
Research of the Possibilities of Conducting XSS-attacks and Methods
of Countering It

Pavel Razumov a, Larissa Cherckesova b and Olga Safaryan c
Don State Technical University, Gagarina sq. 1, Rostov-on-Don, Russia

Keywords: XSS Attack, XSS Vulnerabilities, Cross-Site Scripting, Application Layer, Malicious Script, Exploits
Vulnerabilities, Dangerous Code, Virus Code, Preventive Protection Methods, Application Security.

Abstract: One of the most popular types of attacks these days is cross-site scripting using JavaScript. In addition to the
problems caused by illegal use of JavaScript, I will discuss security rules that will help prevent a possible
XSS attack, as well as provide research related to checking sites for organized website security. In this paper,
we have proposed some algorithms that support scanning XSS vulnerabilities, used to create an automated
scanning program that will reduce the risk of using Internet resources.

1 INTRODUCTION

One of the most popular attacks these days is cross-
site scripting using JavaScript. In addition to the
problems caused by illegal use of JavaScript, the
security features of the XSS attack related to checking
sites for organized website security were prevented
(Common Weakness Enumeration).

In this paper, I have proposed some algorithms
that scan for XSS vulnerabilities, used to create an
automated scanning program that reduced the risk of
using Internet resources (Cherckesova, 2020).
Research object: web application.

Research subject: search for XSS vulnerabilities
and counteraction to them.

The aim of this work is to create a proprietary
system for automated testing of web applications for
XSS vulnerabilities, capable of combining a high
level of coverage and detection, as well as ease of use.
An integral part of creating a new system is the use of
systems that fulfill similar goals.

The program should be operated by web
application developers to control the security level of
the project. End users are testers or web application
developers.

In this work, the analysis and classification of
existing XSS vulnerabilities will be carried out, as

a https://orcid.org/0000-0003-2454-3600
b https://orcid.org/0000-0002-9392-3140
c https://orcid.org/0000-0002-7508-913X

well as the algorithm of the program and its
implementation will be described.

2 RESEARCH METHODOLOGY

The main task of cross-site scripting is to get user
cookies using a script built into the server and then
fetch the necessary data using them for the next
attacks. The attacker does not attack users directly,
but exploits vulnerabilities in the website visited by
the victims and injects a special script. In the browser,
this code does not appear to stand out in any way, but
at the same time this site becomes an accomplice in
the attack.

Usually, to exploit such vulnerabilities, contact
with the user is necessary: either they are attracted to
a hacked site using social engineering, or they are
waiting for the moment until they go to this site by
themselves.

Web programmers often do not pay due attention
to the problems associated with XSS vulnerabilities,
but if you do not get rid of them in a timely manner,
this can cause global problems and cause irreparable
harm to the security of the system. It is important to
consider that if the administrator's cookies get to a

54
Razumov, P., Cherckesova, L. and Safaryan, O.
Research of the Possibilities of Conducting XSS-attacks and Methods of Countering It.
DOI: 10.5220/0010617400003170
In Proceedings of the International Scientific and Practical Conference on Computer and Information Security (INFSEC 2021), pages 54-60
ISBN: 978-989-758-531-9; ISSN: 2184-9862
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

hacker, he will be able to gain access to the control
panel of the site and its contents.

XSS attacks were the most widespread in the past
year and the situation has not changed at the present
time. In this connection, it should be concluded that
cross-site scripting is relevant, but, unfortunately, not
enough efforts are being made to solve this problem,
and scammers are coming up with more and more
new schemes for its implementation, which are harder
to deal with every year (Frazer Howard).

2.1 Analysis and Classification of
Existing XSS Types

How Cross-Site Scripting Works.
Cross-site scripting (XSS) is one of many attacks

on web systems, affecting many web applications and
is one of the most common types of hacker attacks at
the application layer. In English, the term sounds like
Cross-Site Scripting, but it has the abbreviation XSS,
so as not to be confused with cascading style sheets,
which translate as Cascading Style Sheets (Kozlov,
2010).

This attack allows a hacker to inject malicious
code into a specific page of the site so that the victim's
Internet browser, when the page is launched, will
launch this code.

With the help of cross-site scripting, it is possible
to issue modified data, replace links, both visible and
hidden, or display your own advertisements on the
affected resource. If a hacker can find even one XSS
vulnerability, then cross-site scripting will work
(Fogie, 2007).

Many websites store their users' data in a database
(DB) so that they can be displayed as they are entered.
The peculiarity of such attacks is that the virus code
can use the authorization form of the site visitor to
obtain extended access or user authorization data in
the web system. Dangerous code can be embedded
into a web page not only through a vulnerability on
the user's computer, but also through a vulnerability
in the server.

The aforementioned attacks are often made
possible by malicious scripts written in JavaScript
(JS), with the help of which information is
subsequently introduced from third-party sources.
The scheme is built in such a way that the malicious
code gets into the database, where the username and
password of the visitor are located. Thus, when the
site displays the user's name on the web page, this
code will be executed. This code can do almost
anything, given certain conditions, as a result of
which the threat becomes quite realistic.

Many website owners neglect to protect against
such threats, believing that they cannot be used to
steal confidential data that is on the server. This is a
common mistake, since a page or cookie can contain
quite sensitive data, and where the safety of a cross-
site request forgery is at risk, a hacker will be able to
perform all actions available to the user. For the
operation of the application, and the business itself,
the results of XSS attacks can cause significant
damage. More than once, many popular websites such
as Vkontakte, Facebook, Google, Mail have become
victims of such attacks (Semenov).

Consider a standard example of an XSS attack:
 a hacker enters a script into the URL of an

active online store;
 the script directs the user to the replaced

malicious page;
 a script is executed on the page that gets the

value of the visitor's cookies;
 then the necessary information is sent to the

hacker, who uses it to intercept the user's
session.

Despite the fact that the store was not harmed, the
hacker using the vulnerability fraudulently obtained
the confidential information of visitors and took
control of their sessions. Also, there is an option to
create a fake URL by encoding a part of it using any
encoding method, which will make it unattractive.

The user will not be suspicious at the sight of the
familiar URL and will not pay attention to the
subsequent encoded part. Thus, fraud occurs on the
Internet (Mitchell).
General classification of XSS attacks.
Not all vulnerabilities are the same, there are many
types. Let us consider the classification of such
attacks and analyze according to two criteria: in the
direction of impact and in the method of impact.

Let's look at and analyze Figure 2 below, where
you can visually consider how to use cross-site
scripting.

According to the method of impact, attacks are
subdivided into active and passive:
 Passive (autonomous) requires the direct

intervention of the attacker. The victim needs
to do a specific action to call the event handler
and load the malicious script in a prepared
form. In this case, you can resort to social
engineering, for example, send an e-mail with
a proposal to follow the link and click on a
specific area of the site. When the user
completes all these actions, a malicious script
will be launched. In case of inaction of the
victim, the code will remain inactive.

Example:

Research of the Possibilities of Conducting XSS-attacks and Methods of Countering It

55

<b href = “b” onmauseower = alert (1561) style =
”frontsize: 600pc”>

In this example, we consider a hyperlink that
catches the eye of a site visitor, and has a long
designation, in connection with which, the chance of
clicking on it increases. This link has a hover event
handler that contains the attack code. This attack is
passive.

Of course, the links provided by hackers do not
look like:

http://www.haker.ru/searh?q=ans><script>alert
“+ document.cookies) </script>

There are many different ways to encode the
content of a link so that it does not look suspicious.

You can encode in base64, hex, or use a third-
party server for routing.

Example: data: text / html; base64,
aHR0NoLbWw / hYUe3GlcnQoJycpPC9zY3JpcHQ
+

- Active XSS attack. The hacker does not need to
urge potential victims to go to prepared links, because
the code is entered into the database or into a specific
active file on the server. Input forms have an event
handler installed that will be automatically activated
when entering a web page. As a result, all visitors will
become victims of cyber fraud.

Example:
<input type = kkkkkk value = a onfocus = alert

(2571) AUTOFOCUS>
The above is an input field with automatic focus

appearance, which executes the prepared attack code.
The focus is set so that its set handler is called. The
attack is active and is carried out automatically.

According to the impact vector, XSS attacks are
divided into three types: reflected, stored, and based
on the DOM model.
 Reflected ("Reflected XSS" - non-persistent).

The most common type of attack that requires
the user to take certain actions.

This type of attack will work if a user clicks on a
specially prepared link that sends a request to a
website containing a vulnerability. This vulnerability
is often the result of insufficient filtering of incoming
requests. All this allows you to manipulate functions
and activate malicious scripts to steal data.

If angle brackets are not escaped on the site, then
you should convert them to "& lt;" and "& gt;" to get
the script on the search results page.

The principle of such an attack can be seen in
Figure 1.

Various communication channels are used to
distribute the malicious link: e-mail, comments on the
site, messages on social networks. Anchor links are
more likely to provoke users to click.

Figure 1: Reflected XSS attack.

Next, let's look at an example of exploiting a
reflected XSS attack.

For demonstration purposes, let's try to exploit
this vulnerability using the example of DVWA.

Damn Vulnerable Web Application (DVWA) is a
web application that is intentionally filled with
vulnerabilities. The main goal is to help security
professionals test their skills and tools without
crossing the line of law, to help web developers better
understand the process of web application security,
and to help both students and teachers learn about
web application security. The goal of DVWA is to
practice some of the most common web
vulnerabilities, with variable levels of difficulty, with
a simple and understandable interface for each
(Kuznetsov, 2010).

In this project, there are both documented and
undocumented vulnerabilities. This is done in order
to be able to detect as many vulnerabilities as
possible.

Figure 2 shows code that is vulnerable to a
reflected XSS attack.

Figure 2: Example of code vulnerable to reflected XSS
attack.

As you can see from the example, data is not
cleared for the "name" parameter before it is

INFSEC 2021 - International Scientific and Practical Conference on Computer and Information Security

56

displayed in the user's browser. Thus, if you inject a
JavaScript script into it, this script will be executed.

Let's use the DVWA application to demonstrate
this vulnerability. The results are presented below, in
Figure 3 and in Figure 4.

Figure 3: Exploiting Reflected XSS.

Next, inject the code “<script> alert (“ xss ”);
</script>” into the form element:

Figure 4: Result of operating reflected XSS.

 Stored ("Stored XSS" - persistent). For a stored
attack to be successful, an attacker needs to find
a vulnerability on the site.

3 RESEARCH RESULTS

The program starts its work in parallel with the
loading of the site page. Two processes are launched
at one moment. The first method looks for
vulnerabilities on the current page, and the second
method checks all links on the current page, checks
against the list of already checked ones, and marks the
malicious ones with a marker (Mitchell and Zhukov,
2013).

The algorithm for checking a page for
vulnerability consists of 7 mandatory steps.

1. In the DOM-model of the page, elements with
the <form /> tag are selected.

2. Inside each of them, look for the child <input
/> elements.

3. For each found element, create a data object
that includes the value of the name attribute of the
<input /> tag, the value of the action attribute and the
parent <form /> element. If the attribute is empty, we
use the current URL, also enable the current protocol,
it can be http or https and the current domain.

4. The array of collected objects is sent to the
server.

5. The server generates a malicious link for each
dataset and executes it before loading so that it is
possible to check in a safe environment whether there
will be a response from a potentially vulnerable page.

6. After verification, the status of the current
domain is saved to the database and sends a visual
element to the client, which will symbolize the status
of verification.

7. If along with the data set came a flag that
requests a detailed report, then an HTML layout of
the report is attached in response to display it on the
client's screen.

 The described algorithm is also presented as a
block diagram in Figure 5.

Figure 5: Block diagram of XSS-vulnerability search.

The preventive protection algorithm consists of 5
mandatory steps.

1. In the DOM-model of the page, links are
selected, that is, elements with the <a/> tag that have
a non-empty href attribute.

2. Each link is marked with an identifier like xss-
mark-i, where I is the ordinal number of the link in
the DOM model.

Research of the Possibilities of Conducting XSS-attacks and Methods of Countering It

57

3. An array of links is sent to the server, where a
selection is made against a table with already checked
pages.

4. As a result, the server returns link identifiers
that can be potentially dangerous according to the
accumulated information.

5. Extension, using CSS, by identifiers from step
2, visually marks dangerous and vulnerable links.
Letting the user understand that the link may be
dangerous, and the information on it is distorted.

This algorithm is also presented as a block
diagram in Figures 6 and 7.

Figure 6: Block diagram of the search for links with XSS
vulnerabilities.

Figure 7: Block diagram of the search for links with XSS
vulnerabilities.

Thus, using this extension, thanks to the
accumulation of the results of checks and preventive

protection methods, it is possible to accumulate a
database of dangerous sites much faster and make the
Internet safer.

In this chapter, the choice of the programming
language and the target platform for the software
product was justified, as well as the work with the
database, which was implemented in the application,
was considered.

Further, algorithms for checking a page for
vulnerability and preventive protection were
described, as well as their block diagrams were
implemented.

4 RESULTS DISCUSSION

To assess the quality of the created software product,
it was decided to compare the result of its work with
products that are already on the market and are
actively used by developers to test their own
products: NetSparker (CommunityEdition), an
extension for the XSS-Me browser, Wapiti.

Several projects were selected for testing:
 http://www.insecurelabs.org/ created with the

support of OWASP to strengthen the skills of
finding XSS vulnerabilities;

 http://www.insecurelabs.org/Task, a project
consisting of six tasks, the main goal of which
is to detect an XSS vulnerability.

Comparison of test results is shown in Table 1.

Table 1: Comparison of test results.

 NetSparke
r

XSS
-ME

Wapiti
XSS

check
er

http://www.insecurelabs.org/
Number of
vulnerabili
ties found

2 7 9 12

Number of
skipped
forms

6/7 0/7 0/7 0/7

http://www.insecurelabs.org/Task
Number of
vulnerabili
ties found

5 18 6 16

Number of
skipped
forms

1/6 2/6 3/6 0/6

After analyzing the table, we can conclude that the
application created within the framework of this work
is a competitive product and, in some respects,
surpasses the existing analogues.

INFSEC 2021 - International Scientific and Practical Conference on Computer and Information Security

58

4.1 Comparison with Analogues

To assess the quality of the product obtained, it is
advisable to compare it by its main characteristics
with similar products. Comparison with analogs is
presented in table 2.

Table 2: Comparison with analogues.

 NetSparke
r (CE)

XSS
-ME

Wapit
i

XSS
checke

r
GUI

availability
+ - + +

Authorizatio
n in the
system

- - + -

Parallel work + - + +
Sitemap
creation

- + - +

Stored XSS - + - +
Cross-

platform
- + - -

Total 2 3 3 4
The table clearly reflects the main characteristics

of existing solutions and the XSS checker application
created within the framework of this work. According
to the information from the table, the XSS checker
has a number of advantages over existing solutions,
which makes it at least a competitive product.

In this chapter, the structure of classes and their
relationships was described, a demonstration of the
program's operation at all stages of its use was given
and its step-by-step installation was considered. A
comparative analysis with analogs was also carried
out.

5 CONCLUSION

Within the framework of this work, an attack on
WEB-applications such as Cross Site Scripting was
investigated. The basic principles of its work were
studied and the classification was given.

A list of XSS injections was collected from
various sources, through which it was decided to
check the WEB application for XSS vulnerabilities.

In 2020, the company "We Are Social" conducted
a study on the strength and sustainability of sites. As
a result of the security assessment, it was found that
most of the sites, namely 42%, are poorly protected
from this type of attack. Based on this, we can say that
many Internet resources are not credible and cannot
withstand attacks. This is a gross defect that needs to
be corrected, for the sake of security, both of the

owner of the site and the data of the site itself, and of
its users.

Unfortunately, not all website owners are willing
to invest in improving website security. But every
year, the severity of the law in relation to disclosure,
leakage and damage to personal data is tightening,
thereby forcing unscrupulous owners to better
monitor the safety of their resources. The size of the
fine for violation of the 6th part of Article 13.11 of
the Administrative Code is increasing, and with it the
protection of personal data is growing.

As part of the work, the existing systems were
studied that allow automated testing of application
security in the context of XSS vulnerabilities. The
main advantages and disadvantages of these systems
are revealed.

In accordance with the terms of reference, a
multithreaded system for automated testing of a WEB
application for Cross Site Scripting was created.

For the convenience of working with the
application, a user graphical interface was developed
using the JavaFX platform, which allows to inform
the user about the incorrectness of the data entered by
him, as well as to reflect the current state of the
program.

Also, a module was implemented that generates a
report on test results using a cascading style sheet and
the JavaScript programming language.

To assess the quality of the application, two open
source OWASP projects were tested. The results of
this application were compared with the results of
existing applications. The application developed as
part of the qualification work showed an excellent
result, in some respects outstripping existing
solutions such as Wapti, NetSparker, XSS-Me.

REFERENCES

Common Weakness Enumeration. Official site.
https://cwe.mitre.org

Cherckesova, L., Revyakina, Y., Safaryan, Boldyrikhin,
N., Ivanov, Y. (2020) Possibilities of conducting XSS-
attacks and the development of countermeasures. E3S
Web of Conferences, 224, 01040

Flanagan, D. (2012). Javascript. Detailed guidance.
Symbol-plus, 157 p.

Fogie S., Grossman, J., Hansen, R., Rager, A. and Petkov,
Petko D. (2007). XSS attacks: exploitation and
protection, Syngress, 464 p.

Frazer Howard, Modern Internet Attacks.
http://help.yandex.ru/webmaster/?id=1076109

Kozlov, D. D. (2010). Methods for detecting vulnerabilities
in web applications. - M: Publishing house of the

Research of the Possibilities of Conducting XSS-attacks and Methods of Countering It

59

Faculty of Computational Mathematics and
Cybernetics, Moscow State University, pages 146-158.

Kuznetsov, M. V. and Simdyanov, I. V. (2010). Object
oriented programming in PHP. - SPb.: BHV-
Petersburg, 608 p.

Mitchell, Ch. Ensuring the security of websites.
http://help.yandex.ru/webmaster/?id=1071330

Semenov, Yu.A. Overview of vulnerabilities, some types of
attacks and protection tools.
http://book.itep.ru/6/intrusion.htm

Shelukhin O.I., Sakalema D. Zh. and Filinov A.S. (2013).
Detection of intrusions in a computer network. M:
Hotline-Telecom, 220 p.

Zhukov, A.I. and Grankov, M.V. (2013). Using the SQL
language to interact with modern DBMS: method.
Instructions. Rostov-on-Don: Publishing Center of
DSTU, 203 p.

INFSEC 2021 - International Scientific and Practical Conference on Computer and Information Security

60

