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Abstract: The paper investigates the problem of optimal planning of passenger and freight transportation routes in a 
large-scale transport network. Optimizing the structure of the transport network and analyzing the spatial 
relationships of the functioning of the infrastructure are key ways to ensure the sustainability of regional 
development. It is proposed to use fractal graphs and their limited counterpart, prefractal graphs, which are 
graphs with fractal properties as a model of a large-scale transport network. The mathematical formulation of 
the problem is presented as a multicriteria discrete optimization problem, where the criteria are the most 
significant requirements for the system. In this formulation, the problem under study becomes a multicriteria 
problem of covering a prefractal graph with simple intersecting paths. The solution of the multicriteria discrete 
optimization problem is constructed using special algorithms, the quality of which is estimated by 
computational complexity. We have built one of the effective algorithms for optimizing the problem 
according to one of the presented criteria that allows us to select the maximum paths. The common problem 
of discrete multicriteria problems is to find many alternatives, but in this paper, attention is paid to finding at 
least one optimal solution from many alternatives and evaluating it according to other criteria. The advantage 
of using this approach using prefractal graphs is justified by a reduction in the computational complexity of 
the algorithms. 

1 INTRODUCTION 

The task of optimal planning of passenger and freight 
transportation routes is a key problem in ensuring the 
efficiency of transport infrastructure (Comtois, 
2013). Infrastructure is sustainable if it brings social, 
economic and environmental benefits throughout its 
life cycle. When solving such a problem, it is 
necessary to take into account various optimization 
requirements (criteria). For example, when finding 
optimal routes, it is necessary to take into account not 
only economic requirements, i.e., optimization of 
transportation costs but also social or environmental 
requirements. As a rule, in such problems, a solution 
that optimizes one of the criteria is not optimal 
according to other criteria, then these tasks are multi-
criteria problems. The solution to the multicriteria 
problem is not one single solution, but a set of 
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alternatives (Cochrane, 1973). Currently, the problem 
of finding a set of alternatives is poorly studied, 
including for the multicriteria discrete problem in 
modelling transport routes (Emelichev, 1991). 

The article studies the mathematical model of the 
problem of planning transport routes in a large-scale 
transport network in a multi-criteria environment. It 
is proposed to use prefractal graphs (Kochkarov, 
1999; Skums, 2019; Kochkarov, 2004) with the 
property of a «small-world» as a model of a large-
scale transport network. Prefractal graphs are used to 
model the structure of large-scale complex systems, 
such as the global Internet, electric networks, and 
large-scale clustering of matter in the Universe 
(Kochkarov, 2004; Perepelitsa 1999; Kochkarov, 
2015). 

In the study of any multicriteria problem, three 
stages can be distinguished, each of which is a 
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separate task. The first step is the construction of a set 
of feasible solutions. The second stage consists in 
isolating from the set of feasible solutions the Pare-to 
optimal so-called Pareto set (Cochrane, 1973; 
Emelichev, 1991). The solution is Pareto-optimal if 
the value of any of the criteria can be improved only 
due to the deterioration of the values of other criteria. 
At the third stage, from the Pareto set, it is necessary 
to choose a solution that will be implemented taking 
into account the essence of the problem (Emelichev, 
1991; Kochkarov 1998). 

In this paper, attention is paid to finding at least 
one optimal solution from a variety of alternatives. 
The concept of asymptotic time complexity is used – 
the behaviour of computational complexity as a 
function of input size in the limit with increasing size 
of the problem (Garey, 1979). For this, a polynomial 
algorithm (Garey, 1979) is constructed that allows 
one to single out an effective solution with an 
estimate according to given criteria. 

2 METHODS 

2.1 Basic Concepts in Fractal and 
Prefractal Graphs 

Prefractal and fractal graphs are a model of structures 
growing in discrete time according to the same rules 
from each of its vertices. The formal reflection of 
these rules is the operation of replacing a vertex by 
seed, which underlies the definition of prefractal 
graphs. The term seed is any connected graph 𝐻 ൌ
ሺ𝑊, 𝑄ሻ . The essence of the operation vertex 
replacement by seed (VRS) is as follows. In the given 
graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ , the vertex 𝑣෤ ∈ 𝑉  chosen for 
replacement is distinguished by the set of 𝑉෨ ൌ ൛𝑣෤௝ൟ ⊆
𝑉 , 𝑗 ൌ 1,2, … , |𝑉෨|  adjacent vertices. Further, this 
vertex 𝑣෤ and all its incident edges are removed from 
the graph 𝐺 . Then each vertex 𝑣෤௝ ⊆ 𝑉 , 𝑗 ൌ
1,2, … , |𝑉෨|  is connected by an edge to one of the 
vertices of the seed 𝐻 ൌ ሺ𝑊, 𝑄ሻ . The vertices are 
joined arbitrarily (randomly) or according to a certain 
rule if necessary. 

Denote the prefractal graph by 𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ , 
where 𝑉௅ is the set of vertices of the graph, and 𝐸௅ is 
the set of its edges. We define it recurrently, gradually 
replacing each vertex in the graph 𝐺௟ constructed at 
the previous stage 𝑙 ൌ 1,2, … , 𝐿 െ 1 each its vertex 
with the seed 𝐻 ൌ ሺ𝑊, 𝑄ሻ. At the stage 𝑙 ൌ 1, the 
prefractal graph corresponds to the seed 𝐺ଵ ൌ 𝐻. The 
process of generating a prefractal graph 𝐺௅  is the 
process of constructing a sequence of prefractal 

graphs 𝐺ଵ, 𝐺ଶ, … 𝐺௟, … , 𝐺௅ , called a trajectory (see 
Figure 1). The fractal graph 𝐺 generated by the seed 
𝐻 is determined by an infinite trajectory. 

 

 
Figure 1: The trajectory 𝐺ଵ, 𝐺ଶ, 𝐺ଷ of the prefractal graph 
𝐺ଷ generated by the seed-triangle where the adjacency of 
the old edges is chosen arbitrarily. 
 
For a prefractal graph 𝐺௅, edges that appear at the l-
th, 𝑙ሼ1,2, … , 𝐿ሽ generation stage will be called edges 
of rank l. The new edges of the prefractal graph 𝐺௅ 
are the edges of rank L, and all the other edges are 
called the old edges. 

If we remove all edges of ranks 𝑙 ൌ 1,2, … , 𝐿 െ 𝑟 
from the prefractal graph 𝐺௅ , we obtain the set 

ሼ𝐵௅,௜
ሺ௥ሻሽ , 𝑟 ∈ ሼ1,2, … , 𝐿 െ 1} blocks of the r-th rank, 

where 𝑖 ൌ 1,2, … , 𝑛௅ି௥ is the block ordinal number. 

We call block 𝐵௟,௦
ሺଵሻ, 𝑠 ൌ 1, 𝑛௟ିଵ, of the first rank of 

prefractal graph 𝐺௟ , 𝑙 ൌ 1, 𝐿  from the trajectory as 

seed subgraph 𝑧௦
ሺ௟ሻ. 

Prefractal graph 𝐺𝐿 ൌ ሺ𝑉𝐿, 𝐸𝐿ሻ is called weighted 

if for each edge 𝑒ሺ𝑙ሻ ∈ 𝐸𝐿  there is a real number 

𝑤ሺ𝑒ሺ௟ሻሻ ∈ ሺ𝜃௟ିଵ𝑎, 𝜃௟ିଵ𝑏ሻ, where 𝑙 ൌ 1, 𝐿 is the rank 
of the edge, 𝑎 ൐ 0, and 𝜃 ൏

௔

௕
. 

A prefractal graph generated by one or a set of seed 
multigraph (Harary, 1979) is called a prefractal 
multigraph. 

2.2 Discrete Multi-criteria Problem 
Statement 

Let weighted prefractal graph 𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ 
generated by seed 𝐻 ൌ ሺ𝑊, 𝑄ሻ be given. On feasible 
solution set (FSS) 𝑋 ൌ 𝑋ሺ𝐺௅ሻ ൌ ሼ𝑥ሽ , 𝑥 ൌ ሺ𝑉, 𝐸௫ሻ,
𝐸௫ ⊆ 𝐸௅  consisting of all kinds of coverings of 
weighted prefractal graph 𝐺௅  by simple intersecting 
paths, a vector-valued objective function (VVOF) is 
defined as follows: 
 

Fሺ𝑋ሻ ൌ ሼ𝐹ଵሺ𝑥ሻ, 𝐹ଶሺ𝑥ሻ, 𝐹ଷሺ𝑥ሻ,  
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𝐹ସሺ𝑥ሻ, 𝐹ହሺ𝑥ሻ, 𝑥 ∈ 𝑋ሽ (1)
 

𝐹ଵሺ𝑥ሻ ൌ ෍ 𝑤ሺ𝑒ሻ
௘∈ாೣ

→ min (2)

where ∑ 𝑤ሺ𝑒ሻ௘∈ாೣ  is sum of all edges included in 
covering 𝑥; 

 
𝐹ଶሺ𝑥ሻ ൌ min

௞ୀଵ,௄
𝑤ሺ𝐶௞ሻ → max (3)

 
where 𝑤ሺ𝐶௞ሻ  is length of the maximal path from 
covering 𝑥 ∈ ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄ሽ. 
 

𝐹3ሺ𝑥ሻ ൌ 𝑁ሺ𝑥ሻ → min (4)
where 𝑁ሺ𝑥ሻ  is number of all maximal paths in 
covering 𝑥; 
 

𝐹ସሺ𝑥ሻ ൌ 𝑖 → min (5)
 

for any mixed path 𝐶௜ from covering 𝑥. 
 

𝐹ହሺ𝑥ሻ ൌ ห𝜌௫ሺ𝑢, 𝑣ሻ െ 𝜌ீಽሺ𝑢, 𝑣ሻห → min (6)

where 𝜌௫ሺ𝑢, 𝑣ሻ is the distance (between any vertices 
𝑢, 𝑣 ∈ 𝑉௅ ) passing through the edges belonging to 
covering 𝑥, while 𝜌ீಽሺ𝑢, 𝑣ሻ is the distance between 
any vertices 𝑢, 𝑣 ∈ 𝑉௅ in graph 𝐺௅. 

In terms of transport systems, the above criteria of 
the VVOF (1)-(6) have a certain meaningful 
interpretation (Comtois, 2013). The weights of the 
edges of the prefractal graph 𝐺௅  may correspond to 
certain costs and restrictions when moving vehicles 
along the nodes of the transport network. Criterion (2) 
factors in the costs incurred by passengers and the 
authorities that are managing the transport system. 
During operation, costs should be minimal. 
Optimization by criterion (3) allows you to find 
routes containing the largest number of nodes in your 
path. Optimal for this criterion is a coating containing 
maximum paths. To get to the desired node of the 
transport network with the least number of transfers, 
it is necessary to reduce the total number of routes in 
the system; for this purpose, criterion (4) is used. 
Important features of the transport system are the 
locality and differentiation of its routes. Intra-regional 
(city, intra-district) should be transport routes of 
shorter length and less weight, thereby ensuring 
locality. This simplifies the process of administering 
the transport system at a certain level (district, city, 
etc.). Interregional routes are longer and with more 
weight. Differentiation refers to the separation of 
routes according to their functions into inter-regional 
and intra-regional. At the intersection of intra-
regionality and inter-regionality, a violation of 
differentiation may occur, i.e., deterioration in the 

functionality of the route. Criterion (5) is responsible 
for preventing such situations in the operation of the 
transport system in the VVOF (1)-(6). Mixed path 𝐶௞ 
is a route model combining both functions – intra-
regional and inter-regional – since its old edges 
connect the blocks and seed subgraphs of prefractal 
graph 𝐺௅, which correspond to the maps of the roads 
of districts, cities, etc. When operating a transport 
system, it is often required that the final destination 
will be reached with the least number of stops. 
Criterion (6) reflects these requirements on 
construction of such routes. 

3 RESULTS 

3.1 The Algorithm for Finding the 
Largest Maximum Paths 

The 𝛽ଶ  algorithm finds covering 𝑥ଶ ൌ 𝐽 ൌ ሺ𝑉௅,
𝐸௃ሻ ൌ ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄ሽ ∈ 𝑋  on prefractal 
graph, where all 𝐶௞ ൌ ሼ𝑣௞, 𝑢௞ሽ paths are simple, 𝑘 ൌ
1, 𝐾. 𝛽ଶ is based on the largest maximal path finding 
algorithm (LMPF algorithm) on an arbitrary graph. 
Using the LMPF algorithm as a procedure, the 𝛽ଶ 

algorithm finds subgraph 𝐽௦
ሺ௟ሻ ൌ ሺ𝑉௦

ሺ௟ሻ, 𝐸
௃ೞ

ሺ೗ሻሻ ൌ ሼ𝐶ଵ,

𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄
಻ೞ

ሺ೗ሻ
ሽ on each seed subgraph of set 

𝑍ሺ𝐺௅ሻ ∈ 𝑧௦
ሺ௟ሻ,𝑙 ൌ 1, 𝐿, 𝑠 ൌ 1, 𝑛௟ିଵ of prefractal graph 

𝐺௅  such that all paths 𝐶௞ ൌ ሼ𝑢, 𝑣ሽ are maximal (i.e. 
|𝐶௞| ൌ min ), 𝑘 ൌ 1, 𝐾௃ , among all paths between 

vertices 𝑢, 𝑣 ∈ 𝑉௦
ሺ௟ሻ  of seed subgraph 𝑧௦

ሺ௟ሻ  and the 

largest. Set of coverings ሼ𝐽௦
ሺ௟ሻሽ,𝑙 ൌ 1, 𝐿, 𝑠 ൌ 1, 𝑛௟ିଵ, 

selected on seed subgraphs of prefractal graph 𝐺௅ , 
forms covering 𝑥ଶ ൌ 𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ. 

3.1.1 LMPF Algorithm 

INPUT: graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ. 
OUTPUT: spanning subgraph 𝐽 ൌ ሺ𝑉, 𝐸௃ሻ ൌ ሼ𝐶ଵ, 𝐶ଶ,
. . .  , 𝐶௞, . . .  , 𝐶௄಻ሽ. 

STEP 1. Find set  ሼ𝐶′௜భ, 𝐶′௜మ, . . .  , 𝐶′௜ೖ
, . . .  , 𝐶′௜಼ᇲሽ 

of all shortest paths between each pair of vertices 
𝑢, 𝑣 ∈ 𝑉  of graph 𝐺 . From ሼ𝐶′௜భ, 𝐶′௜మ, . . .  , 𝐶′௜ೖ

,
. . .  , 𝐶′௜಼ᇲሽ remove all those paths that are completely 
contained in others. Combine the remaining ones into 
set ሼ𝐶௜భ, 𝐶௜మ, . . .  , 𝐶௜ೖ

, . . .  , 𝐶௜಼∗ ሽ , assigning them 

indices such that the length of the 𝑖௞ାଵ-th path is not 
greater than the length of the 𝑖௞-th path, 𝑘 ൌ 1, 𝐾∗. 
Consider paths ሼ𝑢, 𝑣ሽ  and ሼ𝑣, 𝑢ሽ  for any pair of 
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vertices 𝑢, 𝑣 ∈ 𝑉 as identical and include only one of 
them in set ሼ𝐶௜భ, 𝐶௜మ, . . .  , 𝐶௜ೖ

, . . .  , 𝐶௜಼∗ ሽ. Set ሼ𝐶௜భ, 𝐶௜మ,
. . . , 𝐶௜ೖ

, . . .  , 𝐶௜಼∗ ሽ is a set of maximal paths of graph 

𝐺, where 𝐶௜భ is the diametral path. 
STEP 2. Cover the vertices and edges of graph 𝐺 

with paths from set ሼ𝐶௜భ, 𝐶௜మ, . . .  , 𝐶௜ೖ
, . . .  , 𝐶௜಼∗ ሽ 

sequentially, starting with the 𝑖ଵ-th. For the covering 
of graph 𝐺  with path 𝐶௜ೖ

,  we will have in mind 
selection of vertices and edges forming the 𝐶௜ೖ

. path 
on graph 𝐺 . We use only paths that satisfy the 
condition that each new path selects at least one other 
vertex of graph 𝐺 that is not covered by previous 
paths. 

STEP  3. Assign numbers (in the order they are 
used) to all paths from set ሼ𝐶௜భ, 𝐶௜మ, . . .  , 𝐶௜ೖ

,
. . .  , 𝐶௜಼∗ ሽ used to cover vertices and edges of graph 

𝐺. Cover graph until there are no unselected vertices 
left. 

STEP  4. Set of paths ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄಻ሽ ⊆ 

⊆ ሼ𝐶௜భ, 𝐶௜మ, . . .  , 𝐶௜ೖ
, . . .  , 𝐶௜಼∗ ሽ, used to cover graph 

𝐺, form the desired covering 𝐽 ൌ ሺ𝑉, 𝐸௃ሻ ൌ ሼ𝐶ଵ, 𝐶ଶ,
. . .  , 𝐶௄಻ሽ , consisting of the largest maximal paths 

𝐶௞ ൌ ሼ𝑣௞, 𝑢௞ሽ 𝑘 ൌ 1, 𝐾௃. 
Theorem 1. The computational complexity of the 

LMPF algorithm that finds covering 𝐽 ൌ ሺ𝑉, 𝐸௃ሻ on 
graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ, |𝑉| ൌ 𝑛, is 𝑂ሺ𝑛ହሻ. 

PROOF. Finding the shortest distance between any 
two vertices of graph 𝐺  will take no more than 𝑛ଶ 
simple operations. In its first step, the LMPF 
algorithm finds all the shortest paths of graph 𝐺, and 
they are equal to 𝑛ሺ𝑛 െ 1ሻ/2 ൏ 𝑛ଶ in number. Next, 
the algorithm selects (by comparing the paths) some 
part of these paths. Since all the vertices and edges 
that make up the paths are known, comparing the 
paths will take  𝑛ଶ  operations. In total, the 
computational complexity of the LMPF algorithm is 
𝑂ሺ𝑛ଶ𝑛ଶ ൅ 𝑛ଶሻ ൏ 𝑂ሺ𝑛ହሻ. 

3.1.2 The 𝜷𝟐 Algorithm 

INPUT: prefractal graph 𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ. 
OUTPUT: connected spanning subgraph 𝐽 ൌ
ሺ𝑉௅, 𝐸௃ሻ ൌ ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄ሽ. 

STEP 1. Construct a set of seed subgraph  𝑍ሺ𝐺௅ሻ ൌ
ሼ𝑧௦

ሺ௟ሻሽ, 𝑙 ൌ 1, 𝐿 , 𝑠 ൌ 1, 𝑛௟ିଵ  for prefractal graph 𝐺௅ . 
In accordance with constructed set  𝑍ሺ𝐺௅ሻ, number all 
the edges of prefractal graph 𝐺௅. 

STEP 2. One at a time, in a decreasing order of rank 
𝑙 ൌ 𝐿, 𝐿 െ 1, . . . ,2,1 find spanning subgraphs  𝐽௦

ሺ௟ሻ ൌ
ሺ𝑉௦

ሺ௟ሻ, 𝐸
௃ೞ

ሺ೗ሻሻ ൌ ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௄
಻ೞ

ሺ೗ሻ
ሽ  on all seed 

subgraphs 𝑧௦
ሺ௟ሻ, 𝑠 ൌ 1, 𝑛௟ିଵ, from set 𝑍ሺ𝐺௅ሻ, using the 

LMPF algorithm. After finding ሼ𝐽௦
ሺ௅ሻ ൌ ሺ𝑉௦

ሺ௅ሻ,
𝐸

௃ೞ
ሺಽሻሻሽ, 𝑠 ൌ 1, 𝑛௟ିଵ, create set of paths ሼ𝐶ଵ

∗ሽ ൌ ሼ𝐶ଵ,ଵ,

𝐶ଵ,ଶ, . . .  , 𝐶ଵ,௞, . . .  , 𝐶ଵ,௄భሽ ൌ ሼ𝐽௦
ሺ௅ሻ ൌ ሺ𝑉௦

ሺ௅ሻ, 𝐸
௃ೞ

ሺಽሻሻሽ. 

Further, each time after path set ሼ𝐶௅ି௟ାଵ
∗ ሽ ൌ

ሼ𝐶௅ି௟ାଵ,ଵ, 𝐶௅ି௟ାଵ,ଶ, . . .  , 𝐶௅ି௟ାଵ,௞, . . .  , 𝐶௅ି௟ାଵ,௄ಽష೗శభ
ሽ, 

𝑙 ൌ 𝐿, 𝐿 െ 1, . . .  ,2, 1, is created, connect each of its 
𝐶௅ି௟ାଵ,௞  paths to the edges of the paths of seed 

subgraphs ሼ𝑧௦
ሺ௟ିଵሻሽ and combine them into a new path 

set ሼ𝐶௅ି௟ାଶ
∗ ሽ as follows. 

STEP 3. Attach any edge ∈ 𝐶௞ ൌ ሼ𝑣௞, 𝑢௞ሽ,  𝑘 ൌ
1, 𝐾

௃ೞ
ሺ೗ሻ , of path 𝐶௞ ∈ 𝐽௦

ሺ௟ିଵሻ of seed subgraph 𝑧௦
ሺ௟ିଵሻ, 

𝑠 ൌ 1, 𝑛௟ିଵ, to that path from set ሼ𝐶௅ି௟ାଵ
∗ ሽ, to which it 

is incident at the end. The path formed in this way is 
introduced into a new path set ሼ𝐶௅ି௟ାଶ

∗ ሽ. 
If edge 𝑒 is incident to one of its ends by several 

paths fromሼ𝐶௅ି௟ାଵ
∗ ሽ, then all the paths formed in this 

case are introduced into set ሼ𝐶௅ି௟ାଶ
∗ ሽ. If both vertices 

𝑣௞, 𝑢௞  of edge 𝑒  are incident to the ends of two 
different paths 𝐶௅ି௟ାଵ,௞భ  and 𝐶௅ି௟ାଵ,௞మ  respectively,  
then a path formed by paths  𝐶௅ି௟ାଵ,௞భ, 𝐶௅ି௟ାଵ,௞మ  and 
edge 𝑒  is added to set ሼ𝐶௅ି௟ାଶ

∗ ሽ only if the ends of 
paths 𝐶௅ି௟ାଵ,௞భ and  𝐶௅ି௟ାଵ,௞మ  that are not incident to 
edge 𝑒are also not incident to the ends of other paths 
from ሼ𝐶௅ି௟ାଵ

∗ ሽ. Otherwise, add the paths formed by 
several paths from ሼ𝐶௅ି௟ାଵ

∗ ሽ and several edges of the 
paths of seed subgraphs of ሺ𝑙 െ 1ሻ -th rank to set 
ሼ𝐶௅ି௟ାଶ

∗ ሽ. 
If edge 𝑒 is not incident to any paths of  ሼ𝐶௅ି௟ାଵ

∗ ሽ, 
then insert it into set ሼ𝐶௅ି௟ାଶ

∗ ሽ as a separate path. 
STEP 4. At the input of the previous step, after the 

paths of all seed subgraphs have been processed, a set 
of paths ሼ𝐶௅

∗ሽ ൌ ሼ𝐶௅,ଵ, 𝐶௅,ଶ, . . .  , 𝐶௅,௞, . . .  , 𝐶௅,௄ಽሽwill 
be obtained. Set of paths  ሼ𝐶ଵ, 𝐶ଶ, . . . , 𝐶௞, . . . , 𝐶௄ሽ  
obtained from ሼ𝐶௅

∗ሽ  by changing the numbering 
defines the required spanning subgraph  𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ. 

Theorem 2. The 𝛽ଶ  algorithm finds connected 
spanning subgraph 𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ ൌ ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞,
. . .  , 𝐶௄ሽ, where 𝐶௞   are simple paths, on prefractal 
graph 𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ,  generated by seed 𝐻 ൌ ሺ𝑊,
𝑄ሻ, |𝑊| ൌ 𝑛. 

The proof of the theorem is based on the design 
features of the construction of prefractal graphs and 
the operation of the algorithm 𝛽ଶ. 

Theorem 3. The computational complexity of the 
𝛽ଶ  algorithm that selects covering 𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ  on 
prefractal graph  𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ,  generated by seed 
𝐻 ൌ ሺ𝑊, 𝑄ሻ,  where |𝑊| ൌ 𝑛 , |𝑉௅| ൌ 𝑁 ൌ 𝑛௅ , is 
equal to 𝑂ሺ𝑁𝑛ହሻ. 
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Proof. The 𝛽ଶ  algorithm is essentially a multiple 
execution of step 2. Step 2, in turn, is a multiple 
invocation to the LMPF algorithm, whose 
computational complexity is equal to 𝑂ሺ𝑛ହሻ. Since 
the 𝛽ଶ   algorithm invokes the SPS (shortest path 

selection) algorithm 𝑘 ൌ
௡ಽିଵ

௡ିଵ
 times, it will perform 

no more than  𝑘 ⋅ 𝑂ሺ𝑛ହሻ operations. 

Then, 𝑂ሺ𝑘 ⋅ 𝑛ହሻ ൌ 𝑂ሺ
௡ಽିଵ

௡ିଵ
⋅ 𝑛ହሻ ൌ 𝑂ሺ𝑛௅ ⋅ 𝑛ହሻ ൌ

𝑂ሺ𝑁𝑛ହሻ. 
Hence, the computational complexity of the 𝛽ଶ 

algorithm is equal to 𝑂ሺ𝑁𝑛ହሻ. 
Theorem 4. The 𝛽ଶ  algorithm selects covering 

𝑥ଶ ൌ 𝐽 ൌ ൫𝑉௅, 𝐸௃൯ ൌ ሼ𝐶ଵ, 𝐶ଶ, . . . , 𝐶௞, . . . , 𝐶௄ሽ ∈ 𝑋, 
where 𝐶௞  are the shortest paths of same rank, on 
prefractal graph 𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ  generated by seed 
𝐻 ൌ ሺ𝑊, 𝑄ሻ , |𝑊| ൌ 𝑛 , |𝑄| ൌ 𝑞 , estimated by the 
first criterion: 

𝐹ଵሺ𝑥ଶሻ ∈ ൤𝑎ሺ𝑛 െ 1ሻ ሺ௡௔/௕ሻಽିଵ
೙ೌ
್

ିଵ
; 𝑞𝑏

ሺ௡௔/௕ሻಽିଵ
೙ೌ
್

ିଵ
൨. 

Proof. Covering 𝑥ଶ ൌ 𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ ൌ ሼ𝐶ଵ, 𝐶ଶ,
. . .  , 𝐶௞, . . .  , 𝐶௄ሽ  selected by the 𝛽ଶ  algorithm on 
prefractal graph 𝐺௅  generated by seed, belongs to 
feasible solution set 𝑋 of vector-valued objective 
function (1)-(6). 

We first establish the upper bound of the estimate. 
The 𝐹ଵሺ𝑥ሻ  criterion is weighted and its value is equal 
to the sum of the weights assigned to the edges of 
covering 𝑥 ∈ 𝑋 . Obviously, the covering from the 
feasible solution set consisting of all edges of 
prefractal graph 𝐺௅ will have the greatest weight, i.e., 
when 𝑥 ൌ 𝐺௅ . Using the prefractal graph weighting 
rule, we give an estimate of the total weight 𝑤ሺ𝐺௅ሻ of 
prefractal graph 𝐺௅ . We denote the total weight of 

seed subgraph  𝑧௦
ሺ௟ሻ ∈ 𝑍ሺ𝐺௅ሻ of rank 𝑙, 𝑙 ൌ 1, 𝐿 under 

serial number  𝑠 , 𝑠 ൌ 1, 𝑛௟ିଵ  as 𝑤ሺ𝑧௦
ሺ௟ሻሻ,  then 

𝑤ሺ𝐺௅ሻ ൌ ∑ ∑ 𝑤ሺ𝑧௦
ሺ௟ሻሻ௦௟ . The weight of a single seed 

of rank 𝑙, 𝑙 ൌ 1, 𝐿  is estimated as  𝑤ሺ𝑧௦
ሺ௟ሻሻ ൏ 𝑞ሺ𝑎/

𝑏ሻ௟ିଵ𝑏, where |𝑄| ൌ 𝑞 is the number of edges in seed 
𝐻. Accordingly, the sum of the weights of all same-
rank seed subgraphs of prefractal graph 𝐺௅ is limited 

by inequality ∑ 𝑤ሺ𝑧௦
ሺ௟ሻሻ௦ ൏ 𝑞𝑏ሺ𝑎/𝑏ሻ௟ିଵ𝑛௟ିଵ . As a 

result, the weight of the prefractal graph is limited as 

𝑤ሺ𝐺௅ሻ ൏ ∑ 𝑞𝑏ሺ𝑎/𝑏ሻ௟ିଵ𝑛௟ିଵ ൏௟ 𝑞𝑏
ሺ௡௔/௕ሻಽିଵ

௡௔/௕ିଵ
. 

We now establish the lower bound of the estimate. 
The smallest (by weight) covering from the feasible 
solution set should be some spanning tree of 
prefractal graph 𝐺௅ . To get the lower bound of the 
estimate by the first criterion, we only need to 
estimate the weight of the minimum spanning tree 
(Swamy, 1983) 𝑇 ൌ ሺ𝑉௅, 𝐸்ሻ  selected on prefractal 

graph  𝐺௅. Each edge of seed subgraph 𝑧௦
ሺ௟ሻ of rank  𝑙, 

according to the prefractal graph weighting rule, 
cannot be less than ሺ𝑎/𝑏ሻ௟ିଵ𝑎. Then 𝑤ሺ𝑇௦

ሺ௟ሻሻ ൐ ሺ𝑛 െ
1ሻሺ𝑎/𝑏ሻ௟ିଵ𝑎, where ሺ𝑛 െ 1ሻ is the number of edges 
of any spanning tree, while the total weight of the 
minimum spanning tree of the seed subgraph of same 
rank is ∑ 𝑤ሺ𝑇௦

ሺ௟ሻሻ௦ ൐ 𝑎ሺ𝑛 െ 1ሻሺ𝑎/𝑏ሻ௟ିଵ𝑛௟ିଵ , 𝑙 ൌ
1, 𝐿. For the weight of minimum spanning tree 𝑇, the 
following inequality holds: 𝑤ሺ𝑇ሻ ൐ ∑ 𝑎ሺ𝑛 െ 1ሻሺ𝑎/௟

𝑏ሻ௟ିଵ𝑛௟ିଵ ൐ 𝑎ሺ𝑛 െ 1ሻ
ሺ௡௔/௕ሻಽିଵ

௡௔/௕ିଵ
. 

Thus, the value of function  𝐹ଵሺ𝑥ଶሻ,   from the 
covering constructed by the 𝛽ଶ algorithm falls within 
the interval 

𝐹ଵሺ𝑥ଶሻ ∈ ሾ𝑎ሺ𝑛 െ 1ሻ
ሺ௡௔/௕ሻಽିଵ

௡௔/௕ିଵ
; 𝑞𝑏

ሺ௡௔/௕ሻಽିଵ

௡௔/௕ିଵ
ሿ. 

Theorem 5. The 𝛽ଶ  algorithm selects connected 
spanning subgraph  𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ ൌ ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞,
. . .  , 𝐶௄ሽ  , where  𝐶௞   are the shortest paths, on 
prefractal graph     𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻgenerated by seed 
𝐻 ൌ ሺ𝑊, 𝑄ሻ , |𝑊| ൌ 𝑛 , |𝑄| ൌ 𝑞 , for which the 
adjacency of its old edges is not violated. 

Proof. We define the operation of “gluing” together 
two arbitrary graphs 𝐺′ ൌ ሺ𝑉′, 𝐸′ሻ  and 𝐺′′ ൌ
ሺ𝑉′′, 𝐸′′ሻ. Two vertices – 𝑣′ ∈ 𝑉′ and 𝑣′′ ∈ 𝑉′′ – are 
selected for merging. Graph 𝐺෨ ൌ ሺ𝑉෨, 𝐸′ ∪ 𝐸′′ሻ , 
derived from graphs 𝐺′ and 𝐺′′ by merging vertices 
𝑣′ and 𝑣′′ into some vertex 𝑣෤ ∈ 𝑉෨  such that all edges 
incident to vertices 𝑣′  and 𝑣′′  become incident to 
vertex 𝑣෤, is called glued from graphs  𝐺′ and 𝐺′′. 

Prefractal graph 𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ,  generated by seed  
𝐻 ൌ ሺ𝑊, 𝑄ሻ,  such that the adjacency of its old edges 
in the generation process is not violated. Then, 
prefractal graph 𝐺௅  can be obtained by gluing 

together all  
௡ಽିଵ

௡ିଵ
 seed subgraphs  𝑍ሺ𝐺௅ሻ ൌ ሼ𝑧௦

ሺ௟ሻሽ, 𝑙 ൌ

1, 𝐿, 𝑠 ൌ 1, 𝑛௟ିଵ (Kochkarov, 1998). First, first-rank 

seed subgraph 𝑧ଵ
ሺଵሻ is glued at each of its vertices with 

second-rank seed subgraph 𝑧௦
ሺଶሻ , 𝑠 ൌ 1, 𝑛 . Further, 

each prefractal graph 𝐺௟ generated in this way at the 
𝑙-th step, 𝑙 ൌ 1, 𝐿 െ 1,  is glued at each of its vertices 

with seed subgraphs   𝑧௦
ሺ௟ାଵሻ, 𝑠 ൌ 1, 𝑛௟ିଵ. As a result, 

we obtain prefractal graph 𝐺௅   at the 𝐿 -th step of 
which the adjacency of its old edges is not violated. 

If connected spanning subgraphs 𝐷௦
ሺ௟ሻ, 𝑙 ൌ 1, 𝐿, 𝑠 ൌ

1, 𝑛௟ିଵ  are selected on all seed subgraphs ሼ𝑧௦
ሺ௟ሻሽ  of 

prefractal graph  𝐺௅ , then graph  𝐷   obtained by 

gluing together graphs  ሼ𝐷௦
ሺ௟ሻሽ, similarly to generation 

of graph 𝐺௅  described above, will become the 
spanning subgraph of graph 𝐺௅. This will happen due 
to the mutual correspondence of the edge numbers of 
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seed subgraphs  ሼ𝑧௦
ሺ௟ሻሽ,  participating in the generation 

of graphs 𝐷 and  𝐺௅. 
The  𝛽ଶ  algorithm selects a spanning subgraph  

𝐽௦
ሺ௟ሻ ൌ ሺ𝑉௦

ሺ௟ሻ, 𝐸
௃ೞ

ሺ೗ሻሻ,  consisting of a set of simple 

shortest paths   ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄
಻ೞ

ሺ೗ሻ
ሽ. on each 

seed subgraph  𝑧௦
ሺ௟ሻ ∈ 𝑍ሺ𝐺௅ሻ, 𝑙 ൌ 1, 𝐿, 𝑠 ൌ 1, 𝑛௟ିଵ of 

prefractal graph  𝐺௅ ൌ ሺ𝑉௅, 𝐸௅ሻ. 
Recall that all paths ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄ሽ  

forming covering 𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ   are either paths of 

coverings 𝐽௦
ሺ௟ሻ ൌ ሺ𝑉௦

ሺ௟ሻ, 𝐸
௃ೞ

ሺ೗ሻሻ,  𝑙 ൌ 1, 𝐿,  𝑠 ൌ 1, 𝑛௟ିଵ,   

or consist of paths of these coverings. In both cases, 
all the paths are the shortest. In the first case, the paths 
are shortest thanks to the LMPF algorithm, and in the 
second, this is a consequence of the special way of 
defining prefractal graph 𝐺௅ (the adjacency of its old 
edges is not violated).  

Thus, covering 𝐽 ൌ ሺ𝑉௅, 𝐸௃ሻ   consists of many 
simple paths  ሼ𝐶ଵ, 𝐶ଶ, . . .  , 𝐶௞, . . .  , 𝐶௄ሽ , and each 
path  𝐶𝑘 ൌ ሼ𝑣𝑘, 𝑢𝑘ሽ is the shortest 𝑘 ൌ 1, 𝐾,  among 

all possible paths between vertices 𝑣𝑘, 𝑢𝑘 ∈ 𝑉𝐿  of 

prefractal graph 𝐺𝐿. 

4 DISCUSSION 

The proposed mathematical model of a large-scale 
transport network is based on the apparatus of the 
theory of fractal graphs (Kochkarov, 1998). Let L be 
the rank of the simulated system, which can 
correspond to a certain level of the hierarchical 
structure of the administrative-territorial 
administration of the region (Comtois, 2013). The 
mathematical model of the road map is constructed in 
the form of the trajectory of a prefractal graph 
generated by a seed set 𝛨 ൌ ሼ𝐻ଵ, 𝐻ଶ, . . . , 𝐻௧, . . . , 𝐻்ሽ. 
Consider the process of building a transport network 
using the example of Russian roads. Geographically, 
Russia consists of 8 federal districts (see Figure 2). At 
the first stage, the 𝐺ଵ ൌ 𝐻ଵ  seed is a multigraph in 
which the federal roads correspond to the edges and 
the federal districts correspond to the vertices (see 
Figure 3). Further, in 𝐺ଵ, each vertex is replaced by a 
seed corresponding to the regions within the federal 
district. The structure obtained in the second stage 
corresponds to the prefractal graph 𝐺ଶ (see Figure 4). 
In the next step, each vertex is replaced by a set of 
seeds, corresponding to regional or municipal 
districts. This process continues until the necessary 
level of hierarchy of the system under study is 
reached. 

Figure 2: An example of a two-level hierarchy of the 
territorial division of the Russian Federation is presented. 
Eight federal districts of the Russian Federation designated 
1-8, which consist of 85 constituent entities of the Russian 
Federation. 
 

Figure 3: The 𝐺ଵ multigraph is presented, where the federal 
districts correspond to the vertices, and the federal roads 
correspond to the edges. 
 

Figure 4: The prefractal graph 𝐺ଶ of rank 𝐿=2 is obtained 
from the multigraph 𝐺ଵ, in which each vertex is replaced by 
seeds corresponding to the structure of roads between the 
federal subjects belonging to the federal district. Bold edges 
are edges of rank 𝐿 ൌ 1 (federal highways), the remaining 
edges belong to rank 𝐿 ൌ 2 (roads of federal subjects). 
 
As the whole system of transport routes, we took the 
coverage of the prefractal graph consisting of paths 
corresponding to some routes. All necessary 
requirements and restrictions imposed on routes are 
expressed as a vector-valued objective function. 

The use of prefractal graphs as a model of a large-
scale transport network can significantly reduce the 
computational complexity of algorithms for finding 
optimal solutions. Comparing the computational 
complexity of the LMPF and 𝛽ଶ  algorithms on 
prefractal graph 𝐺௅ , we obtain 𝑂ሺ𝑁ହሻ ൏ 𝑂ሺ𝑁𝑛ହሻ . 
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Therefore, the computational complexity of 𝛽ଶ   is 
𝑛௅ିହ times less than the computational complexity of 
the LMPF algorithm. 

It is worth noting that it is convenient to construct 
parallel algorithms on prefractal graphs. 

5 CONCLUSIONS 

In the article, an approximate algorithm was used, 
which is called the algorithm with estimates. The 
search for efficient and accurate methods for many 
NP-hard or intractable problems has no practical 
sense. In this situation, we are forced either to proceed 
to the study of more particular problems and to search 
for low-laborious algorithms for them, or to build 
approximate algorithms. This gives rise to an 
approach to algorithmic problems, which is called 
"algorithms with estimates". We are talking about a 
vector assessment of the quality of algorithms. 
Criteria, i.e. the components of this vector function 
(i.e., estimates) are computational complexity, 
accuracy, memory size, size of the region within 
which the desired solution (many alternatives) is 
almost always obtained at the output of the algorithm, 
etc. 

The constructed model and the algorithm for 
allocating maximum routes in terms of inclusion 
makes it possible to effectively solve the problem of 
route planning in large-scale transport networks. 
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