
Using MDE for Teaching Database Query Optimizer

Abdelkader Ouared a and Abdelhafid Chadli b

Ibn Khaldoun University (UIK), Tiaret, Algeria

Keywords: Database Query Optimizer Learning, Using MDE in Teaching, Metamodeling, Domain-specific Language.

Abstract: Query optimization is considered as an important part of Data Base Management Systems (DBMS) and plays
a major role in database research community (e.g. SQL, Spark, Map-reduce). Generally, this optimization is
done using Cost Base Optimization (CBO), which is difficult to understand due to the complexity of platform,
database, query and DBMS. Moreover, database query optimizer is usually a very complex process, with
difficult concepts depending on the behaviour of the query engine of DBMS. Therefore, users (e.g. novice
user, developer, DB administrator) have difficulties to understand and build a mental image of database query
optimizer in order to produce more efficient queries. In this paper, we propose a Framework based on the
model-driven engineering (MDE) paradigm to facilitate understanding and improving query performance.
Indeed, MDE approach has been proven useful for developing new software applications, and its adoption
for a teaching perspective presents a major challenge. We illustrate our proposal with use case and proof-of-
concept prototype for the whole provided process.

1 INTRODUCTION

Generally speaking, the query optimizer is viewed
as the bottleneck of database application perfor-
mance. Recently several calls and demands have been
raised to make this design much easier, by teach-
ing DBMS architecture and query optimization pro-
cess (Scherzinger, 2019), (Pavlo et al., 2017). Query
Optimizer process is difficult to understand since it
includes several parameters belonging to databases,
platforms, DBMS, queries, etc. Furthermore, in all
existing query optimizers, users are systematically out
of the process loop. To remedy this situation, a variety
of query optimizer (SQL, Map-reduce, etc.) might be
used or taught for different purposes such as including
users to interact with the optimizing process.

1.1 Problem Statement

As stated above, query optimizers are considered as
an important part of DBMS and plays a major role
in database research community (e.g. (Siddiqui and
Other, 2020; Gallinucci and Golfarelli, 2019)). This
component is one of the most important quality indi-
cators that companies are looking for to choose their

a https://orcid.org/0000-0003-4257-0522
b https://orcid.org/0000-0003-0559-1439

appropriate query process in DBMS, since they es-
timate metrics associated to non-functional require-
ments (e.g., query response time, Quality of service,
energy consumption). The DBMS must then design
an execution strategy or query plan to retrieve the
query results from the database files. A query has
many possible execution strategies, and the process
of choosing a suitable one to handle an SQL query
is known as Cost Based Optimization (CBO) (Jarke
and Koch, 1984). Generally, this optimization is
done using CBO, which is difficult to understand due
to the complexity of platform, database, query and
DBMS. Moreover, Query Optimizers are usually seen
as black box systems, and depend on cardinality esti-
mates, plan properties, and specialized cost formulas
for each relational algebra operator in an execution
plan. Consequently, database users have difficulties
to build a mental image on query optimization process
and how to improve query performance. For example,
how to use a special hint (e.g. HASH) in a way to dic-
tate the optimizer a different retrieval path rather than
that one calculated by the optimizer (e.g. rewriting the
query differently so as to influence the default query
execution). Indeed, one of the most challenging as-
pects of teaching advanced database in undergraduate
computer programs is the query optimizer (Liu et al.,
2019). To address the lack of query performance un-
dergraduate course teaching, we present in this paper

Ouared, A. and Chadli, A.
Using MDE for Teaching Database Query Optimizer.
DOI: 10.5220/0010535105290536
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 529-536
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

529

an MDE-based framework to facilitate understanding
and improving query performance. We aim to answer
the following research question.

RQ: is it possible to build an MDE-based concep-
tual framework to help database users understand the
SQL Cost Based Optimizer process?

1.2 Paper Contributions

There has been a lot of work in the query optimiza-
tion field. However, previous works have not focused
on facilitating the learning experience to be reward-
ing for students and professionals so that they bet-
ter understand how the system works. In this paper,
we focus on solving these difficulties by proposing
a framework for assisting users to analyze and bet-
ter cope with CBO difficulties on Relational DBMS.
We propose a framework called CF-CBO (Conceptual
Framework for teaching CBO). Our framework ex-
plicit Query Optimizer at a high level of abstraction
and provides students with CBO-processing men-
tal image to facilitate understanding and improving
query performance. We first propose a domain spe-
cific language (DSL), called OptDSL dedicated to de-
scribe Database Query Optimizer. Second, we de-
scribe the methodology associated with our frame-
work to explain how the system works. Finally, we
illustrate our Tool Support.

1.3 Paper Outline

The paper is structured as follows. Section 2 presents
the background and discusses the related work. In
Section 3, we present our proposed approach. Section
4 highlights the implementation of our proposition.
Finally, Section 5 concludes this paper.

2 BACKGROUND

In order to make this research self-contained and
straightforward, this section introduces the notions of
Query Optimization for Database Systems.

2.1 Query Optimization Domain
Description

Let us define a query plan as a tree P = (O, E)
(see Figure 1 (b)), where the set of nodes O of the
tree P represents the operations (i.e. selection in
relational algebra), and the set of edges E denotes
the precedence between two operations. More pre-
cisely, a plan Pj is a set of relational algebra oper-
ators (e.g., restriction, projection, join, scan, sort),

Pj = {O1 j, . . . , On j}. Each Oi ∈ Pj is annotated
with a quadruplet Oi = (Imp j, Tj, C j, ProPi) in which
Imp j is the implementation algorithm for each phys-
ical query operator (e.g. Nested-loops-join algorithm
to implement a Join Operation) , Tj is the set of asso-
ciated input database objects such as tables, indexes,
materialized views etc., C j is the set of options used
to execute the operation, like adding the buffer option,
and ProPi is the Programming Paradigm (Sequential,
MapReduce, etc.). Each directed edge e ∈ E is an or-
dered pair of vertices defined as e = (i, j) and connects
the operation i to the operation j when the execution
of i directly precedes that of j. A global plan Pj may
possibly aggregate several subplans SPj1 ...SPjn to be
executed on the database. Figure 1 shows the query
plan for TPC-H 1 query 9 depicted as a tree structure
based upon the logical operators in the query. Each
node is responsible for executing one SQL operator
in the query, like sort and aggregation.

The Query Optimizer converts (or rewrites) logi-
cal requests, expressed in SQL language, into phys-
ical plans in order to find a good execution plan in
terms of execution costs. Hence, the Query Optimizer
uses two strategies (Rule-Based Optimization, Cost-
Based Optimization) to associate several candidate
execution plans with a given SQL query and chooses
the best one. The query optimizer (Jarke and Koch,
1984), uses the CBO approach by means of cost mod-
els (Manegold et al., 2002) to process the cost of each
operation in the query. For example, CBO strategy
can be used to estimate I/O and CPU costs of each
execution plan in order to choose the best cost by
making a calculation of the database statistics. The
Query Optimizer as three main components, namely,
the plan generator, the performance cost calculator
and the plan evaluator. Figure 2 shows the workflow
between these three parts. First, the plan generator
produces the candidate plans of a given query, then
performance cost calculator estimates the cost of each
operation in the query plan, and finally the plan eval-
uator returns the optimal query plan.

2.2 Motivating Example

Let us consider a real scenario, where a database
user wants to optimize an SQL query. A typi-
cal query optimizer relies on host hardware infor-
mation and database statistics (called metadata) to
find the cheapest execution plan for an SQL state-
ment. In Figure 1,we depict an example taken from
the TPC-H benchmark schema to optimize the total
costs. First, the user can visualize the query plan

1http://www.tpc.org/tpch/

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

530

Figure 1: Two query plans of TPC-H query 9.

Figure 2: The query optimizer components workflow.

by using for instance the EXPLAIN ANALYZE instruc-
tion, then he can rewrite the query by forcing the
optimizer through query hints (e.g. SET enable
hashjoin=off) to determine which physical rela-
tional operator should be used, he can also choose
the physical structure, like index, in order to im-
prove the cost. For example, we can see in Fig-
ure 1 (a,b) that when nested loop join has been re-
placed with the hash join and the full scan been re-
placed with the index scan, as consequence, the query
performance related to the CPU overhead and disk
I/O was improved (Execution Time decrease from:
3812,040 seconds⇒ 64,610 seconds) (is 60x faster).
From these results, it is concluded that choosing of
hints, like join operation, and physical structure, like
index, has a significant impact on the cost of queries
but not explained or justified.

2.3 Existing CBO Tools in Academic
and Industrial Areas

There is a long line of studies on cost based optimiz-
ers for database users (e.g. SQL/SparkSQL,Spark,
SQL-on-Hadoop engine, Map-reduce, Spark, Flink,
SQL) because it is considered as an important part of
DBMS and plays a major role in database research
community. From the industry and academia, there

has been much research on CBO problems, such as
the automatic selection of materialized views and in-
dexes selection (Agarawal and Others, 2000). In ad-
dition, most modern databases come with designer
tools, e.g., Tuning Wizard in Microsoft SQL Server
(Chaudhuri and Narasayya, 1998), Teradata’s Index
Wizard (Brown et al., 2009), and Oracle’s SQL Tun-
ing Adviser (Bhagat and Shukla, 2014). However,
these tools optimize query without proposing a men-
tal image of this process. By examining the database
design life cycle, we found that computer science ed-
ucation follows the traditional 3-phase design: con-
ceptual, logical and physical. However, a revue of
educational solutions for database design showed that
topics in educational domain include only database
design (e.g. (Keberle and Utkin, 2012; Al-Dmour,
2010)), relational algebra and SQL (e.g. by interact-
ing tools like QueryVis (Leventidis and Other, 2020),
concurrency control in DBMS (e.g. (Allenstein and
Others, 2008; Scherzinger, 2019)), Database Tun-
ing (Almeida and Others, 2019) and teaching DBMS
architecture (Sciore, 2007; Galaktionov and Cherni-
shev, 2019). Furthermore, we found in the litera-
ture a lot of work that is interested in CBO related
to SQL queries. For example, academic and indus-
trial database admin tools (Parinda, IndexStore, etc.)
use CBO by iterative invocations of cost evaluation
module, but users are keep out the loop of the optimiz-
ing process. These tools provide optimal performance
cost with less knowledge about how to optimize query
plans and no effort is made to teach CBO basic knowl-
edge to students, doctoral students and professionals.

Using MDE for Teaching Database Query Optimizer

531

3 OUR FRAMEWORK

This section is devoted to present the CF-CBO Con-
ceptual Framework for Cost Based Optimization. CF-
CBO is intended to move the Database Query Opti-
mizer process from depth complex details to a high
level of abstraction so as to facilitate the learning pro-
cess. We first formalize relevant foundations of the
CF-CBO Framework using a DSL, called OptDSL,
dedicated to Query Optimizer domain. Then, we give
an overview of the framework workflow that explains
the whole provided process.

3.1 CF-CBO Overview

Since the paper contributions have led to the devel-
opment of the CF-CBO framework, we first give an
overview of the capabilities that it provides. Our
Framework is based on MDE paradigm that focuses
on the use of models and model transformations to
raise the level of abstraction and automation in query
optimizer. CF-CBO offers the following services: (i)
Service 1: Visual plan construction of a given query
that is expressed in OptDSL. The goal of optimiza-
tion is to minimize the cost of a given SQL Query
by additional physical information for each relational
algebra operation. (ii) Service 2: Query Rewriting
from any query plan expressed by Service 1. The gen-
erated SQL code have to be compliant with DBMS.
(iii) Service 3: This service helps users to combine
their modifications to be included in a global query
plan. User interactions with OptDSL metamodel in-
stance (Add, Remove, etc.) and feedback are saved
in event logs and used later to provide users with hint
suggestions to help choosing different relational al-
gebra operations (e.g. Join Operator type) according
to algorithms implementation (e.g. NestedLoop-Join,
Hash-Join, etc.)

Figure 3: Overview of the CF-CBO Framework.

Figure 3 shows all these services and how they com-
municate with each other. Indeed, Service 1 is based
on the OptDSL language (presented in Section 3.2)),
it allows expressing the query plan as an instance
of the OptDSL metamodel. That will help to edit,
display, insert, and remove query operators under
the same formalism. In this case, Service 3 is re-
quired. That is, every user can use Service 3 not
only for visual query exploration, but also to obtain
a complete user documentation as metamodeling hi-
erarchy that defines the query optimizer components
and properties thanks to the syntax and semantics of
our OptDSL. The benefit is that during the optimiz-
ing process, we assume that user understands OptDSL
language since it contains a set of concepts, which are
common usually in CBO. Another important point is
that user can generate a transformation script in SQL
once a draft version of a query plan is obtained, rather
than rewriting the query manually, to avoid statement
errors. Service 2 provides this transformation auto-
matically based on our OptDSL metamodel. The CF-
CBO framework is in charge of generating the source
code of the targeted DBMS (e.g. PostgreSQL). In the
following, we will focus on the cornerstone elements
of Service 1, Service 2 and Service 3.

3.2 Core Elements of CF-CBO

The OptDSL language is the core element of CF-
CBO, dedicated to CBO. An instance of the OptDSL
language can represent a user need, which consists in
understanding/improving a query performance. Users
can interact with an instance of the OptDSL language
to understand/improve a query performance. In this
case, the user has to specify the context of his sys-
tem (i.e. database instance, query and platform) on
which he needs help. By instantiating OptDSL lan-
guage, we can also get a detailed relational database
query plan. Hereafter, we focus on core elements
of OptDSL metamodel and their semantics. Figure
4 depicts elements that are dedicated to express the
optimizer and its characteristics at a high-level of
abstraction. The root element of the metamodel is
the QueryPlan class, each QueryPlan instance con-
sists of a Database class instance, a Query class in-
stance, a Platform class instance, an Optimization-
Structure class instance, a Hints class instance, an
Operation class instance and a CostModel class in-
stance. An instance of the Database class is com-
posed of conceptual entities and their attributes. In
addition, links between entities are also represented
via associations. We also represent several semantic
restrictions such as primary and foreign keys. An in-
stance of the Query class takes as input a set of con-

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

532

Figure 4: Excerpt of OptDSL Meta-Model: Core Entities.

cepts, which are used to perform a set of algebra op-
erations (join, union, etc.). Furthermore, query op-
timizer can use access method such as B-tree index
or in-memory access method. An instance of the Plat-
form class includes the deployment architecture of the
database such as distributed or parallel database sys-
tems, database clusters, or cloud environments. An
instance of Cost Model class is defined as a function
and corresponds to a given metric of an elementary
query operation, it is composed of a metric (an in-
stance of Metric class), a context (an instance of Con-
text class) and a cost function (an instance of Cost-
Function class). Also, every instance of the Cost-
Model class has at least one cost type (for more de-
tails, refer to our previous work (Ouared et al., 2016)).

3.3 The CF-CBO Process

The proposed approach is a multi-step process that
primarily consists of 3 phases as depicted in Figure 3:
(1) Plan Exploration (2) Visual Query Construction,
and (3) Query Plan Rewrite. In the following, we de-
tail this process systematically.

3.3.1 Plan Exploration

Plan Exploration helps users to understand and ex-
plore a query plan by showing the query plan/sub-
plan, the order of operations, and used hints. This
assistance allows users browsing the knowledge of
CBO concepts (e.g. physical operations like scan,
sort, join...), identifying correctly the order of opera-

tions, and accessing SubQuery and Query Plan Meth-
ods. Furthermore, Plan exploration provides a com-
plete user documentation since the metamodeling hi-
erarchy defines all components of the query optimizer
and the properties of these components. Thanks to the
syntax and semantics of our Query Optimizer DSL,
our metamodel relies on concepts categorization that
will play a key role in the query optimizer’s process
learning (see Section 3.2)). One should use the inter-
face in order to express the query and visualize the
plan to be analyzed. One should use the interface in
order to express the query and visualize the plan to be
analyzed. Figure 5 shows an example of the Q9 query
plan (c.f. Section 2 see Figure 1)) with seven subplans
using DSL parser as shown in Figure 5.

3.3.2 Visual Query Construction

The presence of a design language that allows brows-
ing the query plans, enriching, editing, validating,
transforming them, etc. represents a valuable asset for
database users. Users can use our design tool to select
the required hints and to identify the required physical
configuration parameters that reduce the query cost.
In addition, users are required to decide about choice
of different relational algebra operations depending
on their implementation algorithms. For example, use
of special hint (e.g. HASH JOIN), rewrite queries
(e.g. remove GROUP BY clause), add/remove physi-
cal structures (such as materialized views, indexes, or
a combination of these). In addition, users can display
and customize various internal performance parame-

Using MDE for Teaching Database Query Optimizer

533

Figure 5: Segmentation of query Q9 into Subplans.

ters like Shared SQL Pool, Redo Log Buffer and other
information needed in the query optimization.

3.3.3 Query Plan Rewrite

Every query plan instance is generated according to
OptDSL. For that, a set of structural rules have been
injected in the OptDSL. These rules are expressed as
OCL (Object Constraint Language) invariants. List-
ing 1 is an example of a structural rule. This ex-
ample means that all implementation type operations
and their programming paradigm, that are query plan
inputs, have to be referenced as OperationType in-
stances in the ProgrammingModelType instance of
the operation class.

Class Operation

self.Implementation.type ->includesAll(self.

EImplementationType)

and self.ProgrammingModel.type ->includesAll(self

.EProgrammingModel)

Listing 1: An OCL structural rule.

In order to transform any query plan that is expressed
in OptDSL language into PostgreSQL, we have devel-
oped a code generator based on MDE settings using
the model-to-text transformation, since our objective
is to obtain the query physical plan. The implemen-
tation relies on the utilization of Acceleo. Listing 2
shows the generated query plan of the example pre-
sented in Figure 1.

Sort (cost =410317.35..410317.37 rows=6 width

=25) (actual time =10424.815..10424.816 rows

=4 loops=1)

Sort Key: l_returnflag , l_linestatus

Sort Method: quicksort Memory: 25kB

-> HashAggregate (cost =410317.11..410317.27

rows=6 width=25) (actual time

=10424.769..10424.775 rows=4 loops=1)

Group Key: l_returnflag , l_linestatus

....

Planning time: 0.380 ms

Execution time: 10424.894 ms

(10 rows)

Listing 2: Example of Displaying Execution Plans.

4 PROOF OF CONCEPT

To stress our approach and to proof how it is use-
ful and helpful, this section is devoted to present
a global usage scenario of the CF-CBO framework.
CF-CBO has been implemented for academic require-
ments based on PostgreSQL2, mostly because it is
open source. To ease the understanding, we provide
the URL of a demonstration video of the CF-CBO
framework3. In this section, we describe the function-
alities of CF-CBO which is composed of two parts,
the backend which contains the DBMS and the fron-
tend part that is represented by the graphical user in-
terface. The component modules are listed below.

The CBO Learning support is divided into four
parts: (1) Database Schema Analysis, (2) Query

2http://www.postgresql.org/
3The demonstration video of CF-CBO is available at:

https://www.youtube.com/watch?v=OGn3mf4s2aQ

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

534

(a) Database Schema Analysis (b) Query Plan Analysis

Figure 6: CF-CBO main GUI and its component module panels (A).

(a) Query Plan Construction (b) Results-Reports

Figure 7: CF-CBO main GUI and its component module panels (B).

Analysis, (3) Query Plan Construction and (4)
Results-Reports and Plan Exploration. In the begin-
ning, our tool displays a configuration form that in-
cludes database connection information. When the
user is connected, he has first to select a database
schema (e.g. TPC-H schema database) among many
ones and then selects a query of TPC-H benchmark 4

to optimize (cf. Figure 6 a©). The Database Schema
Analysis panel assists users in analyzing information
about database statistics. Figures 6 and 7 show the
CF-CBO main GUI and its component module pan-
els. The Query Plan Analysis panel helps users to get
information about the query structure (Selection/Join
predicate, aggregation functions, etc. These informa-
tion are required to improve query performance (cf.
Figure 6 b©). In Query Plan Construction (cf. Figure

4http://www.tpc.org/tpch/

7 a©), the system displays three informational panels.
On the top right, our tool displays the logical query
plan indicating the algebra operators’ execution order
to enable the user making a global understanding on
query result. On the top left, the user can customize
algorithm implementation for each relational algebra
operator in the query plan. In addition, user can get in-
formation about database server parameters and cus-
tomize each value appropriately such as the Shared
SQL Pool and system page size. Finally, the user can
select the hints that are organized into categories (e.g.
Access Paths) and subcategories (e.g. FULL Scan).
The output of this stage is a rewritten SQL query with
automatic code generation from high-level abstrac-
tion description language. In panel Results-Reports
(cf. Figure 7 b©), the user can verify if the execu-
tion time of the new query plan is higher cost than the
initial cost and tries to refine the query plan by return-

Using MDE for Teaching Database Query Optimizer

535

ing to panel three. In order to assess the user’s query
performance skill, we employed a checklist as edu-
cational strategy to get the participants’ feedback by
selecting the correct or best response from a provided
list (as shown in Figure 7 b©). The system prompts the
user to answer some questions, like why query has a
lower/upper cost? with several answers such as ”Is
the data for this query benefit from cached data” etc.
The interactions and feedback of users are saved in
the the event logs. This latter indicates users’ per-
formance based on collected data from users’ actions
during interaction with CF-CBO.

5 CONCLUSION

This paper presents a Conceptual and Methodologi-
cal Framework to explain Database Query Optimizer
to users dealing with query performance and to help
transferring the domain knowledge effectively to that
users. The work is motivated by the complexity of the
CBO entity compared to its cardinality estimates, plan
properties, database operations and its algorithms.
Our approach supports that MDE can be applied to a
real problem in advanced courses of database, in par-
ticular, the cost based optimization. The main contri-
butions of this work are as follows. First, (i) we built
a metamodel to explicit Database Query Optimizer
knowledge and to provide a domain vocabulary that
helps learning query plan, understanding and combin-
ing hints, and customizing query plan. Second, (ii) we
developed an MDE based process that offers different
bricks (operations, hints) that are required in CBO to
facilitate query plan optimization. Finally, (iii) we de-
veloped the tool support of the whole approach. Cur-
rently, we are evaluating how the CF-CBO can sig-
nificantly increase efficiency and effectiveness of the
students understanding in the query optimization do-
main. Nevertheless, this work opens several direc-
tions of further research. First, we are studying to
explore more intensively DBMS inside in order to de-
liver a more informative instruction on database query
optimization at a high level of abstraction. Second,
we project to develop a rule-based errors diagnosis
related to users selection of required hints to enhance
CBO learnability.

REFERENCES

Agarawal, S. and Others (2000). Automated selection
of materialized views and indexes for Sql databses.
In Proceedings of 26th International Conference on
VLDB, Cairo, Egypt, pages 191–207.

Al-Dmour, A. (2010). A cognitive apprenticeship based
approach to teaching relational database analysis and
design. Journal of Information & Computational Sci-
ence, 7(12):2495–2502.

Allenstein, B. and Others (2008). A query simulation sys-
tem to illustrate database query execution. In Pro-
ceedings of the 39th SIGCSE technical symposium on
Computer science education, pages 493–497.

Almeida, A. C. and Others (2019). An ontological perspec-
tive for database tuning heuristics. In International
Conference on ER, pages 240–254. Springer.

Bhagat, M. and Shukla, S. (2014). Tuning the tpc-c bench-
mark using oracle 10 g. IJEMR, 4(5):179–182.

Brown, D. P., Chaware, J., and Koppuravuri, M. (2009).
Index selection in a database system. US Patent
7,499,907.

Chaudhuri, S. and Narasayya, V. (1998). Autoadmin “what-
if” index analysis utility. ACM SIGMOD Record,
27(2):367–378.

Galaktionov, V. and Chernishev, G. (2019). Designing a
DBMS development course with automatic assign-
ment evaluation. In Fourth Conference on SEIM-2019
(full papers), volume 8, page 48.

Gallinucci, E. and Golfarelli, M. (2019). Sparktune: tun-
ing spark Sql through query cost modeling. In EDBT,
pages 546–549.

Jarke, M. and Koch, J. (1984). Query optimization in
database systems. ACM Computing surveys (CsUR),
16(2):111–152.

Keberle, N. and Utkin, I. V. (2012). Teaching conceptual
modeling in er: Chen worlds. In ICTERI, pages 222–
227.

Leventidis, A. and Other (2020). Queryvis: Logic-based di-
agrams help users understand complicated Sql queries
faster. In Proceedings of the 2020 ACM SIGMOD,
pages 2303–2318.

Liu, S., Bhowmick, S. S., Zhang, W., Wang, S., Huang,
W., and Joty, S. (2019). Neuron: Query execution
plan meets natural language processing for augment-
ing DB education. In Proceedings of the 2019 Inter-
national Conference on Management of Data, pages
1953–1956.

Manegold, S., Boncz, P., and Kersten, M. L. (2002).
Generic database cost models for hierarchical mem-
ory systems. In VLDB, pages 191–202.

Ouared, A., Ouhammou, Y., and Bellatreche, L. (2016).
Costdl: a cost models description language for per-
formance metrics in database. In 2016 21st Interna-
tional Conference on Engineering of Complex Com-
puter Systems (ICECCS), pages 187–190. IEEE.

Pavlo, A. et al. (2017). Self-driving database management
systems. In CIDR, volume 4, page 1.

Scherzinger, S. (2019). Have your Students build their own
Mini Hive in just Eight Weeks. In LWDA, pages 38–
41.

Sciore, E. (2007). Simpledb: a simple java-based multiuser
syst for teaching database internals. ACM SIGCSE
Bulletin, 39(1):561–565.

Siddiqui, T. and Other (2020). Cost models for big data
query processing: Learning, retrofitting, and our find-
ings. In Proceedings of the 2020 ACM SIGMOD,
pages 99–113.

MDI4SE 2021 - Special Session on Model-Driven Innovations for Software Engineering

536

