthesis, brackets) or at quotes gave us lowest
quality results and induced bad grammar rules. For

2https://github.com/motazsaad/
khoja-stemmer-command-line

3https://github.com/stanfordnlp/CoreNLP/blob/master/
src/edu/stanford/nlp/trees/international/arabic/ArabicUtils.
java

instance, prepositions were linked to the word before
and not to the following word. So we suppressed dou-
ble punctuations and quotes from the list of delim-
iters, and obtained much better results.

Segments are stored as arrays of preprocessed
word identifiers (the Trie structure is not convenient
here) with file swapping for multithreading. We then
clean the segments that would not be useful for con-
text determination: those reduced to one word, or
containing only digits, only foreign words, or both.

3.3 Pattern Discovery

The first step here is to split the vocabulary between
high-frequency and lower-frequency items. This is
done by selecting a threshold, the first parameter of
our system; though we have done it by hand, it could
be automated by looking at the Zipf curve. We term
the high-frequency items “markers”; most of them
are grammatical words; among the rare exceptions,
“ibn” (literally “son of”) marks proper nouns, “he
said” marks a hadith (as in English “once upon a time”
marks a tale). Lower-frequency items will simply be
called words. Testing if a form is a marker is done
by comparing the form identifier with the identifier of
the last defined marker. If it is greater, it is a marker,
otherwise it is a word. We have two basic grammar
rules:

1. A pattern contains at least one word,
2. A pattern contains at most JL consecutive words.

The JL parameter (for JokerLength) mentioned in
the last rule is our second parameter; it is the max-
imum number of consecutive words that can be at-
tached to a pattern. We define a joker (a wildcard) as
a sequence of words whose length is comprised be-
tween 1 and JL. A pattern is then a sequence of mark-
ers, coined mi in the following examples, and jokers,
coined ∗. Patterns are most appropriately stored in a
Trie; every node in the Trie contains:

• a label (the marker or joker identifier),
• the number of outputs attested,
• a map of word identifiers and occurrences in the

pattern.

The second step is to cut the segments into pieces
that corresponds to patterns of maximum length (ac-
cording to rules 1 and 2 above). For instance, if words
are coined x, the segment x m1 x x xi x x m2 x, if
JL = 3, must be cut in two: x m1 x x xi and xi x x m2 x
(note that xi is in both parts).

The third step is to generate, for each part of a
segment, every pattern that is compatible with it4, to

4In (Lebboss et al., 2017) this third step did not exist.

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

214

store the pattern in the pattern-trie, and to store in the
map of the pattern every word that has occurred in it,
updating its number of occurrences. The pattern-trie
is constructed in multithreaded master-slave mode.

We will keep only the patterns that appear in the
corpus more than some frequency threshold: this
threshold is our last parameter.

The last step is to generate the matrix words×
patterns. We developed three methods to generate
the matrix, depending on the corpus size, to optimize
the performance. The matrix is stored in compressed
format; only the non-zero components are recorded
with the word and pattern identifier and the number
of occurrences.

1. For small corpora: After merging the pattern-tries,
we parsed and generated the word× pattern ma-
trix (as a map) along with the parsing.

2. For medium corpora (> 70 million segments, 6
million unique words): After merging the pattern-
tries, each component of the matrix is stored in a
table, and then SQL queries are used to group all
patterns for each word.

3. For large corpora: At the end of each local Trie,
the partial components of the matrix are stored in
a table. We retrieve the different identifiers for
the same pattern. In the database, we merge these
identifiers (by SQL queries) to obtain the compo-
nents of the matrix; then we proceed as for the
medium corpora.

3.4 Evaluation

We conduct two types of evaluation. In the first
one, based on the few semantic similarity gold stan-
dards available for Arabic (RG65, MC30 and Word-
Sim353), dot products5 between vectors of the words
included in the gold standard are computed; then cor-
relations (Pearson, Spearman) between these and the
human scores are computed. Both correlations give
in general close results, so we will only give Pearson
here.

The second evaluation is more complex but bet-
ter suited for Arabic and resource-poor languages. It
is based on WordNet. The idea is to compare simi-
larities in WordNet (graph-vicinity) to the result of a
clustering. Of course, WordNet similarities compare
concepts (synsets), not words, so they cannot be di-
rectly used. Following (Aliane, 2019), the similarity
between words chosen is derived from wup similarity
(Wu and Palmer, 1994) as follows:

5We also tried Euclidian distance but dot product gives
better results.

sim(mk,m j) = ArgMax
k∈synset(mk),
j∈synset(m j)

wup similarity(k, j) (1)

Among the numerous clustering models avalaible,
we chose SOM (Kohonen, 1982); the main reason for
this choice is that in later stages we aim to explore
cluster topology and analyse metaclusters in the map;
another reason was the existence of a very efficient
version for sparse vectors (Melka and Mariage, 2017),
which we used for our method, while using regular
SOM with dense vectors. The quality of each cluster
is computed on the basis of similarity between words
in the cluster, according to:

Qlt(Ci) =
∑
|ci−1|
k=1 ∑

|ci|
j=k+1 sim(mk,m j)

|ci|.|ci−1|/2
(2)

The global quality is the average on all k clusters:

Qlt =
∑

k
i=1 Qlt(Ci)

k
(3)

We compare the results of our method based
on grammatical information to three state-of-the-art
methods based on lexical information, CBoW, Skip-
Gram and Glove (Mikolov et al., 2013a; Pennington
et al., 2014), both on Arabic and on English.

The corpora used are given in table 1. For Ara-
bic, we used three corpora of different sizes, in order
to study the influence of corpus size on the results:
a big extract of a very large corpus created by (Leb-
boss, 2016), hereafter ABC (for Arabic Big Corpus),
the reduced corpus on which his method was exper-
imented (ARC), and Arabic Wikipedia 2019 (AW).
For English, we used a single large corpus, Wikipedia
2019 (EW). The support is the number of words com-
mon to the corpus and WordNet (Arabic WordNet and
Princeton WordNet respectively), for wup evaluation.
Uniques means number of unique normalized words.

Table 1: Corpora.

Corpus Words Uniques Support
EW 2,250,594,333 9,257,846 47,118

ABC 1,021,006,238 6,084,342 4,159
AW 119,435,658 2,700,803 3,566
ARC 8,573,345 544,796 822

4 EXPERIMENTS

Our experiments were carried on a 64-bits server with
72 CPU and 125 GB of memory. For each method
tested, we have empirically determined the parame-
ter values giving the best results. For CBOW and

Unsupervised Grammatical Pattern Discovery from Arabic Extra Large Corpora

215

SkipGram, we used negative sampling and a four-
words window. For GloVe, we used a ten-words win-
dow. For all three methods, we adopted 15 iterations
and 300 as vector dimension. For our method, based
on the observations below, we choose the number of
markers as 150 in Arabic and 75 in English, with
JL=4. Threshold for the patterns (depending on the
corpus) was fixed for obtaining a vector of≈ 1500 di-
mensions. For the clustering, the best results were
obtained with the SOM architecture and operation
recommended by (Kohonen, 1982) (hexagonal neigh-
borhood, Euclidian distance, and learning parameter
computed from the number of samples in two stages),
and with ≈ 550 clusters.

We will begin by some preliminary observations,
then give the results of the two types of evaluation.

4.1 Observations

As expected, the frequency distribution of words fol-
lows a Zipf Law. In English, 50 markers cover more
than 40% of the occurrences, while Arabic needs
more markers to cover the same percentage (150 with
ABC corpus). This implies that Arabic has more
structural diversity of the patterns.

More interesting, as shown in figure 2, the distri-
bution of the segments, while being a long tail dis-
tribution (with 4,357,913 segments having only one
occurrence), does not obey any kind of Zipf distribu-
tion. The black line in the figures represent the Zipf
curve closer to the data. To the contrary, the distribu-
tion of the patterns (figure 3) strictly follows a Zipf
Law (with only two humps compared to word distri-
butions). This is independent of the value of the pa-
rameters, and of the language.

The average length of the segments is 8.67 in En-
glish and 9.22 in Arabic (for the biggest corpus). Av-
erage length of the patterns is 7,1 in English and 7,75
in Arabic. The average number of markers in a pattern
is ≈ 5.

Study of the influence of number of markers and
JL value on the number and length of patterns yields
the following observations:

• when the number of markers grows, so does the
number of patterns, but their average length di-
minishes;

• length and number of patterns grow with JL un-
til a plateau is reached; the bigger the corpus, the
sooner the plateau is reached (JL = 3 or 4).

4.2 Semantic Similarity

The results for WordSim353 (table 2, with Pearson
correlation) are not good for any method, but very bad

(a) Arabig Big Corpus.

(b) English Wikipedia.

Figure 2: Log-log segment frequency distribution.

for our method. For Arabic they are worse when the
corpus size is bigger.

Table 2: Results for Direct Evaluation with WordSim353.

Corpus CBow SkipG. GloVe Our
EW 0.63 0.66 0.66 0.03
ABC 0.36 0.39 0.40 0.1
AW 0.46 0.48 0.49 0.07
ARC 0.52 0.45 0.46 -0.06

The results for RG-65 and MC-30 are very simi-
lar, so we give only the first ones (table 3); Pearson
correlation is good with all state-of-the-art methods
(Spearman, not given, is somewhat lower) and not
good with our method, but especially bad for English.
For Arabic the same hold than for WordSim353: the
correlation worsens when the corpus size is bigger.

Table 3: Results for Direct Evaluation with RG.

Corpus CBow SkipG. GloVe Our
EW 0.78 0.78 0.74 0.02
ABC 0.88 0.89 0.92 0.41
AW 0.90 0.92 0.92 0.47
ARC 0.99 0.99 0.99 0.59

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

216

(a) Arabig Big Corpus.

(b) English Wikipedia.

Figure 3: Log-log pattern frequency distribution.

Thus it is clear that our method, only based on
grammatical information, does not capture this type
of semantic similarity. Still, results are better for Ara-
bic and RG65 (or MC30).

4.3 WordNet based Similarity

The situation is not at all the same with WordNet sim-
ilarity in indirect evaluation by clustering. As shown
in table 4, our method can give better results in Qlt for
Arabic than state-of-the-art ones; the condition seems
to be that the corpus be large. For English, even if the
results are not as good as state-of-the-art ones, they
are largely better than those for semantic similarity.

Table 4: Results for WordNet similarity.

Corp. CBoW SkipG. GloVe Our
EW 0.563 0.560 0.518 0.399
ABC 0.419 0.402 0.398 0.504
AW 0.425 0.422 0.411 0.459
ARC 0.455 0.446 0.450 0.390

Difference between English and Arabic here is
perhaps correlated to the more diverse pattern struc-
ture in Arabic observed before, which could reflect
that grammatical structure conveys more semantic in-
formation in Arabic.

5 CONCLUSION

The most notable (and unexpected) observation, never
done before to the best of our knowledge, is that pat-
terns, like words but unlike segments, follow Zipf
Law, at least in English and Arabic. The cause of
Zipf Law in word distribution has not been settled;
if this phenomenon is confirmed in other languages,
it would mean that patterns are structurally similar to
words and not to segments or sentences, and perhaps
bring new light into the debate. The “monkey” model
for Zipf Law (Miller, 1957) aims to explain it as a
random effect; but why does it apply to words and
patterns and not to segments or sentences?

Second, considering the issue we have adressed
here, our results show that at least in some cases se-
mantic information can be deduced from grammatical
patterns, even at times better than from lexical pat-
terns. It seems clear that this holds more for languages
with more diverse pattern structure, as Arabic, than
for English. Of course that does not mean that one
should not look at lexical patterns, rather than both
types of information should be combined.

It is hard to assess what exactly is at stake between
semantic similarity gold standards and WordNet clus-
ter similarity. First, one may note that those gold stan-
dards are very small (hundreds of word pairs at most),
while WordNet, even for Arabic, is much more popu-
lated (with millions of potential word pairs). Second,
those gold standards do not distinguish between types
of similarity, while WordNet is by design much more
precise.

Whatever the case, we hope to have convinced the
reader that the contribution of grammatical structure
to semantic characterization of words deserves to be
explored.

Our strategy for discovering grammatical struc-
ture functions at an acceptable computational cost,
as shown in table 5, at least for Arabic. While Leb-
boss program took 125 minutes for the ARC corpus
(and did not compute all patterns), our program takes
only 2 minutes. We have optimized our algorithm
only on the basis of Arabic data, and a comparable
optimization is probably needed for English, in order
to shorten the computation time. The most costly in
the process is the pattern discovery (taking more than
90% of the total time).

Table 5: Computation times.

Method ABC AW ARC EW
GloVe 31mn 7mn 1mn 3.88h
CBoW 1.68h 28mn 2mn 9.8h
SkipGram 7.15h 128mn 5mn 45.56h
Our 7.49h 36mn 2mn 122.9h

Unsupervised Grammatical Pattern Discovery from Arabic Extra Large Corpora

217

For the time being a human intervention is nec-
essary for splitting the vocabulary, but this could be
automated by taking into account the higher hump of
Zipf curve. Absolutely no knowledge of the language
nor of its grammar is needed here.

We aim to develop further different aspects of
this work: analyse the relations between clusters in
the SOM map produced; research about distribu-
tional properties of grammatical patterns on other lan-
guages; look closer at English features that could ex-
plain the much longer computation times; last, but
not least, elaborate a method integrating lexical and
grammatical patterns in order to categorize words, es-
pecially for resource-poor languages.

ACKNOWLEDGEMENTS

This work has been done as a part of the project
”Analyses sémantiques de textes arabes utilisant
l’ontologie et WordNet” supported by Paris 8 Univer-
sity and the Lebanese University.

REFERENCES

Alfonseca, E. and Manandhar, S. (2002). Improving an
ontology refinement method with hyponymy patterns.
Language Resources and Evaluation. Las Palmas:
LREC.

Aliane, N. (2019). Evaluation des représentations vecto-
rielles de mots. PhD thesis, Paris 8.

Azzopardi, L., Girolami, M., and Crowe, M. (2005). Proba-
bilistic hyperspace analogue to language. In Proceed-
ings of the 28th annual international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 575–576.

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t
count, predict! a systematic comparison of context-
counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 238–247.

Baroni, M., Murphy, B., Barbu, E., and Poesio, M. (2010).
Strudel: A corpus-based semantic model based on
properties and types. Cognitive science, 34(2):222–
254.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.
(2003). A neural probabilistic language model. Jour-
nal of machine learning research, 3(Feb):1137–1155.

Berland, M. and Charniak, E. (1999). Finding parts in very
large corpora. In Proceedings of the 37th annual meet-
ing of the Association for Computational Linguistics,
pages 57–64.

Bernard, G. (1997). Experiments on distributional catego-
rization of lexical items with Self Organizing Maps.
In Proceedings of WSOM, volume 97, pages 4–6.

Biçici, E. and Yuret, D. (2006). Clustering word pairs to
answer analogy questions. In Proceedings of the Fif-
teenth Turkish Symposium on Artificial Intelligence
and Neural Networks (TAINN 2006), Akyaka, Mugla,
Turkey.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning re-
search, 3(Jan):993–1022.

Bollegala, D., Maehara, T., Yoshida, Y., and
Kawarabayashi, K.-i. (2015). Learning word
representations from relational graphs. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 29.

Bollegala, D. T., Matsuo, Y., and Ishizuka, M. (2009). Mea-
suring the similarity between implicit semantic rela-
tions from the web. In Proceedings of the 18th inter-
national conference on World wide web, pages 651–
660.

Caraballo, S. A. (1999). Automatic construction of a
hypernym-labeled noun hierarchy from text. In Pro-
ceedings of the 37th annual meeting of the Association
for Computational Linguistics, pages 120–126.

Clark, S. (2012). Vector space models of lexical mean-
ing. Handbook of Contemporary Semantics–second
edition. Wiley-Blackwell, page 8.

Collobert, R. (2014). Word embeddings through Hellinger
PCA. In Proceedings of the 14th Conference of the
European Chapter of the Association for Computa-
tional Linguistics. Citeseer.

Collobert, R. and Weston, J. (2008). A unified architec-
ture for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the
25th international conference on Machine learning,
pages 160–167.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (almost) from scratch. Journal of
machine learning research, 12:2493–2537.

Davidov, D. and Rappoport, A. (2006). Efficient unsuper-
vised discovery of word categories using symmetric
patterns and high frequency words. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 297–304.

Davidov, D. and Rappoport, A. (2008). Classification of se-
mantic relationships between nominals using pattern
clusters. In Proceedings of ACL-08: HLT, pages 227–
235.

Davidov, D., Rappoport, A., and Koppel, M. (2007). Fully
unsupervised discovery of concept-specific relation-
ships by web mining. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 232–239.

Davidov, D., Tsur, O., and Rappoport, A. (2010). Enhanced
sentiment learning using twitter hashtags and smileys.
In Coling 2010: Posters, pages 241–249.

Dhillon, P. S., Foster, D., and Ungar, L. (2011). Multi-view
learning of word embeddings via cca. Proc. Of NIPS.

Dumais, S. T. (2004). Latent semantic analysis. An-
nual review of information science and technology,
38(1):188–230.

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

218

Erk, K. (2012). Vector space models of word meaning and
phrase meaning: A survey. Language and Linguistics
Compass, 6(10):635–653.

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu,
A.-M., Shaked, T., Soderland, S., Weld, D. S., and
Yates, A. (2004). Web-scale information extraction
in knowitall: (preliminary results). In Proceedings of
the 13th international conference on World Wide Web,
pages 100–110.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E.,
and Smith, N. A. (2014). Retrofitting word vectors to
semantic lexicons. arXiv preprint arXiv:1411.4166.

Firth, J. R. (1957). A synopsis of linguistic theory 1930-55.
Studies in Linguistic Analysis, Special vol:1–32.

Gross, M. (1994). Computational approaches to the lexicon.
chapter Constructing Lexicon-Grammars, pages 213–
263. Oxford University Press.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-
3):146–162.

Hearst, M. (1998). Wordnet: An electronic lexical database
and some of its applications. Automated Discovery of
WordNet Relations.

Hearst, M. A. (1992). Automatic acquisition of hyponyms
from large text corpora. In Coling 1992 volume 2:
The 15th international conference on computational
linguistics.

Kanerva, P., Kristoferson, J., and Holst, A. (2000). Random
indexing of text samples for latent semantic analysis.
In Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 22.

Khoja, S. and Garside, R. (1999). Stemming arabic text.
Lancaster, UK, Computing Department, Lancaster
University.

Kiela, D., Hill, F., and Clark, S. (2015). Specializing word
embeddings for similarity or relatedness. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 2044–2048.

Kohonen, T. (1982). Self-organized formation of topolog-
ically correct feature maps. Biological cybernetics,
43(1):59–69.

Lazaridou, A., Baroni, M., et al. (2015). A multitask objec-
tive to inject lexical contrast into distributional seman-
tics. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 21–26.

Lebboss, G. (2016). Contribution à l’analyse sémantique
des textes arabes. PhD thesis, Paris 8.

Lebboss, G., Bernard, G., Aliane, N., Abdallah, A., and
Hajjar, M. (2019). Evaluating methods for building
arabic semantic resources with big corpora. In Stud-
ies in Computational Intelligence, volume 829, pages
179–197. Springer International Publishing.

Lebboss, G., Bernard, G., Aliane, N., and Hajjar, M. (2017).
Towards the enrichment of Arabic WordNet with big
corpora. In IJCCI, pages 101–109.

Levy, O. and Goldberg, Y. (2014). Dependency-based word
embeddings. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 302–308.

Levy, O., Goldberg, Y., and Dagan, I. (2015a). Improv-
ing distributional similarity with lessons learned from
word embeddings. Transactions of the Association for
Computational Linguistics, 3:211–225.

Levy, O., Remus, S., Biemann, C., and Dagan, I. (2015b).
Do supervised distributional methods really learn lex-
ical inference relations? In Proceedings of the 2015
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 970–976.

Lin, D. (1998). Automatic retrieval and clustering of simi-
lar words. In 36th Annual Meeting of the Association
for Computational Linguistics and 17th International
Conference on Computational Linguistics, Volume 2,
pages 768–774.

Lin, D., Zhao, S., Qin, L., and Zhou, M. (2003). Identifying
synonyms among distributionally similar words. In
IJCAI, volume 3, pages 1492–1493. Citeseer.

Liu, Q., Jiang, H., Wei, S., Ling, Z.-H., and Hu, Y. (2015).
Learning semantic word embeddings based on ordi-
nal knowledge constraints. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 1501–1511.

Lund, K., Burgess, C., and Atchley, R. A. (1995). Semantic
and associative priming in high-dimensional semantic
space. In Proceedings of the 17th annual conference
of the Cognitive Science Society, volume 17, pages
660–665.

Melka, J. and Mariage, J.-J. (2017). Efficient implementa-
tion of self-organizing map for sparse input data. In
IJCCI, pages 54–63.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013b). Linguis-
tic regularities in continuous space word representa-
tions. In Proceedings of the 2013 conference of the
north american chapter of the association for com-
putational linguistics: Human language technologies,
pages 746–751.

Miller, G. A. (1957). Some effects of intermittent silence.
The American Journal of Psychology, 70(2):311.

Mnih, A. and Hinton, G. E. (2008). A scalable hierarchi-
cal distributed language model. Advances in neural
information processing systems, 21:1081–1088.

Mnih, A. and Kavukcuoglu, K. (2013). Learning word em-
beddings efficiently with noise-contrastive estimation.
Advances in neural information processing systems,
26:2265–2273.

Mrkšić, N., Séaghdha, D. O., Thomson, B., Gašić, M.,
Rojas-Barahona, L., Su, P.-H., Vandyke, D., Wen,
T.-H., and Young, S. (2016). Counter-fitting word
vectors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

Murphy, B., Talukdar, P., and Mitchell, T. (2012). Learn-
ing effective and interpretable semantic models using
non-negative sparse embedding. In Proceedings of
COLING 2012, pages 1933–1950.

Nozza, D., Fersini, E., and Messina, E. (2016). Unsuper-
vised irony detection: a probabilistic model with word

Unsupervised Grammatical Pattern Discovery from Arabic Extra Large Corpora

219

embeddings. In International Conference on Knowl-
edge Discovery and Information Retrieval, volume 2,
pages 68–76. SCITEPRESS.

Padó, S. and Lapata, M. (2007). Dependency-based con-
struction of semantic space models. Computational
Linguistics, 33(2):161–199.

Pantel, P. and Ravichandran, D. (2004). Automatically la-
beling semantic classes. In Proceedings of the Human
Language Technology Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: HLT-NAACL 2004, pages 321–328.

Pasca, M. (2004). Acquisition of categorized named entities
for web search. In Proceedings of the thirteenth ACM
international conference on Information and knowl-
edge management, pages 137–145.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532–1543.

Phillips, W. and Riloff, E. (2002). Exploiting strong syn-
tactic heuristics and co-training to learn semantic lex-
icons. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2002), pages 125–132.

Riloff, E., Jones, R., et al. (1999). Learning dictionaries for
information extraction by multi-level bootstrapping.
In AAAI/IAAI, pages 474–479.

Riloff, E. and Shepherd, J. (1997). A corpus-based ap-
proach for building semantic lexicons. arXiv preprint
cmp-lg/9706013.

Ritter, A., Soderland, S., and Etzioni, O. (2009). What
is this, anyway: Automatic hypernym discovery. In
AAAI Spring Symposium: Learning by Reading and
Learning to Read, pages 88–93.

Roark, B. and Charniak, E. (1998). Noun-phrase co-
occurrence statistics for semi-automatic semantic lex-
icon construction. In COLING 1998 Volume 2: The
17th International Conference on Computational Lin-
guistics.

Rubinstein, D., Levi, E., Schwartz, R., and Rappoport, A.
(2015). How well do distributional models capture
different types of semantic knowledge? In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 726–730.

Rydin, S. (2002). Building a hyponymy lexicon with hi-
erarchical structure. In Proceedings of the ACL-02
workshop on Unsupervised lexical acquisition, pages
26–33.

Salton, G. (1971). The smart system. Retrieval Results and
Future Plans.

Sang, E. T. K. (2007). Extracting hypernym pairs from the
web. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster
Sessions, pages 165–168.

Schutze, H., Manning, C. D., and Raghavan, P. (2008). In-
troduction to information retrieval, volume 39. Cam-
bridge University Press Cambridge.

Shinzato, K. and Torisawa, K. (2004). Acquiring hyponymy
relations from web documents. In Proceedings of
the Human Language Technology Conference of the
North American Chapter of the Association for Com-
putational Linguistics: HLT-NAACL 2004, pages 73–
80.

Sombatsrisomboon, R., Matsuo, Y., and Ishizuka, M.
(2003). Acquisition of hypernyms and hyponyms
from the www. In Proceedings of the 2nd Interna-
tional Workshop on Active Mining.

Sumida, A. and Torisawa, K. (2008). Hacking wikipedia
for hyponymy relation acquisition. In Proceedings of
the Third International Joint Conference on Natural
Language Processing: Volume-II.

Tanev, H. and Magnini, B. (2006). Weakly supervised ap-
proaches for ontology population. In 11th Conference
of the European Chapter of the Association for Com-
putational Linguistics.

Thelen, M. and Riloff, E. (2002). A bootstrapping method
for learning semantic lexicons using extraction pat-
tern contexts. In Proceedings of the 2002 conference
on empirical methods in natural language processing
(EMNLP 2002), pages 214–221.

Tjong Kim Sang, E. and Hofmann, K. (2007). Automatic
extraction of dutch hypernym-hyponym pairs. LOT
Occasional Series, 7:163–174.

Tsur, O., Davidov, D., and Rappoport, A. (2010). Icwsm—a
great catchy name: Semi-supervised recognition of
sarcastic sentences in online product reviews. In Pro-
ceedings of the International AAAI Conference on
Web and Social Media, volume 4.

Turney, P. D. (2008a). The latent relation mapping engine:
Algorithm and experiments. Journal of Artificial In-
telligence Research, 33:615–655.

Turney, P. D. (2008b). A uniform approach to analogies,
synonyms, antonyms, and associations. arXiv preprint
arXiv:0809.0124.

Turney, P. D. and Pantel, P. (2010). From frequency to
meaning: Vector space models of semantics. Journal
of artificial intelligence research, 37:141–188.

Vossen, P. (1998). A multilingual database with lexical se-
mantic networks. Dordrecht: Kluwer Academic Pub-
lishers. doi, 10:978–94.

Widdows, D. and Dorow, B. (2002). A graph model for
unsupervised lexical acquisition. In COLING 2002:
The 19th International Conference on Computational
Linguistics.

Wong, S. M., Ziarko, W., and Wong, P. C. (1985). Gen-
eralized vector spaces model in information retrieval.
In Proceedings of the 8th annual international ACM
SIGIR conference on Research and development in in-
formation retrieval, pages 18–25.

Wu, Z. and Palmer, M. (1994). Verb semantics and lexical
selection. arXiv preprint cmp-lg/9406033.

Yatbaz, M. A., Sert, E., and Yuret, D. (2012). Learning syn-
tactic categories using paradigmatic representations
of word context. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 940–951.

NCTA 2021 - 13th International Conference on Neural Computation Theory and Applications

220

